Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-10015-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-10015-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework
Cheng Hu
CORRESPONDING AUTHOR
College of Biology and the Environment, Joint Center for sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037,
China
Yale-NUIST Center on Atmospheric Environment, International Joint
Laboratory on Climate and Environment Change (ILCEC), Nanjing University of
Information Science and Technology, Nanjing, 210044, China
Jiaping Xu
Jiangsu Climate Center, China Meteorological Administration,
Nanjing, 210009, China
Cheng Liu
Jiangxi Province Key Laboratory of the Causes and Control of
Atmospheric Pollution, East China University of Technology, Nanchang,
330013, China
Yan Chen
Jiangsu Climate Center, China Meteorological Administration,
Nanjing, 210009, China
Dong Yang
Ningbo Meteorological Observatory, Ningbo, 315012, China
Wenjing Huang
Yale-NUIST Center on Atmospheric Environment, International Joint
Laboratory on Climate and Environment Change (ILCEC), Nanjing University of
Information Science and Technology, Nanjing, 210044, China
Lichen Deng
Ecological Meteorology Center, Jiangxi Meteorological Bureau,
Nanchang, 330096, China
Shoudong Liu
Yale-NUIST Center on Atmospheric Environment, International Joint
Laboratory on Climate and Environment Change (ILCEC), Nanjing University of
Information Science and Technology, Nanjing, 210044, China
Timothy J. Griffis
CORRESPONDING AUTHOR
Department of Soil, Water, and Climate, University of
Minnesota-Twin Cities, St. Paul, Minnesota, USA
Xuhui Lee
School of Forestry and Environmental Studies, Yale University, New
Haven, Connecticut, USA
Related authors
Cheng Hu, Junqing Zhang, Bing Qi, Rongguang Du, Xiaofei Xu, Haoyu Xiong, Huili Liu, Xinyue Ai, Yiyi Peng, and Wei Xiao
Atmos. Chem. Phys., 23, 4501–4520, https://doi.org/10.5194/acp-23-4501-2023, https://doi.org/10.5194/acp-23-4501-2023, 2023
Short summary
Short summary
We build the first city-scale tower-based atmospheric CH4 concentration observation network in China. The a priori total annual anthropogenic CH4 emissions and emissions from waste treatment were overestimated by 36.0 % and 47.1 %, respectively, in Hangzhou. Global warming will largely enhance the CH4 emission factor of waste treatment, which will increase by 17.6 %, 9.6 %, 5.6 % and 4.0 % for Representative Concentration Pathway (RCP) 8.5, RCP6.0, RCP4.5 and RCP2.6, respectively, by 2100.
Fan Sun, Yu Cui, Jiayin Su, Yifan Zhang, Xuejing Shi, Junqing Zhang, Huili Liu, Qitao Xiao, Xiao Lu, Zhao-Cheng Zeng, Timothy J. Griffis, and Cheng Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3090, https://doi.org/10.5194/egusphere-2025-3090, 2025
Short summary
Short summary
This study used satellite data and models to track ammonia concentration and dry deposition across China from 2013 to 2023. Ammonia levels rose sharply, especially in urban and farming regions, with the North China Plain showing the highest values. Human activity was the main driver of change. These findings highlight growing environmental risks and provide key insights for managing air quality and nitrogen pollution in one of the world’s major emission hotspots.
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
Atmos. Chem. Phys., 25, 6725–6740, https://doi.org/10.5194/acp-25-6725-2025, https://doi.org/10.5194/acp-25-6725-2025, 2025
Short summary
Short summary
This study utilized the IPDA (integrated path differential absorption) lidar on board the DQ-1 satellite to monitor emissions from localized strong point sources and, for the first time, observed the diurnal variation in CO2 emissions from a high-latitude power plant. Overall, power plant CO2 emissions were largely consistent with local electricity consumption patterns, with most plants emitting less at night than during the day and with higher emissions in winter compared to spring and autumn.
Zhenxin Liu, Yuanhao Chen, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev., 16, 4385–4403, https://doi.org/10.5194/gmd-16-4385-2023, https://doi.org/10.5194/gmd-16-4385-2023, 2023
Short summary
Short summary
The heterogeneous layout of urban buildings leads to the complex wind field in and over the urban canopy. Large discrepancies between the observations and the current simulations result from misunderstanding the character of the wind field. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) was developed to simulate the heterogeneity of the wind speed in a typical street and then improve the simulated energy budget in the lower atmospheric layer over the urban canopy.
Cheng Hu, Junqing Zhang, Bing Qi, Rongguang Du, Xiaofei Xu, Haoyu Xiong, Huili Liu, Xinyue Ai, Yiyi Peng, and Wei Xiao
Atmos. Chem. Phys., 23, 4501–4520, https://doi.org/10.5194/acp-23-4501-2023, https://doi.org/10.5194/acp-23-4501-2023, 2023
Short summary
Short summary
We build the first city-scale tower-based atmospheric CH4 concentration observation network in China. The a priori total annual anthropogenic CH4 emissions and emissions from waste treatment were overestimated by 36.0 % and 47.1 %, respectively, in Hangzhou. Global warming will largely enhance the CH4 emission factor of waste treatment, which will increase by 17.6 %, 9.6 %, 5.6 % and 4.0 % for Representative Concentration Pathway (RCP) 8.5, RCP6.0, RCP4.5 and RCP2.6, respectively, by 2100.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Zhen Zhang, Mi Zhang, Chang Cao, Wei Wang, Wei Xiao, Chengyu Xie, Haoran Chu, Jiao Wang, Jiayu Zhao, Lei Jia, Qiang Liu, Wenjing Huang, Wenqing Zhang, Yang Lu, Yanhong Xie, Yi Wang, Yini Pu, Yongbo Hu, Zheng Chen, Zhihao Qin, and Xuhui Lee
Earth Syst. Sci. Data, 12, 2635–2645, https://doi.org/10.5194/essd-12-2635-2020, https://doi.org/10.5194/essd-12-2635-2020, 2020
Short summary
Short summary
Inland lakes play an important role in regulating local climate. In this paper, we describe a dataset on microclimate and eddy covariance variables measured at a network of sites across Lake Taihu. The dataset, which appears to be the first of its kind for lake systems, can be used for validation of lake–air flux parameterizations, investigation of climatic controls on lake evaporation, evaluation of remote-sensing surface data products and global synthesis on lake–air interactions.
Cited articles
Alden, C. B., Miller, J. B., and Gatti, L. V.: Regional atmospheric CO2
inversion reveals seasonal and geographic differences in Amazon net biome
exchange, Glob. Change Biol., 22, 3427–3443, https://doi.org/10.1111/gcb.13305, 2016.
Andrew, R. M.: Global CO2 emissions from cement production, Earth Syst. Sci. Data, 10, 195–217, https://doi.org/10.5194/essd-10-195-2018, 2018.
Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere?, Biogeosciences, 8, 3093–3106, https://doi.org/10.5194/bg-8-3093-2011, 2011.
Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, E.-D.: Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.
Boden, T., Andres, R., and Marland, G.: Global, Regional, and National
Fossil-Fuel CO2 Emissions (1751–2013) (V. 2016),
Environmental System Science Data Infrastructure for a Virtual Ecosystem;
Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National
Laboratory (ORNL) [Data set], Oak Ridge, TN, USA, 2016.
Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015.
Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.
Cai, B., Wang, J., He, J., and Geng, Y.: Evaluating CO2 emission
performance in China's cement industry: An enterprise perspective, Appl. Energ.,
166, 191–200, https://doi.org/10.1016/j.apenergy.2015.11.006, 2015.
Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.:
Urban heat islands in China enhanced by haze pollution, Nat. Commun., 7, 12509, https://doi.org/10.1038/ncomms12509, 2016.
Chen, B., Chen, J., Tans, P., and Huang, L.: Simulating dynamics of δ13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing,
Tellus, 58, 537–549, https://doi.org/10.1111/j.1600-0889.2006.00213.x, 2006.
Chen, J. M., Mo, G., and Deng, F.: A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data, Geosci. Model Dev., 10, 1131–1156, https://doi.org/10.5194/gmd-10-1131-2017, 2017.
Cui, X., Newman, S., Xu, X., Andrews, A. E., Miller, J., and Lehman, S.:
Atmospheric observation-based estimation of fossil fuel CO2 emissions
from regions of central and southern California, Sci. Total Environ., 664, 381–391,
https://doi.org/10.1016/j.scitotenv.2019.01.081, 2019.
Deng, L., Liu, S., and Zhao, X.: Study on the change in land cover of Yangtze
River Delta based on MOD13A2 data, China Science Paper, 10, 1822–1827, 2015 (in Chinese).
Gately, C. K. and Hutyra, L. R.: Large uncertainties in urban-scale carbon
emissions, J. Geophys. Res.-Atmos., 122, 11242–11260, https://doi.org/10.1002/2017JD027359,
2017.
Gately, C. K., Hutyra, L. R., and Wing, I. S.: Cities, traffic, and
CO2: A multidecadal assessment of trends, drivers, and scaling
relationships, P. Natl. Acad. Sci. USA, 112, 4999–5004,
https://doi.org/10.1073/pnas.1421723112, 2015.
Ghasemifard, H., Vogel, F. R., Yuan, Y., Luepke, M., Chen, J., Ries, L., Leuchner, M., Schunk, C., Noreen Vardag, S., and Menzel, A.: Pollution Events at the
High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.),
Germany, Atmosphere, 10, 330, https://doi.org/10.3390/atmos10060330, 2019.
Graven, H. D., Fischer, M. L., Lueker, T., Jeong, S., Guilderson, T. P., and
Keeling, R.: Assessing fossil fuel CO2 emissions in California using
atmospheric observations and models, Environ. Res. Lett., 13, 065007, https://doi.org/10.1088/1748-9326/aabd43, 2018.
Griffis, T. J.: Tracing the flow of carbon dioxide and water vapor
between the biosphere and atmosphere: A review of optical isotope
techniques and their application, Agr. Forest Meteorol., 174–175, 85–109, 2013.
Griffis, T. J., Sargent, S., Baker, J., Lee, X., Tanner, B., Greene, J.,
Swiatek, E., and Billmark, K.: Direct measurement of biosphere-atmosphere
isotopic CO2 exchange using the eddy covariance technique, J. Geophys. Res.-Atmos., 113,
D08304, https://doi.org/10.1029/2007JD009297, 2008.
Górka, M. and Lewicka-Szczebak, D.: One-year spatial and temporal
monitoring of concentration and carbon isotopic composition of atmospheric
CO2 in a Wroclaw (SW Poland) city area, Appl. Geochem., 35, 7–13, https://doi.org/10.1016/j.apgeochem.2013.05.010,
2013.
Guha, T. and Ghosh, P.: Diurnal variation of atmospheric CO2
concentration and δ13C in an urban atmosphere during
winter-role of the Nocturnal Boundary Layer, J. Atmos. Chem., 65, 1–12,
https://doi.org/10.1007/s10874-010-9178-6, 2010.
He, J., Naik, V., Horowitz, L. W., Dlugokencky, E., and Thoning, K.: Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1, Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, 2020.
Hu, C., Liu, S., Wang, Y., Zhang, M., Xiao, W., Wang, W., and Xu, J.:
Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta
of China, Environ. Sci. Pollut. R., 25, 23157–23169, https://doi.org/10.1007/s11356-018-2325-3,
2018a.
Hu, C., Griffis, T. J., Lee, X., Millet, D. B., Chen, Z., Baker, J. M., and
Xiao, K.: Top-Down constraints on anthropogenic CO2 emissions within an
agricultural-urban landscape, J. Geophys. Res.-Atmos., 123, 4674–4694,
https://doi.org/10.1029/2017JD027881, 2018b.
Hu, C., Griffis, T. J., Liu, S., Xiao, W., Hu, N., Huang, W., Yang D., and
Lee X.: Anthropogenic methane emission and its partitioning for the Yangtze
River Delta region of China, J. Geophys. Res.-Biogeo., 124, 1148–1170, https://doi.org/10.1029/2018JG004850,
2019.
Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., and
Michalak, A. M.: Enhanced North American carbon uptake associated with El
Niño, Sci. Adv., 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 2019.
IEA: CO2 Emissions from Fuel Combustion 1971–2010, 2012 Edn.,
International Energy Agency (IEA), Paris, 2012.
IPCC (Intergovernmental Panel on Climate Change): 2019 Refinement to the
2006 IPCC Guidelines for National Greenhouse Gas Inventories, available at:
https://www.ipcc-nggip.iges.or.jp/ public/2019rf/ (last access: 24 April 2021), 2019.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., and Petrescu, A. M. R.: EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2017-79, 2017.
Jiang, F., Wang, H. M., Chen, J. M., Machida, T., Zhou, L. X., Ju, W. M., Matsueda, H., and Sawa, Y.: Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements, Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, 2014.
Ke, J., Mcneil, M., Price, L., and Zhou, N.: Estimation of CO2 emissions
from China's cement production: Methodologies and uncertainties, Energy Policy,
57, 172–181, https://doi.org/10.1016/j.enpol.2013.01.028, 2013.
Keeling, C. D.: The concentration and isotopic abundances of carbon dioxide
in the atmosphere, Tellus, 12, 200–203, https://doi.org/10.1111/j.2153-3490.1960.tb01300.x, 1960.
Lai, C., Ehleringer, J. R., Tans, P., and Wofsy, S. C.: Estimating
photosynthetic 13C discrimination in terrestrial CO2 exchange from
canopy to regional scales, Global Biogeochem. Cy., 18, GB1041,
https://doi.org/10.1029/2003gb002148, 2014.
Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O.,
Davis, K. J., and Wu, K.: High-resolution atmospheric inversion of urban
CO2 emissions during the dormant season of the Indianapolis flux
experiment (INFLUX), J. Geophys. Res.-Atmos., 121, 5213–5236,
https://doi.org/10.1002/2015JD024473, 2016.
Li, X. and Xiao, J.: A global, 0.05-degree product of solar-induced
chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data, Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Martin, C. R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., and Lopez-coto, I.:
Investigating sources of variability and error in simulations of carbon
dioxide in an urban region, Atmos. Environ., 199, 55–69,
https://doi.org/10.1016/j.atmosenv.2018.11.013, 2019.
McManus, J. B., Nelson, D. D., and Zahniser, M. S.: Long-term continuous sampling
of 12CO2, 13CO2 and 12C18O16O in ambient
air with a quantum cascade laser spectrometer, Isot. Environ. Healt. S., 46, 49–63,
https://doi.org/10.1080/10256011003661326, 2010.
Miller, J. B., Tans, P. P., White, J. W. C., Conway, T. J., and Vaughn, B.
W.: The atmospheric signal of terrestrial carbon isotopic discrimination and
its implication for partitioning carbon fluxes, Tellus B, 55, 197–206,
https://doi.org/10.1034/j.1600-0889.2003.00019.x, 2003.
Miller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M., Yadav, V., Newman, S.,
and Sloop, C. D.: Large and seasonally varying biospheric CO2 fluxes in the Los
Angeles megacity revealed by atmospheric radiocarbon, P. Natl. Acad. Sci. USA, 117, 26681–26687, https://doi.org/10.1073/pnas.2005253117, 2020.
Moore, J. and Jacobson, A. D.: Seasonally varying contributions to
urban CO2 in the Chicago, Illinois, USA region: Insights from a
high-resolution CO2 concentration and δ13C record, Elementa, 3, 000052, https://doi.org/10.12952/journal.elementa.000052, 2015.
Mueller, K., Yadav, V., Lopez-Coto, I., Karion, A., Gourdji, S., Martin, C.,
and Whetstone, J.: Siting Background Towers to Characterize Incoming Air for
Urban Greenhouse Gas Estimation: A Case Study in the Washington,
DC/Baltimore Area, J. Geophys. Res.-Atmos., 123, 2910–2926,
https://doi.org/10.1002/2017JD027364, 2018.
Nathan, B., Lauvaux, T., Turnbull, J. C., and Richardson, S.: Source Sector
Attribution of CO2 Emissions Using an Urban CO/CO2 Bayesian
Inversion System, J. Geophys. Res.-Atmos., 123, 13611–13621, https://doi.org/10.1029/2018JD029231,
2018.
Newman, S., Xu, X., Affek, H. P., Stolper, E., and Epstein S.: Changes in
mixing ratio and isotopic composition of CO2 in urban air from the Los
Angeles basin, California, between 1972 and 2003, J. Geophys. Res., 113, D23304,
https://doi.org/10.1029/2008JD009999, 2008.
Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
Pang, J., Wen, X., and Sun, X.: Mixing ratio and carbon isotopic composition
investigation of atmospheric CO2 in Beijing, China, Sci. Total Environ., 539, 322–330,
https://doi.org/10.1016/j.scitotenv.2015.08.130, 2016.
Pataki, D. E., Bowling, D. R., Ehleringer, J. R., and Zobitz, J. M.: High
resolution atmospheric monitoring of urban carbon dioxide
sources, Geophys. Res. Lett., 33, L03813, https://doi.org/10.1029/2005GL024822, 2006.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., John, B. M., Lori, M. P. B., Gabrielle, P., Adam, I. H., Douglas, E.
J. W., Guido, R. v., James, T. R., Paul, O. W., Maarten, C. K., and Pieter, P.
T.: An atmospheric perspective on North American carbon dioxide exchange:
CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930,
https://doi.org/10.1073/pnas.0708986104, 2007.
Pillai, D., Buchwitz, M., Gerbig, C., Koch, T., Reuter, M., Bovensmann, H., Marshall, J., and Burrows, J. P.: Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany, Atmos. Chem. Phys., 16, 9591–9610, https://doi.org/10.5194/acp-16-9591-2016, 2016.
Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic CO2 release by humanity, Biogeosciences, 4, 215–217, https://doi.org/10.5194/bg-4-215-2007, 2007.
Rayner, P. J., Raupach, M. R., Paget, M., Peylin, P., and Koffi, E.: A new
global gridded data set of CO2 emissions from fossil fuel combustion:
Methodology and evaluation, J. Geophys. Res.-Atmos.,
115, D19306, https://doi.org/10.1029/2009JD013439, 2010.
Ribeiro, H. V., Rybski, D., and Kropp, J. P.: Effects of changing population
or density on urban carbon dioxide emissions, Nat. Commun., 10,
3204, https://doi.org/10.1038/s41467-019-11184-y, 2019.
Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer, M. K.,
O'Doherty, S., Buchmann, B., and Hueglin, C.: Robust extraction of baseline
signal of atmospheric trace species using local regression, Atmos. Meas.
Tech., 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012, 2012.
Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K.,
Mckain, K., Sweeney, C., Hegarty, J., Hardiman, B., Steven, C., and Wofsy, S. C.:
Anthropogenic and biogenic CO2 fluxes in the Boston urban region,
P. Natl. Acad. Sci. USA, 115, 7491–7496, https://doi.org/10.1073/pnas.1803715115, 2018.
Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H., and Burrows, J. P.: Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends, Atmos. Chem. Phys., 13, 2445–2454, https://doi.org/10.5194/acp-13-2445-2013, 2013.
Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., and Dewar,
D.: Human settlements, infrastructure, and spatial planning, in: Climate change 2014: Mitigation ofclimate change,
Contribution of working group III to the fifth assessment report of the
intergovernmental panel on climate change, 923–1000, Cambridge University Press, Cambridge, UK and
New York, NY, USA,
https://doi.org/10.1017/CBO9781107415416.018, 2014.
Shen, S., Yang, D., Xiao, W., Liu, S., and Lee, X.: Constraining anthropogenic
CH emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO and CH mixing ratios, Adv. Atmos. Sci., 31,
1343–1352, https://doi.org/10.1007/s00376-014-3231-3, 2014.
State Statistical Bureau: China Statistical Yearbook 2015, China Statistical
Press, Beijing, China, 2016 (in Chinese).
Staufer, J., Broquet, G., Bréon, F.-M., Puygrenier, V., Chevallier, F., Xueref-Rémy, I., Dieudonné, E., Lopez, M., Schmidt, M., Ramonet, M., Perrussel, O., Lac, C., Wu, L., and Ciais, P.: The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion, Atmos. Chem. Phys., 16, 14703–14726, https://doi.org/10.5194/acp-16-14703-2016, 2016.
Sturm, P., Leuenberger, M., Valentino, F. L., Lehmann, B., and Ihly, B.: Measurements of CO2, its stable isotopes, , and 222Rn at Bern, Switzerland, Atmos. Chem. Phys., 6, 1991–2004, https://doi.org/10.5194/acp-6-1991-2006, 2006.
Sturm, P., Tuzson, B., Henne, S., and Emmenegger, L.: Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: analytical improvements and representative results, Atmos. Meas. Tech., 6, 1659–1671, https://doi.org/10.5194/amt-6-1659-2013, 2013.
Super, I., Denier van der Gon, H. A. C., van der Molen, M. K., Sterk, H. A. M., Hensen, A., and Peters, W.: A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex, Atmos. Chem. Phys., 17, 13297–13316, https://doi.org/10.5194/acp-17-13297-2017, 2017.
Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M.,
Ziehn, T., and Ciais, P.: Top-down assessment of the Asian carbon budget
since the mid 1990s, Nat. Commun., 7, 1–10,
https://doi.org/10.1038/ncomms10724, 2016.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide
at Mauna Loa observatory 2. Analysis of the NOAA/GMCC data, 1974–1985,
J. Geophys. Res.-Atmos., 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J.,
Tans, P. P., and Davis, K.: Toward quantification and source sector
identification of fossil fuel CO2 emissions from an urban area: results from
the influx experiment, J. Geophys. Res.-Atmos., 120,
292–312, https://doi.org/10.1002/2014JD022555, 2015.
Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., and Cohen, R. C.: Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density, Atmos. Chem. Phys., 16, 13465–13475, https://doi.org/10.5194/acp-16-13465-2016, 2016.
USGS (U. S. Geological Survey): Mineral Commodity Summaries
2013, available at: http://minerals.usgs.gov/minerals/pubs/commodity/cement/ (last access: 6 August 2019), 2014.
Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO2: model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods, Atmos. Chem. Phys., 15, 12705–12729, https://doi.org/10.5194/acp-15-12705-2015, 2015.
Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017.
Wang, Y., Munger, J. W., Xu, S., McElroy, M. B., Hao, J., Nielsen, C. P., and Ma, H.: CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China, Atmos. Chem. Phys., 10, 8881–8897, https://doi.org/10.5194/acp-10-8881-2010, 2010.
Worden, H. M., Cheng, Y., Pfister, G., Carmichael, G. R., Zhang, Q., and
Streets, D. G.: Satellite-based estimates of reduced CO and CO2
emissions due to traffic restrictions during the 2008 Beijing Olympics,
Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052395, 2012.
Xu, J. and Lee, X.: Carbon dioxide concentration and 13C measurement in Nanjing (2013–2015), available at:
https://yncenter.sites.yale.edu/data-access, last access: 1 August 2018.
Xu, J., Lee, X., Xiao, W., Cao, C., Liu, S., Wen, X., Xu, J., Zhang, Z., and Zhao, J.: Interpreting the 13C 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China, Atmos. Chem. Phys., 17, 3385–3399, https://doi.org/10.5194/acp-17-3385-2017, 2017.
Yang, Y., Wang, L., Cao, Z. Mou C., Shen, L., Zhao, J., and Fang, Y.:
CO2 emissions from cement industry in China: A bottom-up estimation
from factory to regional and national levels, J. Geogr. Sci., 27, 711–730, 2017.
Zhang, H. F., Chen, B. Z., van der Laan-Luijkx, I. T., Chen, J., Xu, G.,
Yan, J. W., Zhou, L. X., Fukuyama, Y., Tans, P. P., and Peters, W.: Net
terrestrial CO2 exchange over China during 2001–2010 estimated with an
ensemble data assimilation system for atmospheric CO2, J. Geophys. Res.-Atmos., 119,
3500–3515, https://doi.org/10.1002/2013JD021297, 2014.
Zhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J., Hirsh, A., Macdonald,
C., Nehrkorn, T., and Fischer, M. L.: Atmospheric inverse estimates of
methane emissions from Central California, J. Geophys. Res.-Atmos., 114, 4723–4734,
https://doi.org/10.1029/2008JD011671, 2009.
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River...
Altmetrics
Final-revised paper
Preprint