Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Advanced Science & Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
Yong Han
CORRESPONDING AUTHOR
Advanced Science & Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Related authors
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Hao Luo, Li Dong, Yichen Chen, Yuefeng Zhao, Delong Zhao, Mengyu Huang, Deping Ding, Jiayuan Liao, Tian Ma, Maohai Hu, and Yong Han
Atmos. Chem. Phys., 22, 2507–2524, https://doi.org/10.5194/acp-22-2507-2022, https://doi.org/10.5194/acp-22-2507-2022, 2022
Short summary
Short summary
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the atmosphere and exacerbating surface air pollution. Using aircraft measurements and WRF-Chem simulations, we find that the aerosol–PBL interaction of different aerosols under contrasting synoptic patterns, PBL structures, and aerosol vertical distributions vary significantly. We attempt to determine which pollutants to target in different synoptic conditions to attain more precise air pollution control.
Yan Liu, Hailing Jia, and Yong Han
EGUsphere, https://doi.org/10.5194/egusphere-2025-5935, https://doi.org/10.5194/egusphere-2025-5935, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study explores how tiny particles in the air influence non-raining warm clouds over the South China Sea in different monsoon periods. Using long-term satellite observations and reanalysis datasets, we show that cloud sensitivity to these particles changes with moisture and atmospheric stability. Dry and stable conditions make clouds more responsive, while moist environments weaken this effect. These results help improve how climate models describe cloud behavior.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Hao Luo, Li Dong, Yichen Chen, Yuefeng Zhao, Delong Zhao, Mengyu Huang, Deping Ding, Jiayuan Liao, Tian Ma, Maohai Hu, and Yong Han
Atmos. Chem. Phys., 22, 2507–2524, https://doi.org/10.5194/acp-22-2507-2022, https://doi.org/10.5194/acp-22-2507-2022, 2022
Short summary
Short summary
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the atmosphere and exacerbating surface air pollution. Using aircraft measurements and WRF-Chem simulations, we find that the aerosol–PBL interaction of different aerosols under contrasting synoptic patterns, PBL structures, and aerosol vertical distributions vary significantly. We attempt to determine which pollutants to target in different synoptic conditions to attain more precise air pollution control.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227, https://doi.org/10.1126/science.245.4923.1227, 1989.
Amiri-Farahani, A., Allen, R. J., Neubauer, D., and Lohmann, U.: Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect, Atmos. Chem. Phys., 17, 6305–6322, https://doi.org/10.5194/acp-17-6305-2017, 2017.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon,
Science, 303, 1337, https://doi.org/10.1126/science.1092779, 2004.
Carlson, T. N. and Benjamin, S. G.: Radiative Heating Rates for Saharan
Dust, J. Atmos. Sci., 37, 193, https://doi.org/10.1175/1520-0469(1980)037<0193:rhrfsd>2.0.co;2, 1980.
Chen, S.-H., Wang, S.-H., and Waylonis, M.: Modification of Saharan air
layer and environmental shear over the eastern Atlantic Ocean by
dust-radiation effects, J. Geophys. Res.-Atmos., 115, D21202,
https://doi.org/10.1029/2010JD014158, 2010.
Dunion, J. P. and Velden, C. S.: The Impact of the Saharan Air Layer on
Atlantic Tropical Cyclone Activity, Bull. Am. Meteorol. Soc., 85, 353–366, https://doi.org/10.1175/bams-85-3-353, 2004.
Dunkerton, T. J., Montgomery, M. T., and Wang, Z.: Tropical cyclogenesis in a tropical wave critical layer: easterly waves, Atmos. Chem. Phys., 9, 5587–5646, https://doi.org/10.5194/acp-9-5587-2009, 2009.
Emanuel, K.: Tropical cyclone energetics and structure, in: Atmospheric
Turbulence and Mesoscale Meteorology: Scientific Research Inspired by Doug
Lilly, edited by: Stevens, B., Fedorovich, E., and Rotunno, R., C. U. P., Cambridge, 165–192, https://doi.org/10.1017/CBO9780511735035.010, 2004.
Emanuel, K. A.: An Air-Sea Interaction Theory for Tropical Cyclones. Part I:
Steady-State Maintenance, J. Atmos. Sci., 43, 585–605,
https://doi.org/10.1175/1520-0469(1986)043<0585:aasitf>2.0.co;2, 1986.
Ermakov, D. M., Sharkov, E. A., and Chernushich, A. P.: Satellite
radiothermovision of atmospheric mesoscale processes: case study of tropical
cyclones, ISPRS – International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL7, 179,
https://doi.org/10.5194/isprsarchives-XL-7-W3-179-2015, 2015.
Ermakov, D. M., Sharkov, E. A., and Chernushich, A. P.: Role of Tropospheric
Latent Heat Advective Fluxes in the Intensification of Tropical Cyclones,
Izvestiya, Izv. Atmos. Ocean. Phys., 55, 1254–1265,
https://doi.org/10.1134/S0001433819090172, 2019.
Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K., and Velden, C. S.:
New evidence for a relationship between Atlantic tropical cyclone activity
and African dust outbreaks, Geophys. Res. Lett., 33, L19813,
https://doi.org/10.1029/2006GL026408, 2006.
Fritz, C. and Wang, Z.: A Numerical Study of the Impacts of Dry Air on
Tropical Cyclone Formation: A Development Case and a Nondevelopment Case,
J. Atmos. Sci., 70, 91–111, https://doi.org/10.1175/jas-d-12-018.1,
2013.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789,
https://doi.org/10.1038/nature04636, 2006.
Gray, W. M.: Global view of the origin of tropical disturbances and storms,
Mon. Weather Rev., 96, 669–700, https://doi.org/10.1175/1520-0493(1968)096<0669:gvotoo>2.0.co;2, 1968.
Gutleben, M., Groß, S., and Wirth, M.: Cloud macro-physical properties in Saharan-dust-laden and dust-free North Atlantic trade wind regimes: a lidar case study, Atmos. Chem. Phys., 19, 10659–10673, https://doi.org/10.5194/acp-19-10659-2019, 2019.
Han, Y., Zhou, Y., Guo, J., Wu, Y., Wang, T., Zhuang, B., and Li, M.: The
Characteristics of Spatial and Temporal Variations in the PBL during the
Landfall of Tropical Cyclones across East China, J. Appl. Meteorol. Climatol., 58, 1557–1572, https://doi.org/10.1175/jamc-d-18-0131.1, 2019.
Helmert, J., Heinold, B., Tegen, I., Hellmuth, O., and Wendisch, M.: On the
direct and semidirect effects of Saharan dust over Europe: A modeling study,
J. Geophys. Res.-Atmos., 112, D13208,
https://doi.org/10.1029/2006JD007444, 2007.
Hill, K. A. and Lackmann, G. M.: Influence of Environmental Humidity on
Tropical Cyclone Size, Mon. Weather Rev., 137, 3294–3315,
https://doi.org/10.1175/2009mwr2679.1, 2009.
Holt, C., Szunyogh, I., Gyarmati, G., Leidner, S. M., and Hoffman, R. N.:
Assimilation of Tropical Cyclone Observations: Improving the Assimilation of
TCVitals, Scatterometer Winds, and Dropwindsonde Observations, Mon. Weather Rev., 143, 3956–3980, https://doi.org/10.1175/mwr-d-14-00158.1, 2015.
Huang, C.-C., Chen, S.-H., Lin, Y.-C., Earl, K., Matsui, T., Lee, H.-H.,
Tsai, I.-C., Chen, J.-P., and Cheng, C.-T.: Impacts of Dust–Radiation
versus Dust–Cloud Interactions on the Development of a Modeled Mesoscale
Convective System over North Africa, Mon. Weather Rev., 147, 3301–3326,
https://doi.org/10.1175/mwr-d-18-0459.1, 2019.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust
aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos., 119, 11398–11416,
https://doi.org/10.1002/2014JD021796, 2014.
Huang, W. T. K., Poberaj, C. S., Enz, B., Horat, C., and Lohmann, U.: When
Does the Saharan Air Layer Impede the Intensification of Tropical Cyclones?,
J. Clim., 33, 10609–10626, https://doi.org/10.1175/jcli-d-19-0854.1, 2020.
Jones, C., Mahowald, N., and Luo, C.: Observational evidence of African
desert dust intensification of easterly waves, Geophys. Res. Lett.,
31, L17208, https://doi.org/10.1029/2004GL020107, 2004.
Juračić, A. and Raymond, D. J.: The effects of moist entropy and
moisture budgets on tropical cyclone development, J. Geophys.
Res.-Atmos., 121, 9458–9473, https://doi.org/10.1002/2016JD025065,
2016.
Karyampudi, V. M. and Carlson, T. N.: Analysis and Numerical Simulations of
the Saharan Air Layer and Its Effect on Easterly Wave Disturbances, J. Atmos. Sci., 45, 3102–3136, https://doi.org/10.1175/1520-0469(1988)045<3102:aansot>2.0.co;2, 1988.
Karyampudi, V. M. and Pierce, H. F.: Synoptic-Scale Influence of the
Saharan Air Layer on Tropical Cyclogenesis over the Eastern Atlantic,
Mon. Weather Rev., 130, 3100–3128, https://doi.org/10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2, 2002.
Kerns, B. W. and Chen, S. S.: Cloud Clusters and Tropical Cyclogenesis:
Developing and Nondeveloping Systems and Their Large-Scale Environment,
Mon. Weather Rev., 141, 192–210, https://doi.org/10.1175/MWR-D-11-00239.1, 2013.
Knaff, J. A., Longmore, S. P., and Molenar, D. A.: An Objective
Satellite-Based Tropical Cyclone Size Climatology, J. Clim., 27,
455, https://doi.org/10.1175/jcli-d-13-00096.1, 2014.
Knapp, K. R., Velden, C. S., and Wimmers, A. J.: A Global Climatology of
Tropical Cyclone Eyes, Mon. Weather Rev., 146, 2089–2101,
https://doi.org/10.1175/mwr-d-17-0343.1, 2018.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective clouds,
Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187,
2005.
Koren, I., Remer, L. A., Altaratz, O., Martins, J. V., and Davidi, A.: Aerosol-induced changes of convective cloud anvils produce strong climate warming, Atmos. Chem. Phys., 10, 5001–5010, https://doi.org/10.5194/acp-10-5001-2010, 2010.
Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration
of warm convective clouds, Science, 344, 1143, https://doi.org/10.1126/science.1252595,
2014.
Landsea, C. W. and Franklin, J. L.: Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format, Mon. Weather Rev., 141, 3576–3592, https://doi.org/10.1175/mwr-d-12-00254.1, 2013 (data available at: https://www.nhc.noaa.gov/data/#hurdat, last access: 20 October 2020).
Liu, J., Liu, F., Tuoliewubieke, D., and Yang, L.: Analysis of the water
vapour transport and accumulation mechanism during the “7.31” extreme
rainstorm event in the southeastern Hami area, China,
Meteorol. Appl., 27, e1933, https://doi.org/10.1002/met.1933, 2020.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Luo, H., Han, Y., Lu, C., Yang, J., and Wu, Y.: Characteristics of Surface
Solar Radiation under Different Air Pollution Conditions over Nanjing,
China: Observation and Simulation, Adv. Atmos. Sci., 36,
1047–1059, https://doi.org/10.1007/s00376-019-9010-4, 2019.
Luo, H., Han, Y., Cheng, X., Lu, C., and Wu, Y.: Spatiotemporal Variations
in Particulate Matter and Air Quality over China: National, Regional and
Urban Scales, Atmosphere, 12, 43, https://doi.org/10.3390/atmos12010043, 2021.
Makarieva, A. M., Gorshkov, V. G., Nefiodov, A. V., Chikunov, A. V., Sheil,
D., Nobre, A. D., and Li, B.-L.: Fuel for cyclones: The water vapor budget
of a hurricane as dependent on its movement, Atmos. Res., 193, 216,
https://doi.org/10.1016/j.atmosres.2017.04.006, 2017.
Marenco, F., Ryder, C., Estellés, V., O'Sullivan, D., Brooke, J., Orgill, L., Lloyd, G., and Gallagher, M.: Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D, Atmos. Chem. Phys., 18, 17655–17668, https://doi.org/10.5194/acp-18-17655-2018, 2018.
Montgomery, M. T. and Farrell, B. F.: Tropical cyclone formation, J.
Atmos. Sci., 50, 285–310, 1993.
NCAR: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
Nowottnick, E. P., Colarco, P. R., Braun, S. A., Barahona, D. O., da Silva,
A., Hlavka, D. L., McGill, M. J., and Spackman, J. R.: Dust Impacts on the
2012 Hurricane Nadine Track during the NASA HS3 Field Campaign, J. Atmos. Sci., 75, 2473–2489, https://doi.org/10.1175/JAS-D-17-0237.1, 2018.
Ooyama, K.: Numerical Simulation of the Life Cycle of Tropical Cyclones,
J. Atmos. Sci., 26, 3, https://doi.org/10.1175/1520-0469(1969)026<0003:nsotlc>2.0.co;2, 1969.
Pan, B., Wang, Y., Hu, J., Lin, Y., Hsieh, J.-S., Logan, T., Feng, X.,
Jiang, J. H., Yung, Y. L., and Zhang, R.: Impacts of Saharan Dust on
Atlantic Regional Climate and Implications for Tropical Cyclones, J. Clim., 31, 7621–7644, https://doi.org/10.1175/jcli-d-16-0776.1, 2018.
Parks, R. M., Anderson, G. B., Nethery, R. C., Navas-Acien, A., Dominici,
F., and Kioumourtzoglou, M.-A.: Tropical cyclone exposure is associated with
increased hospitalization rates in older adults, Nature Commun., 12,
1545, https://doi.org/10.1038/s41467-021-21777-1, 2021.
Platnick, S., King, M., Meyer, K., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G., Zhang, Z., Hubanks, P., and Ridgway, B.: MODIS atmosphere L3 monthly product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], available at: https://search.earthdata.nasa.gov (last access: 20 October 2020), 2015.
Price, H. C., Baustian, K. J., McQuaid, J. B., Blyth, A., Bower, K. N.,
Choularton, T., Cotton, R. J., Cui, Z., Field, P. R., Gallagher, M., Hawker,
R., Merrington, A., Miltenberger, A., Neely III, R. R., Parker, S. T.,
Rosenberg, P. D., Taylor, J. W., Trembath, J., Vergara-Temprado, J., Whale,
T. F., Wilson, T. W., Young, G., and Murray, B. J.: Atmospheric
Ice-Nucleating Particles in the Dusty Tropical Atlantic, J. Geophys. Res.-Atmos., 123, 2175–2193, https://doi.org/10.1002/2017JD027560, 2018.
Ritchie, E. A., Wood, K. M., Gutzler, D. S., and White, S. R.: The Influence
of Eastern Pacific Tropical Cyclone Remnants on the Southwestern United
States, Mon. Weather Rev., 139, 192–210, https://doi.org/10.1175/2010MWR3389.1, 2011.
Rosenfeld, D., Lohmann, U., Raga, G. B., Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation?, Science, 321, 1309, https://doi.org/10.1126/science.1160606, 2008.
Sassen, K., DeMott, P. J., Prospero, J. M., and Poellot, M. R.: Saharan dust
storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,
Geophys. Res. Lett., 30, 1633, https://doi.org/10.1029/2003GL017371,
2003.
Sun, Y. and Zhao, C.: Influence of Saharan Dust on the Large-Scale
Meteorological Environment for Development of Tropical Cyclone Over North
Atlantic Ocean Basin, J. Geophys. Res.-Atmos., 125,
e2020JD033454, https://doi.org/10.1029/2020JD033454, 2020.
Tory, K. J. and Dare, R. A.: Sea Surface Temperature Thresholds for
Tropical Cyclone Formation, J. Clim., 28, 8171–8183,
https://doi.org/10.1175/jcli-d-14-00637.1, 2015.
Tsikerdekis, A., Zanis, P., Georgoulias, A. K., Alexandri, G., Katragkou,
E., Karacostas, T., and Solmon, F.: Direct and semi-direct radiative effect
of North African dust in present and future regional climate simulations,
Clim. Dyn., 53, 4311–4336, https://doi.org/10.1007/s00382-019-04788-z, 2019.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Wang, K. Y. and Liu, C. H.: Transport of the Saharan dust air plumes over
the tropical North Atlantic from FORMOSAT–3/COSMIC observation, Atmos. Pollut. Res., 5, 539–553, https://doi.org/10.5094/APR.2014.063, 2014.
Wingo, M. T. and Cecil, D. J.: Effects of Vertical Wind Shear on Tropical
Cyclone Precipitation, Mon. Weather Rev., 138, 645–662,
https://doi.org/10.1175/2009mwr2921.1, 2010.
Wong, S. and Dessler, A. E.: Suppression of deep convection over the
tropical North Atlantic by the Saharan Air Layer, Geophys. Res.
Lett., 32, L09808, https://doi.org/10.1029/2004GL022295, 2005.
Wu, L.: Impact of Saharan air layer on hurricane peak intensity, Geophys.
Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564, 2007.
Wyser, K.: The Effective Radius in Ice Clouds, J. Clim., 11,
1793–1802, https://doi.org/10.1175/1520-0442(1998)011<1793:teriic>2.0.co;2, 1998.
Xian, P., Klotzbach, P. J., Dunion, J. P., Janiga, M. A., Reid, J. S., Colarco, P. R., and Kipling, Z.: Revisiting the relationship between Atlantic dust and tropical cyclone activity using aerosol optical depth reanalyses: 2003–2018, Atmos. Chem. Phys., 20, 15357–15378, https://doi.org/10.5194/acp-20-15357-2020, 2020.
Xu, X., Sun, C., Lu, C., Liu, Y., Zhang, G. J., and Chen, Q.: Factors
Affecting Entrainment Rate in Deep Convective Clouds and Parameterizations,
J. Geophys. Res.-Atmos., 126, e2021JD034881,
https://doi.org/10.1029/2021JD034881, 2021.
Yan, H., Li, Z., Huang, J., Cribb, M., and Liu, J.: Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains, Atmos. Chem. Phys., 14, 7113–7124, https://doi.org/10.5194/acp-14-7113-2014, 2014.
Zhao, C. and Garrett, T. J.: Effects of Arctic haze on surface cloud
radiative forcing, Geophys. Res. Lett., 42, 557–564,
https://doi.org/10.1002/2014GL062015, 2015.
Zhao, C., Lin, Y., Wu, F., Wang, Y., Li, Z., Rosenfeld, D., and Wang, Y.:
Enlarging Rainfall Area of Tropical Cyclones by Atmospheric Aerosols,
Geophys. Res. Lett., 45, 8604–8611, https://doi.org/10.1029/2018GL079427, 2018.
Zhou, Y., Han, Y., Wu, Y., Wang, T., Tang, X., and Wang, Y.: Optical
Properties and Spatial Variation of Tropical Cyclone Cloud Systems From TRMM
and MODIS in the East Asia Region: 2010–2014, J. Geophys.
Res.-Atmos., 123, 9542–9558, https://doi.org/10.1029/2018jd028357, 2018.
Zhu, L., Lu, C., Yan, S., Liu, Y., Zhang, G. J., Mei, F., Zhu, B., Fast, J.
D., Matthews, A., and Pekour, M. S.: A New Approach for Simultaneous
Estimation of Entrainment and Detrainment Rates in Non-Precipitating Shallow
Cumulus, Geophys. Res. Lett., 48, e2021GL093817,
https://doi.org/10.1029/2021GL093817, 2021.
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are...
Altmetrics
Final-revised paper
Preprint