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Abstract. The atmospheric carbon dioxide (CO2) mixing ra-
tio and its carbon isotope (δ13C-CO2) composition contain
important CO2 sink and source information spanning from
ecosystem to global scales. The observation and simulation
for both CO2 and δ13C-CO2 can be used to constrain re-
gional emissions and better understand the anthropogenic
and natural mechanisms that control δ13C-CO2 variations.
Such work remains rare for urban environments, especially
megacities. Here, we used near-continuous CO2 and δ13C-
CO2 measurements, from September 2013 to August 2015,
and inverse modeling to constrain the CO2 budget and in-
vestigate the main factors that dominated δ13C-CO2 vari-
ations for the Yangtze River delta (YRD) region, one of
the largest anthropogenic CO2 hotspots and densely pop-
ulated regions in China. We used the WRF-STILT model
framework with category-specified EDGAR v4.3.2 CO2 in-
ventories to simulate hourly CO2 mixing ratios and δ13C-
CO2, evaluated these simulations with observations, and con-
strained the total anthropogenic CO2 emission. We show
that (1) top-down and bottom-up estimates of anthropogenic

CO2 emissions agreed well (bias < 6 %) on an annual basis,
(2) the WRF-STILT model can generally reproduce the ob-
served diel and seasonal atmospheric δ13C-CO2 variations,
and (3) anthropogenic CO2 emissions played a much larger
role than ecosystems in controlling the δ13C-CO2 season-
ality. When excluding ecosystem respiration and photosyn-
thetic discrimination in the YRD area, δ13C-CO2 seasonality
increased from 1.53 ‰ to 1.66 ‰. (4) Atmospheric transport
processes in summer amplified the cement CO2 enhancement
proportions in the YRD area, which dominated monthly δs
(the mixture of δ13C-CO2 from all regional end-members)
variations. These findings show that the combination of long-
term atmospheric carbon isotope observations and inverse
modeling can provide a powerful constraint on the carbon
cycle of these complex megacities.
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1 Introduction

Urban landscapes account for 70 % of global CO2 emissions
and represent less than 3 % of Earth’s land area (Seto et al.,
2014). Such CO2 hotspots play a dominant role in controlling
the rise in atmospheric CO2 concentrations, which exceeded
412 ppm in December 2019 for global monthly average ob-
servations (https://www.esrl.noaa.gov/gmd/ccgg/trends/, last
access: 1 August 2020). Furthermore, the carbon isotope ra-
tio of CO2 (i.e., δ13C= 13C / 12C ratio in delta notation) at
the representative Mauna Loa site, USA, has steadily de-
creased to around −8.5 ‰ in December 2019 (https://www.
esrl.noaa.gov/, last access: 1 August 2020). Anthropogenic
CO2 emission is produced from fossil fuel burning and ce-
ment production. As the urban population is expected to in-
crease by 2.5 to 6 billion people in 2050, anthropogenic CO2
emissions are projected to increase dramatically, especially
in developing regions and countries (Sargent et al., 2018;
Ribeiro et al., 2019). Under such a scenario, the observations
of atmospheric CO2 and δ13C-CO2 in urban landscapes are
of great importance to monitoring these potential CO2 emis-
sions hotspots (Lauvaux et al., 2016; Nathan et al., 2018;
Graven et al., 2018; Pillai et al., 2016; Staufer et al., 2016).

Countries are required to report their CO2 emissions ac-
cording to the Intergovernmental Panel on Climate Change
guidelines (IPCC, 2019), and many bottom-up methods have
long been used to estimate CO2 emissions worldwide, but
such methods have high uncertainties for CO2 emissions at
regional (20 %) to city (50 % to 250 %) scales (Gately and
Hutyra, 2017; Gately et al., 2015). These large uncertainties
are propagated into the estimation of biological fluxes in at-
mospheric inversions (Zhang et al., 2014; Jiang et al., 2014;
Thompson et al., 2016). By using CO2 observations, the top-
down atmospheric inversion approach is a useful tool to eval-
uate bottom-up inventories (Graven et al., 2018; L. Hu et al.,
2019; Lauvaux et al., 2016; Nathan et al., 2018). Previous
research has shown that additional information, such as data
on atmospheric114CO2-CO2, δ13C-CO2, and CO, is needed
to better distinguish CO2 emissions from different sources
and to assess their uncertainties (Chen et al., 2017; Graven
et al., 2018; Nathan et al., 2018; Cui et al., 2019). The use
of hourly δ13C-CO2 observation in urban areas remains rare
in inversion studies, yet such observations contain invaluable
information of anthropogenic CO2 from different categories.

Traditional estimates of δ13C-CO2 using isotope ratio
mass spectrometry (IRMS) are very limited because flask air
sample collection requires long preparation time and is ex-
pensive. Consequently, there is a lack of high temporal and
long-term observations of δ13C-CO2 (Sturm et al., 2006).
Isotope ratio infrared spectroscopy (IRIS) technology has
overcome these limitations. As a result, in situ air sample
analyses using IRIS analyzers result in dense time series
of δ13C-CO2. However, most of the established long-term
IRMS and IRIS δ13C-CO2 measurement sites are represen-
tative of “background”, natural, or agricultural ecosystems at

locations far away from urban landscapes (Chen et al., 2017;
Griffis, 2013).

To date, long-term (> 1-year) and continuous observations
of both CO2 and δ13C-CO2 have been reported for only
five cities, including Bern, Switzerland (Sturm et al., 2006),
Boston, USA (McManus et al., 2010), Salt Lake City, USA
(Pataki et al., 2006), Beijing, China (Pang et al., 2016), and
Nanjing, China (Xu et al., 2017). In these previous inves-
tigations, significant diel and seasonal variations of δ13C-
CO2 have been observed; these patterns were modulated by
fossil fuel combustion, plant respiration and photosynthesis,
and changes in the height of the atmospheric boundary layer
(Sturm et al., 2006; Guha and Ghosh, 2010). No study has
quantified the impact of each factor on the seasonal variation
of δ13C-CO2. This represents an important knowledge gap in
understanding the underlying mechanisms of carbon cycling
in complex urban ecosystems.

The traditional δ13C-CO2 isotope partitioning methods
(including the Miller–Tans and Keeling plot approaches)
have been used to constrain different CO2 sources world-
wide (Keeling, 1960; Vardag et al., 2015; Newman et al.,
2016; Pang et al., 2016; Xu et al., 2017). These methods are
based on the assumption that partitioned atmospheric CO2
enhancement components from different sources can repre-
sent CO2 emissions in the “target area” (Miller et al., 2003;
Ballantyne et al., 2011). Carbon dioxide emissions are highly
inhomogeneous at the urban scale, with extremely strong
point/line sources, and the final partitioning results are highly
uncertain without considerations of source footprint charac-
teristics (Gately and Hutyra, 2017; Cui et al., 2019; Martin
et al., 2019). Atmospheric transport models can help to re-
solve such problems, and the coupling of atmospheric trans-
port models with isotope observations has recently been ap-
plied in global and regional CO2 partitioning studies (Chen
et al., 2017; Cui et al., 2019; Graven et al., 2018; Hu et
al., 2018b). Although urban CO2 inversions have been ap-
plied successfully in several studies in Europe and the United
States (Bréon et al., 2015; Turnbull et al., 2015; Pillai et
al., 2016; Brioude et al., 2013; Turner et al., 2016), urban
CO2 inversions in China are rare (Berezin et al., 2013; Hu et
al., 2018a; Worden et al., 2012), presumably because of the
scarcity of high-quality δ13C-CO2 and CO2 observations.

The Yangtze River delta (YRD) ranks as one of the most
densely populated regions in the world and is an important
anthropogenic CO2 hotspot. Major anthropogenic sources in-
clude the power industry, oil refineries/transformation and
cement production. Having the largest source of cement-
derived CO2 production across China and the world (Cai
et al., 2015), the YRD contributed 20 % of national cement
production, nearly 12 % of the world’s total cement output
in 2014 (USGS, 2014; Xu et al., 2017; Yang et al., 2017).
In addition to anthropogenic factors, natural ecosystems and
croplands act as significant CO2 sinks and sources within the
YRD. Independent quantification of the fossil and cement
CO2 emission and assessment of their impact on atmospheric
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δ13C-CO2 have the potential to improve our understanding
of urban CO2 cycling. Further, the observations and simu-
lations of both atmospheric CO2 and δ13C-CO2 can help us
relate atmospheric CO2 dynamics to future emission control
strategies.

Here, we combine long-term (> 2-year) CO2 and δ13C-
CO2 observations with atmospheric transport model simula-
tions to study urban atmospheric CO2 and δ13C-CO2 vari-
ations. The objectives were to (1) constrain anthropogenic
CO2 emissions and determine the main sources of uncer-
tainty for δ13C-CO2 simulations and (2) quantify the relative
contributions of each factor (i.e., background, anthropogenic
CO2 emissions especially for cement production, ecosystem
photosynthesis and respiration) to seasonal variations of at-
mospheric δ13C-CO2.

2 Materials and methods

2.1 Observations of atmospheric CO2 mixing ratio,
δ13C-CO2 and supporting variables

The observation site is located on the Nanjing University
of Information Science and Technology campus (hereafter
NUIST, 32◦12′ N, 118◦43′ E; green dot in Fig. 1a). Continu-
ous atmospheric CO2 mixing ratios and δ13C-CO2 were mea-
sured at a height of 34 m above ground with an IRIS analyzer
(model G1101-i, Picarro Inc., Sunnyvale, CA). The observa-
tion period extended from September 2013 to August 2015.
Calibrations for CO2 mixing ratio and δ13C-CO2 were
conducted with standard gases traceable to NOAA/GML
(NOAA Global Monitoring Laboratory) standards. Calibra-
tion details are provided by Xu et al. (2017). Based on Allan
variance analyses, the hourly precisions of CO2 and δ13C-
CO2 were 0.07 ppm and 0.05 ‰, respectively. We note that
the δ13C-CO2 IRIS (model G1101-i) measurements are sen-
sitive to water vapor concentration. Sensitivity tests reveal
that the δ13C-CO2 IRIS measurements are biased high (less
than 0.74 ‰) when water vapor mole fraction exceeds 2 %.
The data presented here have been corrected following the
procedures outlined in Xu et al. (2017).

We separated the 2-year study period into seasons (au-
tumn: September, October, November; winter: December,
January, February; spring: March, April, May; summer:
June, July, August). Further, for an annual comparison, we
examined the period from September 2013 to August 2014
(year 2014) versus September 2014 to August 2015 (year
2015).

The YRD is a cement production hotspot in China
(Fig. 1b). It had a total population of 190 million in 2018
(Fig. 2a), with 24.2 million in the city of Shanghai, 9.8 mil-
lion in Hangzhou (provincial capital of Zhejiang), 8.4 mil-
lion in Nanjing (provincial capital of Jiangsu), and 8.1 mil-
lion in Hefei (provincial capital of Anhui). The CO2-related
production data (i.e., cement) and energy consumption data

Figure 1. (a) Weather Research and Forecasting Model simulation
domains and the location of the WLG site; the different region col-
ors represent three domains. (b) Cement production distribution in
the YRD and eastern China. Both the green dot in (a) and the red
star in (b) are the NUIST observation site.

(i.e., coal and natural gas) were obtained from local offi-
cial sources using the same method described in Shen et
al. (2014).

To examine the effects of plant photosynthesis on atmo-
spheric CO2 variations, we used the NDVI (Normalized Dif-
ference Vegetation Index), SIF (solar-induced chlorophyll
fluorescence) and GPP (gross primary productivity) infor-
mation. These three products have a global distribution with
a spatial resolution of 0.05◦ by 0.05◦. The NDVI has a
temporal resolution of 16 d, and SIF and GPP products
have a temporal resolution of 8 d (Li and Xiao, 2019; http:
//globalecology.unh.edu/data/, last access: 5 March 2020).
Land-use and land-cover classification in the Yangtze River
delta for 2014 was applied by using NDVI data from
MOD13A2.
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2.2 Simulation of atmospheric δ13C-CO2

2.2.1 General equations

The simulation of atmospheric δ13C-CO2 is based on mass
conservation. First, we briefly describe the simulation of at-
mospheric CO2 mixing ratios (more details are provided in
Sect. 2.2.2), following the previous work of Hu et al. (2018b),
where atmospheric CO2 was simulated (CO2_sim) as the sum
of background (CO2_bg) and the contribution from all re-
gional sources/sinks ([1CO2_sim]i), as

CO2_sim = CO2_bg+

n∑
i=1
[1CO2_sim]i . (1)

Note that 1CO2 is the sum of all simulated sources/sinks
[1CO2_sim]i and represents the total simulated CO2 en-
hancement. We use 1CO2_obs as the observed CO2 total en-
hancement, which can be calculated by using the CO2 ob-
servation minus the CO2 background values. Based on mass
conservation, we estimated the 13CO2 composition by multi-
plying the left- and right-hand sides of Eq. (1) by δ13C:

δ13Ca_sim =

δ13Cbg×CO2_bg+
n∑
i=1
δ13
i ×[1CO2_sim]i

CO2_sim
, (2)

where δ13Ca_sim and δ13Cbg represent the simulated atmo-
spheric δ13C-CO2 and background δ13CO2, and δ13

i is the
δ13C-CO2 for end-member i (including anthropogenic and
biological source categories). The δ13C-CO2 contributions
from all regional sources/sinks can be further reformatted as
Eq. (3):

n∑
i=1

δ13
i ×[1CO2_sim]i = δs_sim×

n∑
i=1
[1CO2_sim]i, (3)

where δs_sim is the simulated enhancement-weighted mean
of all regional end-members. We use δs as the observed term
to distinguish it from δs_sim (Newman et al., 2008), which
will be described in detail in Sect. 2.2.5. The product on the
right-hand side of Eq. (3) is the simulated regional source
term that is added to the background value and contains both
enhancement and δ13C-CO2 signals contributed by different
CO2 sources/sinks. This product can also be treated as an
observed term when using the derived δs_obs and observed
δCO2_obs values.

To date, there are no available global δ13C-CO2 back-
ground products, and the choice of δ13Cbg is essential for
simulating δ13Ca. Here, we apply three strategies. First,
we used discrete δ13C-CO2 flask observations at Mount
Waliguan (hereafter WLG, 36◦17′ N, 100◦54′ E; https://
www.esrl.noaa.gov/gmd/dv/data/, last access: 31 Decem-
ber 2019) to represent the δ13C-CO2 background signal at
our site. These observations were measured at weekly in-
tervals to the end of 2015. A digital filtering curve-fitting

(CCGCRV) regression method was applied to derive hourly
background values following Thoning et al. (1989). There
are, however, reasons why WLG may not be an ideal back-
ground site for our study domain. For example, based on the
previous simulation results for the CO2 background sources,
most of the back trajectories originate from the free atmo-
sphere or 1000 m higher above the ground (C. Hu et al.,
2019). Further, the footprint at the northern/western edge of
domain 1 is relatively small, indicating that most back tra-
jectories were observed above the planetary boundary layer
height (hereafter PBLH). Here, the WLG observations were
made near the surface. Further, WLG is not located at the bor-
der of our simulation domain 1. Therefore, the strong vertical
δ13C-CO2 gradients between the boundary layer and the free
tropospheric atmosphere (Chen et al., 2006; Guha and Gosh,
2010; Sturm et al., 2013) can cause a low bias in the δ13C-
CO2 background when using this approach.

In the second approach, the δ13C-CO2 background signal
was estimated with wintertime “clean” air CO2 and δ13C-
CO2 observations at the NUIST site, using the following
equation:

δ13Cbg =

δ13Ca×CO2−
n∑
i=1
δ13
i ×[1CO2_sim]i

CO2_bg
, (4)

where δ13Ca and CO2 represent atmospheric δ13C-CO2 and
CO2 observations at the NUIST site under clean condi-
tions. Note that δ13Ca represents the observed δ13C-CO2,
not the simulated δ13C-CO2 (δ13Ca_sim) as shown in Eq. (2).
[1CO2_sim]i is the simulated category-specified CO2 en-
hancements. We defined clean conditions as the bottom 5 %
wintertime CO2 observations to minimize simulated CO2 en-
hancement errors from both biological and anthropogenic
CO2 simulations on δ13C-CO2 background calculation. The
CO2_bg is obtained from heights 1000 m above ground level
(see Sect. 2.2.3).

In the third approach, we avoid the use of modeled
[1CO2_sim]i results and replaced the simulated regional
source term in Eq. 4 with observed δs_obs×CO2_obs, as
described in Eq. (3), and used the Miller–Tans regression
method to calculate monthly δs_obs. This approach does not
require simulation of [1CO2]i or the corresponding δ13C-
CO2 signals. The hourly δ13C-CO2 background value can
be derived by using δs_obs, CO2 background, observed atmo-
spheric δ13Ca and CO2 (see details in Sect. 2.3 and the Sup-
plement). Comparison of these three strategies will be eval-
uated and discussed in Sect. 3.2.1. Similar methods used to
derive other background tracers have included CO2 (Alden
et al., 2016; Verhulst et al., 2017), CO (Wang et al., 2010;
Ruckstuhl et al., 2012) and CH4 (Zhao et al., 2009; Verhulst
et al., 2017; C. Hu et al., 2019). To analyze the controlling
factors for the δ13C-CO2 seasonality, the CCGCRV (a digital
filtering curve-fitting program developed by the Carbon Cy-
cle Group, NOAA, USA) regression was applied to the back-
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ground, observations, and simulations. Finally, we derived
CCGCRV curve-fitting lines by using 11 regressed parame-
ters, which were based on the hourly time series of obser-
vations/simulations, and defined the difference between peak
and trough in 1 year as the seasonality of δ13C-CO2.

2.2.2 Simulation of atmospheric CO2 mixing ratios

In Eq. (1), the CO2_bg is obtained from the Carbon Tracker
2016 product, which provides global CO2 distributions from
the ground level up to a height of 50 km. We used the av-
eraged concentration above the latitude and longitude where
the released particles entered study domain 1 (Fig. 1a). The
variable1CO2_sim was derived by multiplying the simulated
hourly footprint function by the hourly CO2 fluxes (Hu et al.,
2018a, b). Considering the diurnal variations of both anthro-
pogenic and biological CO2 fluxes, 168 footprints were ob-
tained representing each simulated hour. This accounted for
the back trajectory of particle movement for 168 h (i.e., 24 h
per day for 7 d) of transport. The 168 footprints are multi-
plied by the corresponding hourly CO2 flux. The CO2 fluxes
contain anthropogenic CO2 emissions, biological CO2 flux
and biomass burning. Here the anthropogenic CO2 emission
sources include the power industry, combustion for manu-
facturing, non-metallic mineral production (cement), oil re-
fineries/transformation industry, energy for building and road
transportation. Theoretically, 1CO2_sim represents the CO2
changes contributed by every pixel within the simulated do-
main. As shown by Hu et al. (2018a), most of the 1CO2_sim
is contributed by sink/source activity within the YRD area. In
order to quantify the relative contributions within the YRD
area, we separated the study domain into five zones based on
provincial administrative boundaries including Jiangsu, An-
hui, Zhejiang, Shanghai, and the remaining area outside the
YRD (Fig. 2). The modeled CO2 was calculated as follows:

1CO2_sim =

168∑
i=1

fluxi × footprinti, (5)

where fluxi (units: mol m−2 s−1) corresponds to each CO2
flux category simulated for each domain for a specific hour
i, and footprint (units: ppm m2 s µmol−1) is the model-
simulated sensitivity of observed CO2 enhancement to flux
changes in each pixel. The i contains the hourly footprint
during the trajectory of particle movement for 168 h as de-
scribed above. The CO2 enhancements from each of the five
zones were simulated by multiplying CO2 emissions in each
province by the corresponding footprint.

2.2.3 WRF-STILT model configuration

The Stochastic Time-Inverted Lagrangian Transport (here-
after STILT) model was used to generate the above footprint,
which is defined as the sensitivity of atmospheric CO2 en-
hancement to the upwind flux at the receptor site (observa-
tion site). The meteorological fields used to drive the STILT

model were simulated with the Weather Research and Fore-
casting Model (WRF3.5) at high spatial and temporal res-
olutions. The innermost nested domain (D3, 3 km× 3 km,
Fig. 1) contains the YRD area, where the most sensi-
tive footprint is located, and the intermediate domain (D2,
9 km× 9 km) and outermost domain (D1, 27 km× 27 km)
represent eastern China and central and eastern China, re-
spectively. The same physical schemes and parameter setup
for the WRF meteorological field simulation and the domain
in the STILT model have been used previously for inverse
analyses (C. Hu et al., 2019). These previous studies at the
NUIST observation site have shown very good performance
in simulating the meteorological fields, which is essential for
reliable STILT simulations. The hourly footprint was simu-
lated by releasing 500 particles from the NUIST measure-
ment site and tracking their backward locations every 5 min
for a period of 7 d. Particle numbers and their residence time
within half of the PBLH were used to calculate the footprint
over the 7 d period. For the CO2 background of each hour,
we tracked the sources of air particles’ back trajectory for 7 d
and defined these CO2 mixing ratios in Carbon Tracker as
the hourly CO2 background values (Peters et al., 2007).

2.2.4 A priori anthropogenic CO2 emissions and net
ecosystem exchange

The Emission Database for Global Atmospheric Research
(EDGAR v4.3.2) inventory was selected as the a priori an-
thropogenic CO2 emissions (Fig. 2a), which is based on the
International Energy Agency’s (IEA’s) energy budget statis-
tics and provides detailed CO2 source maps (29 categories,
including both organic and fossil emissions, IEA, 2012) with
global coverage at high spatial resolution (0.1◦× 0.1◦). The
EDGAR CO2 emissions are the most up-to-date global in-
ventory with sectoral detail (Janssens-Maenhout et al., 2017;
Schneising et al., 2013). Other inventories, including the
Fossil Fuel Data Assimilation System (FFDAS, Rayner et
al., 2010) and the Open-source Data Inventory for Anthro-
pogenic CO2 (ODIAC, Oda et al., 2018), also provide global
CO2 emissions. However, these inventories only provide to-
tal CO2 emissions or have very limited emission categories,
which limits our ability to provide isotope end-member in-
formation. EDGAR v4.3.2 provides emission estimates at a
monthly timescale. Here, we applied hourly scaling factors
for different categories following Hu et al. (2018a). EDGAR
v4.3.2 with monthly resolution is available only for 2010.
We assume that each CO2 category changes linearly from its
2010 value (Peters et al., 2007) and apply an annual scal-
ing factor of 1.145 to derive CO2 emissions for 2014 and
2015. This scaling factor is based on Carbon Tracker, divid-
ing the same anthropogenic CO2 emissions for the YRD in
years 2014–2015 by that in 2010.

The biological flux or net ecosystem CO2 exchange (NEE)
and biomass burning CO2 emissions come from Carbon
Tracker a posteriori flux at 3 h intervals and at a spatial res-
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Figure 2. (a) Annual anthropogenic CO2 emissions for the study domain (units: mol m−2 s−1) and population density in four megacities
(units: people per hectare) including Nanjing, Hefei, Zhejiang, and Shanghai for the year of 2015 and (b) the 2-year average concentration
footprint (units: ppm m2 s mol−1).

olution of 1◦× 1◦. Because NEE is much smaller than the
anthropogenic CO2 emissions in such densely developed ur-
ban landscapes, we homogeneously distributed this flux at a
spatial resolution of 0.1◦ within each grid to match the foot-
print.

2.2.5 Simulation of the carbon isotope ratio of all
sources (δs_sim)

The carbon isotope ratio of all the surface sources was calcu-
lated as (Newman et al., 2008)

n∑
i=1

δi ×pi = δs_sim, (6)

where δi is the δ13C-CO2 value from source category
i, and pi is the corresponding enhancement proportion
(i.e., proportions of a specific enhancement i to total CO2
enhancement). We define δs_sim as the simulated carbon iso-
tope ratio of all sources to differentiate it from the observed
δs_obs. Based on fossil fuel usage characteristics in the YRD,
we reassigned the EDGAR v4.3.2 categories according to
fuel types. Coal was the fuel type for manufacturing, oil

Atmos. Chem. Phys., 21, 10015–10037, 2021 https://doi.org/10.5194/acp-21-10015-2021
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for oil refinery, natural gas for buildings, and diesel and
gasoline for transportation. The power industry consumed
5 % natural gas and 95 % coal based on local activity data in
the YRD (State Statistical Bureau, 2016). The non-metallic
mineral production was mainly for cement. Since there
is a lack of detailed information for non-metallic mineral
production, we simply attributed 100 % of it to cement
production. Chemical processes were mainly ammonia syn-
thesis. Based on a literature review and our previous work
(Xu et al., 2017), typical δ13C-CO2 values for natural gas
(−39.06 ‰± 1.07 ‰), coal (−25.46 ‰± 0.39 ‰), fuel oil
(−29.32 ‰± 0.15 ‰), gasoline (−28.69 ‰± 0.50 ‰),
ammonia synthesis (−28.18 ‰± 0.55 ‰), diesel
(−28.93 ‰± 0.26 ‰), pig iron (−24.90 ‰± 0.40 ‰),
crude steel (−25.28 ‰± 0.40 ‰), cement (0 ‰± 0.30 ‰),
and biofuel combustion and biological emissions
(−28.20 ‰± 1.00 ‰) were used in this study. We also
applied a value of −28.20 ‰ for photosynthesis (Griffis
et al., 2008; Lai et al., 2014) because the YRD is a region
dominated by C3 plants. Since CO2 emissions associated
with human respiration (Prairie and Duarte, 2007; Turnbull
et al., 2015; Miller et al., 2020) are relatively small (3.7 % of
anthropogenic emissions in the YRD area, Xu et al., 2017)
and given that the local food diet is dominated by C3 grains
that have a similar δ13C-CO2 value to the biological CO2
flux of −28.20 ‰, we assume it has the same isotope signals
as local C3 plants and ecosystem respiration. Further, the
biological CO2 flux from the Carbon Tracker assimilation
system considered anthropogenic emissions to be fixed and
attributed the remainder to the biological CO2 flux (Peters
et al., 2007). Consequently, we believe the uncertainty in
the biological CO2 flux will include the small proportion of
human respiration.

To evaluate the simulated δs_sim, we applied the Miller–
Tans and Keeling plot approaches to derive δs_obs from the
observed concentration and atmospheric 13CO2-CO2 (Xu et
al., 2017). We then used the results to evaluate the calcula-
tions made with Eq. (6).

2.3 Independent IPCC method for anthropogenic CO2
emissions

Large differences among inventories have been previously
found even for the same region (Berezin et al., 2013; An-
drew, 2018). For comparison with the EDGAR v4.3.2 inven-
tory results, we derived the anthropogenic CO2 emissions by
using an independent IPCC method. Here, we illustrate the
calculation for cement CO2 emissions. Note that the IPCC
only recommended an EF for clinker, which is an intermedi-
ate product of cement. To calculate cement CO2 emissions,
we need to calculate it based on clinker production, as shown
in Eq. (7):

CO2 [cement] =Mcement×Cclinker×EFclinker, (7)

where CO2 [cement] is the chemical process CO2 emissions
for cement production, Mcement is the production of ce-
ment, Cclinker represents the clinker-to-cement ratio (%), and
EFclinker is the CO2 emission factor for clinker production.
The IPCC recommended an EFclinker value of 0.52± 0.01 t
CO2 per tonne clinker produced, where CaO content for
clinker is assumed to be 65 % with 100 % CaO from cal-
cium carbonate material (IPCC, 2019). The EF appears to be
well constrained, showing little variation among provinces
with mean values ranging from 0.512 to 0.525 (Yang et al.,
2017). For the Cclinker values, it generally showed a decreas-
ing trend from 64.5 % in 2004 to 56.9 % in 2015 for all of
China (Fig. S1 in the Supplement), with an average value of
57.0 % during 2014 and 2015.

2.4 Multiplicative scaling factor method

To quantify anthropogenic CO2 emissions and to compare
them with EDGAR products, we first derived the monthly
scaling factors for anthropogenic CO2 emissions using a
multiplicative scaling factor (hereafter MSF) method (Sar-
gent et al., 2018; He et al., 2020) and then obtained annual
averages. The monthly scaling factors (SFs) were calculated
as

MSF=
CO2_obs−CO2_bg−1CO2_bio−1CO2_fire

1CO2_anthro
, (8)

where CO2_obs, 1CO2_bio, 1CO2_fire and 1CO2_anthro rep-
resent observed CO2 mixing ratios, simulated CO2 enhance-
ments contributed by biological flux, biomass burning, and
anthropogenic emissions, respectively. Uncertainties of all
factors on the final MSFs were calculated based on Monte
Carlo methods, where the normal sample probability distri-
bution was applied and the upper 97.5 % and lower 2.5 %
of the values were considered to be the uncertainty for MSF
(Cao et al., 2016).

3 Results and discussion

3.1 Evaluation of hourly CO2 mixing ratios

3.1.1 Hourly and monthly CO2 mixing ratio
comparisons

This section examines the general performance of simulat-
ing hourly CO2 mixing ratios. The 2-year average hourly
footprint is shown in Fig. 2b, where the source area (blue–
red) indicates strong sensitivity of the CO2 observations to
regional sources. This footprint shape is representative of
the YRD area. To quantify the relative contributions from
each province, we calculated CO2 enhancements contributed
by Anhui, Jiangsu, Zhejiang, Shanghai, and the remain-
ing area outside of the YRD, respectively. The results in-
dicate that Jiangsu contributed approximately 80 % of the
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total enhancement (discussed further in Sect. 3.1.2). Com-
parisons between simulated and observed hourly CO2 mix-
ing ratios are displayed in Fig. 3a for both years. For all
hourly data in each year, the model versus observation corre-
lation coefficient (R) was R = 0.38 (n= 8204, P < 0.001)
and RMSE= 29.44 ppm for 2014 and R = 0.35 (n= 7262,
P < 0.001) and RMSE= 30.22 ppm for 2015. These results
indicate that the model can simulate the synoptic and diel
CO2 variations over the 2-year period. The model also cap-
tured the monthly and seasonal variations of CO2 mixing ra-
tios (daily averages are shown in Fig. S2). The simulations
captured the trend of rising CO2 mixing ratios after October
and the drawdown of CO2 to the background value during
the summer.

Figure 3b–d illustrate the average monthly daily, night-
time (22:00–06:00, local time), and daytime (10:00–16:00)
CO2 mixing ratios. These monthly values contain the ef-
fects of atmospheric transport, background and variations in
CO2 emissions. The observed and simulated CO2 mixing
ratios showed a significant increase from September 2013
to January 2014. Here, the CO2 mixing ratios increased
by 16.0 ppm according to the model results and 17.2 ppm
according to the observations. The background values in-
creased by 8.1 ppm and accounted for 47 % of the total
CO2 increase, and the net CO2 flux (a priori) for the YRD
increased by 15 %. We attributed the remaining 38 % in-
crease to changes in atmospheric transport processes includ-
ing lower PBLH in January 2014 than in September 2013. To
quantify how variations in PBLH affected CO2 mixing ratios,
we compared the simulated monthly anthropogenic CO2 en-
hancement differences in the same months of different years
to eliminate the influence of monthly emission variations on
CO2 enhancements. Twelve monthly paired values were used
and are shown in Fig. 4. This analysis indicates that atmo-
spheric CO2 mixing ratios decreased by about 3.7 ppm for
an increase in PBLH by 100 m. We also note that there were
2 months (March and August) that fall far below this trend,
implying that changes in the monthly footprints (source area)
can also play an important role.

On an annual timescale, the simulated average CO2 mix-
ing ratios were 436.63 and 437.11 ppm for 2014 and 2015,
respectively. Since the anthropogenic CO2 emissions used
in the model are the same for both years, the simulated an-
nual average CO2 difference can be used to quantify the in-
fluence associated with meteorological factors and ecosys-
tem carbon cycling. Between these 2 years, the CO2 back-
ground increased by 1.78 ppm, and the biological enhance-
ment decreased by 1.04 ppm from 2014 to 2015. The remain-
ing 0.26 ppm change between 2014 and 2015 indicates a rel-
atively small meteorological effect for the annual averages,
such as a slight change in the dominant wind direction or a
PBLH difference.

The simulated annual average NEE CO2 enhancements
were 2.64 and 1.60 ppm for the respective years. For compar-
ison, the annual average anthropogenic enhancements were

36.20 and 34.90 ppm for 2014 and 2015, respectively. The
monthly NEE enhancement varied from −0.1 ppm in May
2015 to +6.0 ppm in July 2014, indicating NEE contributes
positively for enhancement in most months (Fig. 5a), even
though the sign of the monthly averaged NEE flux in summer
was negative (sinks). This positive contribution was mainly
caused by diel PBLH variations between daytime (smaller
negative enhancement) and nighttime (larger positive en-
hancement). To further evaluate the impact of plant photo-
synthetic activity on the regional CO2 cycle, we examined
the NDVI, SIF and GPP seasonal patterns (Fig. 5d–f). These
three datasets revealed two peaks during each year, which
is related to increased photosynthetic activity. The first peak
occurred in May and the second in August–September, cor-
responding to the growing season of wheat and corn/rice, re-
spectively (Deng et al., 2015). We note that GPP was derived
from SIF, and as a result, they share a similar seasonal cycle.
The land-use classification in the YRD for 2014 (Fig. S3)
shows that the northern YRD is dominated by agricultural
land and the south dominated by forest land, and our obser-
vation site was more surrounded by agricultural land, which
corresponded well to observed NDVI, SIF and GPP seasonal
patterns. The peak SIF and GPP signals during the summer
were about 20 times greater than during the winter. Conse-
quently, we can ignore the potential influence of photosyn-
thetic activity on the regional CO2 enhancements during the
non-growing seasons.

3.1.2 Components of urban CO2 enhancement

Here, we diagnose the source contributions to the urban CO2
enhancement. The observed anthropogenic CO2 enhance-
ments, which were derived by subtracting CO2 background
and simulated biological enhancement from CO2 concentra-
tion observations, were 38.36± 3.32 and 37.89± 2.80 ppm
for 2014 and 2015, respectively. Here, the uncertainty of
the observed anthropogenic CO2 enhancements was calcu-
lated by prescribing a 2 ppm potential bias for the Carbon
Tracker CO2 fields and 50 % to the simulated biological
CO2 enhancement (Hu et al., 2018b). The corresponding
simulated anthropogenic CO2 enhancements were 36.20 and
34.90 ppm. In comparison with the simulated biological CO2
enhancements displayed in Fig. 5a, both the observed and
simulated CO2 enhancements are indicative of a large an-
thropogenic (fossil fuel and cement production) CO2 emis-
sion from the YRD.

Previous studies have also investigated urban CO2 en-
hancements from a relatively broad range of developed en-
vironments worldwide. Verhulst et al. (2017) measured CO2
mixing ratios at seven sites in Los Angeles, USA, and con-
cluded that the mean annual enhancement varied between 2.0
and 30.8 ppm, which is considerably lower than our find-
ings. Another study in Washington DC, USA, in Febru-
ary and July 2013 showed that the CO2 enhancement was
less than 20 ppm (Mueller et al., 2018). The urban CO2 ob-
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Figure 3. (a) Comparisons of hourly CO2 mixing ratios between observations and model simulation from September 2013 to August 2015
and monthly averages for (b) whole day, (c) nighttime (22:00–06:00, local time) and (d) daytime (10:00–16:00). Model results (red), obser-
vations (black), and background (grey).

Figure 4. Relation between monthly PBLH and change in the CO2
mixing ratio; here, these dots represent the difference of monthly
averages in 2 different years for all hours.

servations and modeling study by Martin et al. (2019) at
three urban sites in the eastern USA showed an enhance-
ment of ∼ 21 ppm in February 2013, substantially lower (by
∼ 20 ppm) than our observations. The measurements at an
urban–industrial complex site in Rotterdam, Netherlands, in-
dicated a CO2 enhancement of only 11 ppm for October to

December 2014 (Super et al., 2017). Our enhancements were
significantly higher than all of these previous reports of other
urban areas.

The anthropogenic components and source area contri-
butions are displayed in Fig. 5b–c. During the study pe-
riod the average anthropogenic enhancements were 5.1 %,
80.2 %, 1.9 %, 4.4 %, and 8.5 % for Anhui, Jiangsu, Zhe-
jiang, Shanghai, and the remaining area outside the YRD,
respectively. Although Shanghai’s area is the smallest within
the YRD region and relatively distant (∼ 300 km) from our
observation site, its maximum source contribution at times
exceeded 50 % (i.e., on 19 September 2013, not shown) via
long-distance transport. In general, the power industry, man-
ufacturing, non-metallic mineral production, oil refinery, and
other source categories contributed 41.0 %, 21.9 %, 9.3 %,
11.5 %, and 16.3 % to the total anthropogenic CO2 enhance-
ment, respectively. The proportions of corresponding CO2
emission categories to the total anthropogenic emissions of
the YRD were 39.8 %, 28.4 %, 7.4 %, 4.1 %, and 24.4 %, re-
spectively. The comparisons between the proportions of sim-
ulated enhancement and proportions of corresponding CO2
emissions can illustrate whether CO2 enhancement partitions
are a good tracer for emissions in a complex urban area.
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Figure 5. (a) Comparisons of simulated and observed CO2 enhancement; note that “model” represents the sum of both anthropogenic and
biological CO2 enhancement simulations, (b) CO2 enhancement contributions from different provinces, and (c) simulated anthropogenic
CO2 enhancement proportion for the main sources. Time series (2013 to 2015) of (d) NDVI, (e) SIF, and (f) GPP. The distance indicates the
radius of the area centered with the NUIST observation site, and the NDVI, SIF, and GPP values are averages in these areas.

We found a relatively large difference between the enhance-
ment proportion and the emission proportion for oil refiner-
ies (from 11.5 % to 4.1 %) as compared to other categories.
This may be because the power industry, manufacturing and
non-metallic mineral production were more homogeneously
distributed compared to oil refineries, which were closer to
our CO2 observation site. Further, changes in source foot-
print caused by wind direction variations likely played an
important role.

3.1.3 Constraints on monthly anthropogenic CO2
emissions

To provide a robust comparison of bottom-up CO2 emis-
sions for the YRD, we calculated anthropogenic CO2 emis-
sions from both EDGAR v4.3.2 and with activity data
provided by local governments (Table 1) and the default
IPCC emission factors (https://www.ipcc-nggip.iges.or.jp/
EFDB/, last access: 13 September 2019). The total anthro-
pogenic CO2 emissions in 2014–2015 were 24.4× 1011 and
23.5× 1011 kg according to our own inventory and EDGAR
v4.3.2 CO2, respectively, indicating excellent agreement
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(within 4 %) between these approaches. We constrained the
monthly anthropogenic CO2 emissions by using the MSF
method (Eq. 8) and computed the 12-month average to rep-
resent the years of 2014 and 2015. The a posteriori results
indicate that the annual scaling factors were 1.03± 0.10 for
2014 and 1.06± 0.09 for 2015. The monthly scaling factors
derived from using daytime and all-day observations are also
shown in Fig. S4. These factors vary seasonally, with higher
values observed in summer. When using daytime values only,
the scaling factors were much larger than the all-day values.
This can be seen in Fig. 3 by comparing the simulated and
observed CO2 mixing ratios. We should note here that the
larger scaling factors based on the daytime data could be
caused by bias in the a priori daily scaling factors used to
generate the hourly CO2 emissions (Hu et al., 2018b), the
monthly anthropogenic averages, and bias in negative bio-
logical CO2 enhancement. Since our study is mainly focused
on the seasonality of all-day observations, the monthly scal-
ing factors derived from the all-day approach will be used for
the following analyses. The anthropogenic CO2 emissions
in year 2015 did not show a significant change compared to
2014, and the overall estimates were within the uncertainty
of the estimates. After applying the average scaling factors
for 2014 and 2015, the a posteriori anthropogenic CO2 emis-
sions were 24.6 (± 2.4)× 1011 kg for the YRD area. The ap-
plication of the MSF method provides an overall constraint
on the anthropogenic CO2 emissions (also displayed in Ta-
ble 1).

The main uncertainties associated with the simulation of
hourly CO2 and δ13C-CO2 are uncertainty in meteorolog-
ical fields, transport model (i.e., number of released parti-
cles), and a priori CO2 fluxes. At the annual scale the main
uncertainty is attributed to the PBLH simulations and a pri-
ori anthropogenic CO2 emissions. The anthropogenic CO2
emissions biases were < 6 % as described above, and the
bias associated with PBLH uncertainty was typically < 13 %
(Hu et al., 2018a, b). There, we attribute a 20 % uncertainty
to the simulated CO2 and δ13C-CO2 signals on an annual
timescale.

3.2 Simulation of atmospheric δ13C-CO2

3.2.1 Background atmospheric δ13C-CO2

To obtain the best representative δ13C-CO2 background
value for the study domain, we examined the values from the
three strategies described above (Fig. 6). We also compared
the δ13C-CO2 at the WLG background site with observations
at NUIST during winters (Fig. S5). This was performed to
help simplify the comparison by removing the effects of plant
photosynthetic discrimination. The δ13C-CO2 at the WLG
site was relatively more depleted in the heavy carbon isotope
(or negative, by up to 0.5 ‰) than that observed at NUIST
for many periods. Theoretically, there are two key factors
that can cause the urban atmospheric δ13C-CO2 to be rela-

tively more enriched in the heavy carbon isotope (or posi-
tive) compared to the background values, including (1) dis-
crimination associated with ecosystem photosynthesis and
(2) enrichment of the isotopic signature associated with the
CO2 derived from cement production. As shown earlier, the
biological CO2 enhancement was positive in winter, which
implies a positive biological CO2 signal where ecosystem
respiration is more important than photosynthesis. Further,
sensitivity tests for cement CO2 sources showed its influ-
ence is much smaller than the observed difference in Fig. S5
(discussed in Sect. 3.3.3). Based on the above analyses and
methods introduced in Sect. 2.3, we concluded that the WLG
δ13C-CO2 signal is not an ideal choice for representing the
background value. The wintertime δ13C-CO2 background
values, based on strategy 2, were −7.78 ‰ and −7.61 ‰ for
2013–2014 and 2014–2015, respectively (Fig. 6). The cor-
responding values, based on strategy 3, were −7.70 ‰ and
−7.53 ‰. These background values are more enriched com-
pared to the WLG observations by 0.80 ‰ to 1.01 ‰. These
derived values agree well with the monthly δ13C-CO2 simu-
lation results of Chen et al. (2006), who showed that δ13C-
CO2 is 0.6 ‰ higher above the PBL than in the surface layer
near the ground. Recently, Ghasemifard et al. (2019) showed
that hourly δ13C-CO2 values at the Zugspitze, the highest
(2650 m) mountain in Germany, varied between −7 ‰ and
−12 ‰ in the winter for 2013. During two especially clean
air events (in October and February) at the Zugspitze, the
δ13C-CO2 was approximately −7 ‰, during which the CO2
mixing ratios varied between 390 and 395 ppm. This is con-
sistent with our estimates using strategies 2 and 3. Based on
the evidence presented above, we believe that strategy 3 is
the most robust way to derive a background δ13C-CO2 for
the study domain.

3.2.2 Evaluation of δ13C-CO2 simulations

Figure 7a shows the hourly δ13C-CO2 simulations over a
2-year period. To the best of our knowledge, this is the
first time that δ13C-CO2 has been simulated at an hourly
timescale for an urban region. The simulations are con-
sistent with the observations at daily, monthly and annual
timescales, where the average values of observations (simu-
lations) were −8.69 ‰ (−8.68 ‰) and −8.52 ‰ (−8.45 ‰)
for 2014 and 2015, respectively. The corresponding correla-
tions wereR = 0.54 (P < 0.001) andR = 0.52 (P < 0.001).
The root mean square error between observations and sim-
ulations was 1.07 ‰ for 2014 and 1.10 ‰ for 2015 (Ta-
ble 2). Further, the observed and simulated δ13C-CO2 val-
ues showed seasonal variations that increased in summer and
decreased in winter. This pattern mirrored the CO2 mixing
ratios for both observations and simulations (Figs. 3a and 8).
Similar relations and seasonal variations of δ13C-CO2 have
been reported in other urban areas (Sturm et al., 2006; Guha
and Ghosh, 2010; Moore and Jacobson, 2015; Pang et al.,
2016). The simulated hourly NEE CO2 enhancement is also
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Table 1. Comparisons of cement and all anthropogenic CO2 emissions among the different methods. “NA” means not available.

Units: ×1011 kg Year EDGAR v432 Inversion results IPCC method

Cement CO2 emissions 2010 1.45 NA 1.14
2014–2015 1.72 NA 1.35

All anthropogenic CO2 emissions 2010 20.55 NA 17.56
2014–2015 23.53 24.59± 2.39 24.38

Figure 6. Comparisons among three strategies for calculating the background δ13C-CO2. Strategy 1 (WLG discrete: weekly discrete ob-
servations at the WLG site, WLG CCGCRV: derived hourly data with WLG observations and CCGCRV method), strategy 2 (calculated by
choosing clean air in winter), and strategy 3 (M-T method: derived results with observations and M-T approach, M-T CCGCRV: derived
hourly results with the M-T approach and CCGCRV method; see details in Sect. 2.2.1).

shown in Fig. 7b. Note that negative values indicate net CO2
sinks and positive values indicate net CO2 sources. We can
see large hourly variations in the growing seasons and posi-
tive enhancements during nighttime that are generally larger
than negative enhancements during daytime. This shows the
potential influence of NEE on δ13C-CO2 seasonality. To date,
no study has quantified the relative contributions to the δ13C-
CO2 seasonality. Here, we re-evaluate and quantify the main
factors contributing to its seasonality based on the combina-
tion of δ13C-CO2 observations and simulations in the follow-
ing section.

Here, we examine the comparisons for winter and sum-
mer in greater detail. The simulations showed that the model
can generally capture the diel variations of observed hourly
δ13C-CO2 variations (Fig. 8). Statistics between observations
and simulations for the two seasons are shown in Table 2.
The observed seasonal average increased substantially, by
1.18 ‰, from winter 2013–2014 (−9.27 ‰) to summer 2014
(−8.09 ‰). The simulations showed a similar seasonal in-
crease of 1.35 ‰. Some large discrepancies are evident and
generally caused by the simulated total CO2 enhancement
biases (potentially caused by poorly simulated PBLH during
these periods) and the negative relationship between δ13C-
CO2 and the CO2 enhancement as shown in Fig. S6.

Comparisons between observations and simulations for
the daily average CO2 mixing ratio and δ13C-CO2 are also
shown in Fig. 9. Although the data are distributed around the
1 : 1 line for both seasons, there is less scatter and higher cor-
relation in the winter than in the summer. We attributed this to
the more complex biological CO2 sinks in the summer, which
are not adequately resolved by the relatively coarse model
grid (1◦ by 1◦). We also performed comparisons by only
choosing the daytime observations. The results indicated that
daytime CO2 mixing ratio simulations in the summer were
slightly underestimated. This caused δ13C-CO2 to be overes-
timated (Fig. S7). The simulations for winter generally cap-
tured the trends for both CO2 and δ13C-CO2 when the bio-
logical CO2 enhancement played a relatively small role com-
pared to anthropogenic emissions. The larger bias in the sum-
mer could result from the relatively coarse spatial–temporal
resolution (aggregation error) of the Carbon Tracker biolog-
ical CO2 flux, which was 1◦× 1◦ with a 3 h average. As
shown in Fig. S3, the spatial distribution of land use is far
more heterogeneous. This will smooth the stronger biologi-
cal CO2 signals by averaging it over the large 1◦× 1◦ grid,
while the urban biological CO2 flux occurs at much finer spa-
tial scales and likely varies at shorter time intervals.
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Figure 7. (a) Comparisons of observed and modeled hourly δ13C-CO2 from September 2013 to August 2015, where the grey line represents
derived δ13C-CO2 background, and (b) simulated hourly biological CO2 enhancement. The shade and lines in both subfigures represent the
periods for winter and summer, respectively.

Table 2. Statistical metrics between observed and modeled CO2 mixing ratios and δ13C-CO2 during winter, summer, and annual for 2014
and 2015. Correlation coefficient (R), averages, and root mean square error (RMSE) are displayed.

Years 2014 2015

Periods All-year Winter Summer All-year Winter Summer

δ13CO2 (‰) R 0.54 0.40 0.47 0.52 0.27 0.39
RMSE (‰) 1.07 0.94 0.94 1.10 0.92 0.98
Simulation (‰) −8.68 −9.37 −8.02 −8.45 −9.10 −7.66
Observation (‰) −8.69 −9.27 −8.09 −8.52 −8.98 −7.83

CO2 R 0.38 0.41 0.34 0.35 0.28 0.31
RMSE (ppm) 29.44 27.48 25.55 30.22 26.81 24.29
Simulation (ppm) 436.47 441.55 436.67 437.08 442.09 432.37
Observation (ppm) 438.49 442.03 432.25 440.11 440.77 434.71

3.2.3 Mechanisms controlling the δ13C-CO2 seasonality

The mechanisms driving these seasonal variations are exam-
ined below. The peak and trough in the observed δ13C-CO2
signal were observed in December and July (Fig. 10a), re-
spectively, yielding an amplitude of 1.51 ‰. This was con-
sistent with the simulated amplitude of 1.53 ‰. These re-
sults support the fact that the simulated δ13C-CO2 season-
ality agreed well with the observations (Fig. 10) and can be
used to further diagnose the mechanisms contributing to the
δ13C-CO2 seasonality. According to Eq. (2), the δ13C-CO2

seasonality can be attributed to four factors, including (1) a
change in the background δ13C-CO2 value from −7.64 ‰ in
December to −6.66 ‰ in July, (2) a change in CO2 back-
ground from 399 to 398 ppm, (3) the total CO2 enhance-
ment change from 45.7 to 37.3 ppm, and (4) the change in
the isotope composition of the CO2 enhancements causing δs
to vary from −26.1 ‰ to −22.8 ‰.

To quantify each mechanism’s contribution to the season-
ality of atmospheric δ13C-CO2, we recalculated δ13C-CO2
by using the monthly averages as described above. First,
we calculated δ13C-CO2 in December and July, which were
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Figure 8. Comparisons of observed and modeled (a) CO2 mixing ratio and (b) δ13C-CO2 from December 2013 to February 2014, (c) CO2
mixing ratio and (b) δ13C-CO2 from December 2014 to February 2015, (e) CO2 mixing ratio and (f) δ13C-CO2 from June to August 2014,
and (g) CO2 mixing ratio and (h) δ13C-CO2 from June to August 2015.

−9.54 ‰ and −8.04 ‰, respectively, with an amplitude of
1.50 ‰. Next, we replaced the δ13C-CO2 background value
in December (−7.64 ‰) with July (−6.67 ‰). The recal-
culated δ13C-CO2 was −8.66 ‰ in December, indicating
that the change in δ13C-CO2 background value caused a
change of 0.88 ‰ (9.54 ‰ minus −8.66 ‰) to the seasonal-
ity. By changing both the total CO2 enhancement and back-
ground values, the recalculated δ13C-CO2 was −8.32 ‰,

contributing a 0.34 ‰ change in the seasonality (−8.66 ‰
minus −8.32 ‰). Finally, by changing δs from −26.1 ‰ to
−22.8 ‰, together with the change in background value, the
recalculated δ13C-CO2 was −8.32 ‰, a change of 0.34 ‰
(i.e., −8.66 ‰ minus −8.32 ‰). This indicates that both the
total CO2 enhancement and change in δs contributed equally
to the regional source term, causing a variation of 0.62 ‰
(i.e., 1.50 ‰ minus 0.88 ‰). Based on the above analyses,
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Figure 9. Scatter plots of observed versus modeled (a) wintertime CO2 mixing ratios, (b) wintertime δ13C-CO2, (c) summertime CO2, and
(d) summertime δ13C-CO2 for both years; here, these dots are daily averages.

we attributed 59 % and 41 % of the δ13C-CO2 seasonality
to the changing δ13C background term and regional source
terms, respectively. Further, the total CO2 enhancement and
change in δs, the sum of which can be treated as a regional
source term, contributed equally (about 20 %) to the δ13C-
CO2 seasonality.

To investigate how ecosystem photosynthetic discrimina-
tion and respiration affected atmospheric δ13C-CO2 season-
ality, we simulated the δ13C-CO2 again for two cases: (1) ex-
cluding negative NEE when photosynthesis is stronger than
respiration and (2) excluding both photosynthetic discrimi-
nation and respiration. Note that only NEE was used in our
study, with no partitioning between photosynthesis and res-
piration in the daytime. The only role of photosynthetic dis-
crimination should be stronger than in case 1, when only
negative NEE is used. The results are shown in Fig. 10b–c.
Overall, the negative CO2 enhancement caused atmospheric
δ13C-CO2 to become more enriched in the baseline simu-
lations, with maximum values around 1 ‰ between April
and October (Fig. 10b), and positive CO2 enhancement (i.e.,
via net respiration) caused atmospheric δ13C-CO2 to become
more depleted compared to the baseline simulations through

the whole year (Fig. 10c). By applying the CCGRCV fit-
ting technique to the δ13C-CO2 for the above two cases, we
found that the δ13C-CO2 seasonality decreased to 1.45 ‰
in case 1, indicating ecosystem photosynthetic discrimina-
tion explained > 0.08 ‰ of the seasonality (1.53 ‰ minus
1.45 ‰). For case 2, the δ13C-CO2 trough in winter slightly
increased by 0.08 ‰, and the peak in summer increased by
0.20 ‰; these two factors finally led the seasonality to in-
crease to 1.66 ‰, which was caused by much larger respira-
tion CO2 enhancement in summer than in winter (Fig. 7b).
These results indicate that biological respiration reduced the
δ13C-CO2 seasonality by 0.20 ‰ and that negative NEE
(photosynthetic discrimination) acted to increase the δ13C-
CO2 seasonality by 0.08 ‰. Generally, both ecosystem pho-
tosynthesis and respiration played minor roles in controlling
the atmospheric δ13C-CO2 seasonality within this urban area.
In other words, the anthropogenic CO2 emissions played a
much larger role than the plants.

As shown in Fig. 5, CO2 sources from the power industry,
combustion for manufacturing, non-metallic mineral produc-
tion and oil refineries and the transformation industry were
the top four contributors to the CO2 enhancements. We sim-
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Figure 10. Digital filtering curve fitting (CCGCRV) for background, observations, normal simulations, case 1 (excluding negative NEE when
photosynthesis is stronger than respiration), and case 2 (excluding respiration and photosynthesis) in both years, (b) δ13C-CO2 comparisons
between normal simulations and case 1, and (c) δ13C-CO2 comparisons between normal simulations and case 2.

ulated atmospheric δ13C-CO2 by assuming that no CO2 was
emitted from each of these four categories. The simulations
were performed by excluding one category at a time. The re-
sults indicated that atmospheric δ13C-CO2 seasonality was
1.30 ‰, 1.57 ‰, 1.30 ‰, and 1.47 ‰ when excluding the
power industry, combustion for the manufacturing source,
oil refineries/transformation industry, and non-metallic min-
eral production sources, respectively. In other words, the
power industry and oil refineries/transformation industry to-
gether contributed 0.40 ‰ to the total regional source term
of 0.62 ‰. The cement sources played a role in enriching by
0.07 ‰ the atmospheric δ13C-CO2 in the heavy isotope, con-
trary to all other anthropogenic CO2 sources.

3.3 Sensitivity analysis

3.3.1 Comparison of δs ·1CO2

Based on Eq. (2), the regional source term determines the
hourly/daily variations of δ13C-CO2, which is treated as
a signal added to the background signal. To evaluate the
model-simulated regional source term with respect to the ob-
servations, we examined daily averages for winter to min-

imize the influence of photosynthesis. In Fig. 11a, the ob-
served daily δs ·1CO2 values are compared with the sim-
ulated values using the a priori anthropogenic CO2 emis-
sions. Here 1CO2 represents the total CO2 enhancement for
both observations and simulations. The product δs ·1CO2
can be interpreted as the regional source term. The average
values were −1009.0 (and −841.9) ppm ‰ for observations
and −1096.7 (and 1000.5) ppm ‰ for model results in 2014
(and 2015). The slope of the regression fit was 0.99 (± 0.12),
and the intercept was −151.7 (± 130.1) for all data during
the two winters. After applying the monthly scaling factors to
constrain the anthropogenic CO2 emissions, the re-calculated
results were closer to the 1 : 1 line with a slightly improved
correlation (R increased from 0.47 to 0.50; Fig. 11b). Note
that the application of the monthly scaling factors only im-
pacts the 1CO2 but not δs. The uncertainty in δs will be dis-
cussed next.

3.3.2 Comparison between δs_sim and δs

To evaluate the δs simulations, we compared observed and
simulated δs as displayed in Fig. 12a for all-day and night-
time conditions. Here, nighttime simulations were selected
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Figure 11. Comparisons of wintertime δs ·1CO2 using (a) a priori and (b) constrained anthropogenic CO2 emissions.

to minimize the effects of ecosystem photosynthesis and to
mainly focus on the anthropogenic CO2 sources. Two meth-
ods were used to calculate δs from the observations, includ-
ing the Miller–Tans and Keeling plot methods. Although δs
differed between these two methods, both displayed similar
seasonal variations, with higher values (δ13C enrichment) in
summer and lower values in winter. Such seasonal variations
were also observed at other urban sites, including Beijing,
China (Pang et al., 2016), Bern, Switzerland (Sturm et al.,
2006), Bangalore, India (Guha and Ghosh, 2010), and Wro-
claw, Poland (Górka and Lewicka-szczebak, 2013).

If the CO2 sources/sinks are homogeneously distributed
and without monthly variations, the atmospheric CO2 en-
hancement components would remain unchanged, and there
would be no seasonal changes in δs. In reality, variations in
atmospheric transport processes interact with regional CO2
sink/source changes that cause monthly variations in δs. The
comparison of δs between simulations and observations indi-
cated that the model performed well in capturing the mixing
and transport of CO2 from different sources. We can also in-
fer from their difference that the proportions of some CO2
categories were biased in the a priori emission map. This
can be caused by both the downscaling of EDGAR inven-
tory distribution to 0.1◦ and the magnitude of some emis-
sions categories. Among all anthropogenic sources, the most
significant linear relations were found between the simu-
lated anthropogenic δs and cement CO2 proportions for these
24 months, with slopes of 0.33 ‰ for nighttime and 0.35 ‰
for all-day conditions (R2

= 0.97, p < 0.001; Fig. 12b and
c). These results also indicated that cement CO2 emissions
dominated monthly δs variations in the YRD region.

3.3.3 Sensitivity of atmospheric δ13C-CO2 and δs to
cement CO2 emissions

The discrepancy between simulated and observed δs high-
lights that some CO2 sources were biased in the a pri-
ori inventories. As discussed above, cement CO2 emis-
sions had the most distinct δ13C-CO2 end-member value of

0 ‰± 0.30 ‰ when compared with the averages of other an-
thropogenic sources. Combined with its large emission com-
pared to other regions of the world, it had a strong potential
to influence δs and δ13C-CO2. YRD represents the largest
cement-producing region in the world (USGS, 2014; Cai et
al., 2015; Yang et al., 2017). Its relative proportion to to-
tal national anthropogenic CO2 emissions is about 5.5 % to
6.5 % based on the IPCC method and 7.3 % for EDGAR.
These proportions are 50 % greater than the global average
of 4 % (Boden et al., 2016) and much larger than most coun-
tries (Andrew, 2018) and other large urbanized areas such as
California (2 %; Cui et al., 2019).

The local activity data reveal that the cement production
increased from 3.55×108 t in 2010 to 4.56×108 t in 2014 in
the YRD area. Our own calculation of the national clinker-
to-cement ratio indicated a decreasing trend from 64 % in
2004 to around 56 % in 2015. Here, we applied the value of
61.7 % for 2010 and the average value of 57.0 % for 2014 to
2015. We then used the EF for clinker (0.52± 0.01 t CO2 per
tonne clinker; IPCC, 2019). Finally, the calculated cement
CO2 emissions were 1.14 (± 0.02)× 108 t for 2010 and 1.35
(± 0.03)× 108 t for 2014, indicating an 18.4 % increase over
this time period. This result is close to the scaling factor of
1.145 for the total anthropogenic CO2 emissions for the same
period.

The cement CO2 emission was 1.45× 108 t for the
EDGAR products in 2010. Applying the scaling factor of
1.184, based on our independent method, the EDGAR ce-
ment CO2 emission was 1.72× 108 t for the year of 2014.
The 27 % difference between the EDGAR inventory and our
independent calculations probably resulted from large errors
in the clinker-to-cement ratio and regional activity data. Ke
et al. (2013) reported a much higher clinker-to-cement ratio
of 73 % to 70 % for China during 2005 and 2007 than the ra-
tio of 57 % in 2014 to 2015. If we applied a 70 % ratio, the
EDGAR cement CO2 emission would change to 1.28× 108 t
for 2010.
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Figure 12. (a) Comparisons between observed and modeled δs, (b) relationship between cement CO2 enhancement proportion and simulated
anthropogenic δs for nighttime, and (c) all-day.

Figure 13. Sensitivity tests showing the influence of cement CO2 emissions on δs for (a) nighttime, (b) all-day, and (c) the relation between
cement CO2 and δ13C for simulation strategies 1 (there is no bias in the total anthropogenic CO2 enhancement such that a proportional
increase/decrease in the cement component does not change the relative anthropogenic contributions) and 2 (only the cement enhancement
changes). Note that the numbers in brackets indicate changes in δ13C with cement CO2 enhancement proportion (the fraction of cement
CO2 enhancement to simulated total CO2 enhancement) increase by 0.2 times. The x-axis values indicate changing cement enhancement
proportions to 0.8, 1.2, 1.4, 1.6, 1.8, and 2 times the original values.
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The monthly cement emission proportions varied from
6.21 % to 8.98 %, while its enhancement proportion was
much larger and could reach 16.85 %. In other words, favor-
able atmospheric transport processes amplified the cement
CO2 enhancement proportion at our observational site (Ta-
ble S2). To quantify the extent to which the cement CO2 en-
hancement components can affect δs and atmospheric δ13C-
CO2, we conducted sensitivity tests by changing the cement
enhancement proportions to 0.8, 1.2, 1.4, 1.6, 1.8, and 2 times
its original value. These sensitivity tests are based on two dif-
ferent assumptions for cement CO2 enhancement changes.
(1) There is no bias in the total anthropogenic CO2 enhance-
ment such that a proportional increase/decrease in the cement
component does not change the relative anthropogenic con-
tributions. (2) Only the cement enhancement changes. From
Eq. (2), these two assumptions will change both δs and δ13C-
CO2 but with different amplitude.

Results for the first assumption are shown in Fig. 13a–b
for both nighttime and all-day δs simulations. The simulated
δs increased linearly with the increase in cement proportions,
at a rate of 2.73 ‰ increase per 10 % increase in cement pro-
portions in the nighttime and 2.72 ‰ for all-day. The result
for the second assumption is similar to the first one, yield-
ing a 2.32 ‰ increase for a 10 % increase in the cement pro-
portion. As shown in Table S2, the cement CO2 enhance-
ment proportions increased from 5.60 %–6.77 % (December)
to 13.16 %–16.85 % (June), which is the primary cause of the
observed monthly δs variations. The high sensitivity of δs to
cement CO2 proportions can partly explain the relative dif-
ference of modeled δs and indicates a potential advantage to
constrain cement CO2 emissions by using atmospheric δ13C-
CO2 observations. Finally we calculated how cement CO2
can change atmospheric δ13C-CO2 (Fig. 13c). These results
show that atmospheric δ13C-CO2 is more sensitive to the
first assumption than the second assumption. These sensitiv-
ity analyses indicate that a cement CO2 enhancement rela-
tive change of 20 % (or absolute 1.57 % increase) can cause
a 0.013 ‰–0.038 ‰ change in the atmospheric δ13C-CO2.
These results indicate that δs is sensitive to cement CO2 emis-
sions.

4 Conclusions

Total annual anthropogenic CO2 emissions for the YRD
showed a high consistency between the top-down and
bottom-up approaches, with a bias of less than 6 %.

Approximately 59 % and 41 % of the δ13C-CO2 seasonal-
ity were attributed to the change in δ13C background value
and the regional CO2 source term, respectively.

The power industry and oil refinery/transformation indus-
try together contributed 0.40 ‰ to the seasonal cycle, ac-
counting for 64.5 % in all regional source terms (0.62 ‰).

When excluding all ecosystem respiration and photosyn-
thetic discrimination in the YRD area, δ13C-CO2 seasonality
will increase from 1.53 ‰ to 1.66 ‰.

Atmospheric transport processes in summer amplified the
cement CO2 enhancement proportions in the YRD area,
which dominated monthly δs variations. δs calculated from
simulations was shown to have a strong linear relationship
with the cement CO2 EDGAR v4.3.2 inventory proportion
in the YRD area.
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