Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-9855-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-9855-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The interaction between urbanization and aerosols during a typical winter haze event in Beijing
Miao Yu
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Guiqian Tang
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Yang Yang
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Qingchun Li
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Yonghong Wang
Institute for Atmospheric and Earth System Research, Faculty of Science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Shiguang Miao
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Yizhou Zhang
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Yuesi Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2755, https://doi.org/10.5194/egusphere-2024-2755, 2024
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were made based on a 325 m tower in urban Beijing. Vertical changes in concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187, https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
We develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. It can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021, https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
Short summary
The mechanisms and kinetics of particulate sulfate formation in the atmosphere are still open questions although they have been extensively discussed. We found that uptake of SO2 is the rate-determining step for the conversion of SO2 to particulate sulfate. NH4NO3 plays an important role in AWC, the phase state of aerosol particles, and subsequently the uptake kinetics of SO2 under high-RH conditions. This work is a good example of the feedback between aerosol physics and aerosol chemistry.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Zhaobin Sun, Xiujuan Zhao, Ziming Li, Guiqian Tang, and Shiguang Miao
Atmos. Chem. Phys., 21, 8863–8882, https://doi.org/10.5194/acp-21-8863-2021, https://doi.org/10.5194/acp-21-8863-2021, 2021
Short summary
Short summary
Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective.
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021, https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Dandan Zhao, Jinyuan Xin, Chongshui Gong, Jiannong Quan, Yuesi Wang, Guiqian Tang, Yongxiang Ma, Lindong Dai, Xiaoyan Wu, Guangjing Liu, and Yongjing Ma
Atmos. Chem. Phys., 21, 5739–5753, https://doi.org/10.5194/acp-21-5739-2021, https://doi.org/10.5194/acp-21-5739-2021, 2021
Short summary
Short summary
The influence of aerosol radiative forcing (ARF) on the boundary layer structure is nonlinear. The threshold of the modification effects of ARF on the boundary layer structure was determined for the first time, highlighting that once ARF exceeded a certain value, the boundary layer would quickly stabilize and aggravate air pollution. This could provide useful information for relevant atmospheric-environment improvement measures and policies.
Yishuo Guo, Chao Yan, Chang Li, Wei Ma, Zemin Feng, Ying Zhou, Zhuohui Lin, Lubna Dada, Dominik Stolzenburg, Rujing Yin, Jenni Kontkanen, Kaspar R. Daellenbach, Juha Kangasluoma, Lei Yao, Biwu Chu, Yonghong Wang, Runlong Cai, Federico Bianchi, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 5499–5511, https://doi.org/10.5194/acp-21-5499-2021, https://doi.org/10.5194/acp-21-5499-2021, 2021
Short summary
Short summary
Fog, cloud and haze are very common natural phenomena. Sulfuric acid (SA) is one of the key compounds forming those suspended particles, technically called aerosols, through gas-to-particle conversion. Therefore, the concentration level, source and sink of SA is very important. Our results show that ozonolysis of alkenes plays a major role in nighttime SA formation under unpolluted conditions in urban Beijing, and nighttime cluster mode particles are probably driven by SA in urban environments.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Yongchun Liu, Yusheng Zhang, Chaofan Lian, Chao Yan, Zeming Feng, Feixue Zheng, Xiaolong Fan, Yan Chen, Weigang Wang, Biwu Chu, Yonghong Wang, Jing Cai, Wei Du, Kaspar R. Daellenbach, Juha Kangasluoma, Federico Bianchi, Joni Kujansuu, Tuukka Petäjä, Xuefei Wang, Bo Hu, Yuesi Wang, Maofa Ge, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, https://doi.org/10.5194/acp-20-13023-2020, 2020
Short summary
Short summary
Understanding of the chemical and physical processes leading to atmospheric aerosol particle formation is crucial to devising effective mitigation strategies to protect the public and reduce uncertainties in climate predictions. We found that the photolysis of nitrous acid could promote the formation of organic and nitrate aerosol and that traffic-related emission is a major contributor to ambient nitrous acid on haze days in wintertime in Beijing.
Jing Cai, Biwu Chu, Lei Yao, Chao Yan, Liine M. Heikkinen, Feixue Zheng, Chang Li, Xiaolong Fan, Shaojun Zhang, Daoyuan Yang, Yonghong Wang, Tom V. Kokkonen, Tommy Chan, Ying Zhou, Lubna Dada, Yongchun Liu, Hong He, Pauli Paasonen, Joni T. Kujansuu, Tuukka Petäjä, Claudia Mohr, Juha Kangasluoma, Federico Bianchi, Yele Sun, Philip L. Croteau, Douglas R. Worsnop, Veli-Matti Kerminen, Wei Du, Markku Kulmala, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 20, 12721–12740, https://doi.org/10.5194/acp-20-12721-2020, https://doi.org/10.5194/acp-20-12721-2020, 2020
Short summary
Short summary
By applying both OA PMF and size PMF at the same urban measurement site in Beijing, similar particle source types, including vehicular emissions, cooking emissions and secondary formation-related sources, were resolved by both frameworks and agreed well. It is also found that in the absence of new particle formation, vehicular and cooking emissions dominate the particle number concentration, while secondary particulate matter governed PM2.5 mass during spring and summer in Beijing.
Yang Yang, Min Chen, Xiujuan Zhao, Dan Chen, Shuiyong Fan, Jianping Guo, and Shaukat Ali
Atmos. Chem. Phys., 20, 12527–12547, https://doi.org/10.5194/acp-20-12527-2020, https://doi.org/10.5194/acp-20-12527-2020, 2020
Short summary
Short summary
This study analyzed the impacts of aerosol–radiation interaction on radiation and meteorological forecasts using the offline coupling of WRF and high-frequency updated AOD simulated by WRF-Chem. The results revealed that aerosol–radiation interaction had a positive influence on the improvement of predictive accuracy, including 2 m temperature (~ 73.9 %) and horizontal wind speed (~ 7.8 %), showing potential prospects for its application in regional numerical weather prediction in northern China.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Jenni Kontkanen, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, Simo Hakala, Tom V. Kokkonen, Zhuohui Lin, Yongchun Liu, Yonghong Wang, Chao Yan, Tuukka Petäjä, Jingkun Jiang, Markku Kulmala, and Pauli Paasonen
Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, https://doi.org/10.5194/acp-20-11329-2020, 2020
Short summary
Short summary
To estimate the impacts of atmospheric aerosol particles on air quality, knowledge of size distributions of particles emitted from anthropogenic sources is needed. We introduce a new method for determining size-resolved particle number emissions from measured particle size distributions. We apply our method to data measured in Beijing, China. We find that particle number emissions at our site are dominated by emissions of particles smaller than 30 nm, originating mainly from traffic.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Yonghong Wang, Matthieu Riva, Hongbin Xie, Liine Heikkinen, Simon Schallhart, Qiaozhi Zha, Chao Yan, Xu-Cheng He, Otso Peräkylä, and Mikael Ehn
Atmos. Chem. Phys., 20, 5145–5155, https://doi.org/10.5194/acp-20-5145-2020, https://doi.org/10.5194/acp-20-5145-2020, 2020
Short summary
Short summary
Chamber experiments were conducted with alpha-pinene and chlorine under low- and high-nitrogen-oxide (NOX) conditions. We estimated the HOM yields from chlorine-initiated oxidation of alpha-pinene under low-NOX conditions to be around 1.8 %, though with a uncertainty range (0.8 %–4 %) due to lack of suitable calibration methods. Our study clearly demonstrates that the chlorine-atom-initiated oxidation of alpha-pinene can produce low-volatility organic compounds.
Yuning Xie, Gehui Wang, Xinpei Wang, Jianmin Chen, Yubao Chen, Guiqian Tang, Lili Wang, Shuangshuang Ge, Guoyan Xue, Yuesi Wang, and Jian Gao
Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, https://doi.org/10.5194/acp-20-5019-2020, 2020
Short summary
Short summary
As a result of strict emission control, nitrate-dominated PM2.5 in pollution episodes was observed in urban Beijing during the winter of 2017–2018. With the help of sufficient ammonia, particle pH could increase to near neutral (5.4) as particulate nitrate fraction increases. Further tests imply that airborne particle hygroscopicity would be enhanced at moderate RH in nitrate-dominated particles, and pH elevation will be accelerated when ammonia and particulate nitrate both increase.
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020, https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary
Short summary
Under strong atmospheric oxidization capacity, haze pollution in the summer in Beijing was the result of the synergistic effect of the physicochemical process in the atmospheric boundary layer (ABL). With the premise of an extremely stable ABL structure, the formation of secondary aerosols dominated by nitrate was quite intense, driving the outbreak of haze pollution.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy
Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, https://doi.org/10.5194/acp-20-1497-2020, 2020
Short summary
Short summary
We quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Jingda Liu, Lili Wang, Mingge Li, Zhiheng Liao, Yang Sun, Tao Song, Wenkang Gao, Yonghong Wang, Yan Li, Dongsheng Ji, Bo Hu, Veli-Matti Kerminen, Yuesi Wang, and Markku Kulmala
Atmos. Chem. Phys., 19, 14477–14492, https://doi.org/10.5194/acp-19-14477-2019, https://doi.org/10.5194/acp-19-14477-2019, 2019
Short summary
Short summary
We analyzed the surface ozone variation characteristics and quantified the impact of synoptic and local meteorological factors on northern China during the warm season based on multi-city, in situ ozone and meteorological data, as well as meteorological reanalysis. The results of quantitative exploration on synoptic and local meteorological factors influencing both interannual and day-to-day ozone variations will provide the scientific basis for evaluating emission reduction measures.
Lei Chen, Jia Zhu, Hong Liao, Yi Gao, Yulu Qiu, Meigen Zhang, Zirui Liu, Nan Li, and Yuesi Wang
Atmos. Chem. Phys., 19, 10845–10864, https://doi.org/10.5194/acp-19-10845-2019, https://doi.org/10.5194/acp-19-10845-2019, 2019
Short summary
Short summary
The formation mechanism of a severe haze episode that occurred over North China in December 2015, the aerosol radiative impacts on the haze event and the influence mechanism were examined. The PM2.5 increase during the aerosol accumulation stage was mainly attributed to strong production by the aerosol chemistry process and weak removal by advection and vertical mixing. Restrained vertical mixing was the main reason for near-surface PM2.5 increase when aerosol radiative feedback was considered.
Yusi Liu, Guiqian Tang, Libo Zhou, Bo Hu, Baoxian Liu, Yunting Li, Shu Liu, and Yuesi Wang
Atmos. Chem. Phys., 19, 9531–9540, https://doi.org/10.5194/acp-19-9531-2019, https://doi.org/10.5194/acp-19-9531-2019, 2019
Short summary
Short summary
Weak atmospheric dilution capability is a key factor leading to the frequent occurrence of serious air pollution. This study aims to analyze the mixing layer dilution capability of the atmosphere and to quantify the mixing layer PM2.5 transport flux. Our results showed the main controlling factors during the transition and heavy polluted period in Beijing. The results help in understanding the causes of air pollution and making decisions on prevention and control of air pollution.
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019, https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary
Short summary
Urban boundary layer (UBL) affects the physical and chemical processes of the pollutants, and UBL structure can also be altered by pollutants. This paper presents the interactions between air pollution and the UBL structure by using the field data mainly collected from a 325 m meteorology tower, as well as from a Doppler wind lidar, during a severe heavy pollution event that occurred during 1–4 December 2016 in Beijing.
Jialin Li, Meigen Zhang, Guiqian Tang, Yele Sun, Fangkun Wu, and Yongfu Xu
Atmos. Chem. Phys., 19, 6481–6495, https://doi.org/10.5194/acp-19-6481-2019, https://doi.org/10.5194/acp-19-6481-2019, 2019
Short summary
Short summary
There are large uncertainties in the sources of secondary organic aerosol (SOA). Simulations of SOA concentrations in China with aqueous SOA formation pathway updated and glyoxal simulation improved reveal that dicarbonyl-derived SOA (AAQ) can explain a significant fraction of the unaccounted SOA sources. The mean AAQ can contribute 60.6 % and 64.5 % to the total concentration of SOA in summer and fall, respectively.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Chao Yan, Lubna Dada, Clémence Rose, Tuija Jokinen, Wei Nie, Siegfried Schobesberger, Heikki Junninen, Katrianne Lehtipalo, Nina Sarnela, Ulla Makkonen, Olga Garmash, Yonghong Wang, Qiaozhi Zha, Pauli Paasonen, Federico Bianchi, Mikko Sipilä, Mikael Ehn, Tuukka Petäjä, Veli-Matti Kerminen, Douglas R. Worsnop, and Markku Kulmala
Atmos. Chem. Phys., 18, 13231–13243, https://doi.org/10.5194/acp-18-13231-2018, https://doi.org/10.5194/acp-18-13231-2018, 2018
Short summary
Short summary
Ions can play an important role in atmospheric new particle formation by stabilizing the embryonic clusters. Such a process is called ion-induced nucleation (IIN). We found two distinct IIN mechanisms – driven by H2SO4-NH3 clusters and by organic vapors, respectively. The concentration ratio of organic vapors to H2SO4 regulates via which pathway the IIN occur. As the organic vapor concentration is influenced by temperature, a seasonal variation in the main IIN mechanism can be expected.
Zirui Liu, Wenkang Gao, Yangchun Yu, Bo Hu, Jinyuan Xin, Yang Sun, Lili Wang, Gehui Wang, Xinhui Bi, Guohua Zhang, Honghui Xu, Zhiyuan Cong, Jun He, Jingsha Xu, and Yuesi Wang
Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, https://doi.org/10.5194/acp-18-8849-2018, 2018
Short summary
Short summary
We have established a national-level network (CARE-China) that conducted continuous monitoring of PM2.5 and its chemical compositions in China. Our analysis reveals the spatial and seasonal variabilities of the urban and background aerosol species and their contributions to the PM2.5 budget. The integration of data provided an extensive spatial coverage of fine-particle concentrations and could be used to validate model results and implement effective air pollution control strategies.
Xiaowan Zhu, Guiqian Tang, Jianping Guo, Bo Hu, Tao Song, Lili Wang, Jinyuan Xin, Wenkang Gao, Christoph Münkel, Klaus Schäfer, Xin Li, and Yuesi Wang
Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, https://doi.org/10.5194/acp-18-4897-2018, 2018
Short summary
Short summary
Our study first conducted a long-term observation of mixing layer height (MLH) with high resolution on the North China Plain (NCP), analyzed the spatiotemporal variations of regional MLH, investigated the reasons for MLH differences in the NCP and revealed the meteorological reasons for heavy haze pollution in southern Hebei. The study results provide scientific suggestions for regional industrial structure readjustment and have great importance for achieving the integrated development goals.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Ju Li, Jielun Sun, Mingyu Zhou, Zhigang Cheng, Qingchun Li, Xiaoyan Cao, and Jingjiang Zhang
Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018, https://doi.org/10.5194/acp-18-3919-2018, 2018
Short summary
Short summary
A rapid increase in the PM2.5 concentration in Beijing, China, on 30 November 2015 was found to be transported from south of Beijing by both turbulent mixing and advection processes. The nighttime relatively clean air was from the downslope flow northwest of Beijing; the rapid increase in the PM2.5 concentration in the morning resulted from the downward convective turbulent transfer of the polluted air that was rapidly advected over the nighttime stable boundary layer.
Lin Pei, Zhongwei Yan, Zhaobin Sun, Shiguang Miao, and Yao Yao
Atmos. Chem. Phys., 18, 3173–3183, https://doi.org/10.5194/acp-18-3173-2018, https://doi.org/10.5194/acp-18-3173-2018, 2018
Short summary
Short summary
This paper demonstrates the increasing frequency of persistent haze events (PHE) in Beijing based on updated observations and explores the associated changes in large-scale atmospheric circulations with possible links to the large-scale warming trend. We propose a more concrete observation-based mechanism for explaining how the local PHE in Beijing change with large-scale climate warming via the sea surface temperature anomaly in the northwestern Pacific.
Syuichi Itahashi, Keiya Yumimoto, Itsushi Uno, Hiroshi Hayami, Shin-ichi Fujita, Yuepeng Pan, and Yuesi Wang
Atmos. Chem. Phys., 18, 2835–2852, https://doi.org/10.5194/acp-18-2835-2018, https://doi.org/10.5194/acp-18-2835-2018, 2018
Short summary
Short summary
Ground-based observations of precipitation chemistry over China, Korea, and Japan from 2001 to 2015 were compiled, and the ratio of nitrate to non-sea-salt sulfate concentration in precipitation was analyzed to identify the long-term record of acidifying species. The variations in the ratio in East Asia corresponded to the NOx / SO2 emission ratio and the NO2 / SO2 column ratio in China. The results indicated that the acidity of precipitation shifted from sulfur to nitrogen.
Qingqing Wang, Yele Sun, Weiqi Xu, Wei Du, Libo Zhou, Guiqian Tang, Chen Chen, Xueling Cheng, Xiujuan Zhao, Dongsheng Ji, Tingting Han, Zhe Wang, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 18, 2495–2509, https://doi.org/10.5194/acp-18-2495-2018, https://doi.org/10.5194/acp-18-2495-2018, 2018
Short summary
Short summary
We conducted the first real-time continuous vertical measurements of particle extinction, NO2, and BC from ground level to 260 m during two severe winter haze episodes in urban Beijing, China. Our results show very complex and dynamic vertical profiles that interact closely with boundary layer and meteorological conditions. Further analysis demonstrate that vertical convection, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles.
Xiaojuan Huang, Zirui Liu, Jingyun Liu, Bo Hu, Tianxue Wen, Guiqian Tang, Junke Zhang, Fangkun Wu, Dongsheng Ji, Lili Wang, and Yuesi Wang
Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, https://doi.org/10.5194/acp-17-12941-2017, 2017
Short summary
Short summary
Recently, haze pollution has frequently occurred in North China. Therefore, we conducted synchronous measurements of PM2.5 for 1 year to investigate the haze formation mechanism, sources, and influences of regional transport. The results revealed that secondary aerosols, coal combustion, and motor vehicle exhaust exerted significant impacts on urban haze formation. The mitigation strategy of reducing gaseous precursors emitted from fossil fuel combustion was suggested.
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Dongwei Liu, Weixing Zhu, Xiaobo Wang, Yuepeng Pan, Chao Wang, Dan Xi, Edith Bai, Yuesi Wang, Xingguo Han, and Yunting Fang
Biogeosciences, 14, 989–1001, https://doi.org/10.5194/bg-14-989-2017, https://doi.org/10.5194/bg-14-989-2017, 2017
Short summary
Short summary
The use of 15N natural abundance of soil ammonium and nitrate demonstrates a clear shifting contribution from abiotic to biotic controls on N cycling along a 3200 km dryland transect in northern China, with a threshold at mean annual precipitation of 100 mm. Abiotic factors were the main driver below threshold, shown by the accumulation of atmospheric N and NH3 losses. In the area above threshold, soil N cycling was controlled mainly by biological factors, e.g., plant uptake and denitrification.
Bin Liu, Zhiyuan Cong, Yuesi Wang, Jinyuan Xin, Xin Wan, Yuepeng Pan, Zirui Liu, Yonghong Wang, Guoshuai Zhang, Zhongyan Wang, Yongjie Wang, and Shichang Kang
Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, https://doi.org/10.5194/acp-17-449-2017, 2017
Short summary
Short summary
The first observation net of background atmospheric aerosols of the Himalayas and Tibetan Plateau were conducted in 2011–2013, and the aerosol mass loadings were especially illustrated in this paper. Consequently, these terrestrial aerosol masses were strongly ecosystem-dependent, with various seasonality and diurnal cycles at these sites. These findings implicate that regional characteristics and fine-particle emissions need to be treated sensitively when assessing their climatic effects.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
Guiqian Tang, Jinqiang Zhang, Xiaowan Zhu, Tao Song, Christoph Münkel, Bo Hu, Klaus Schäfer, Zirui Liu, Junke Zhang, Lili Wang, Jinyuan Xin, Peter Suppan, and Yuesi Wang
Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, https://doi.org/10.5194/acp-16-2459-2016, 2016
Short summary
Short summary
This is the first paper to validate and characterize mixing layer height and discuss its relationship with air pollution, using a ceilometer in Beijing. The novelty, originality, and importance of this paper are as follows: (1) the applicable conditions of the ceilometer; (2) the variations of mixing layer height; (3) thermal/dynamic structure inside mixing layers with different degrees of pollution; and (4) critical meteorological conditions for the formation of heavy air pollution.
M. Gao, G. R. Carmichael, Y. Wang, P. E. Saide, M. Yu, J. Xin, Z. Liu, and Z. Wang
Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, https://doi.org/10.5194/acp-16-1673-2016, 2016
Short summary
Short summary
The WRF-Chem model was applied to study the 2010 winter haze in North China. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, Relative Humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn.
S. L. Tian, Y. P. Pan, and Y. S. Wang
Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, https://doi.org/10.5194/acp-16-1-2016, 2016
Short summary
Short summary
Size-resolved chemical information of particulate matter remains unclear in China due to a paucity of measurement data. One-year observation of water-soluble ions, carbonaceous species and trace elements in size-resolved particles with cutoff points as 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 5.8 and 9.0 μm were conducted in mega city Beijing. This unique dataset provided multidimensional insights into the sources among different size fractions, seasons or wind flows and between non-haze and haze days.
G. Tang, X. Zhu, B. Hu, J. Xin, L. Wang, C. Münkel, G. Mao, and Y. Wang
Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, https://doi.org/10.5194/acp-15-12667-2015, 2015
Short summary
Short summary
The manuscript is the first paper to validate and discuss the high-resolution vertical profiles of aerosols using a ceilometer in Beijing, China. We introduce the contribution of aerosols during different air pollution episodes in Beijing. Also, we seize the opportunity of emission reduction during APEC to study the contribution of aerosols. The results are helpful to provide guidance in redefining coordinated emission control strategies to control the regional pollution over northern China.
Y. W. Liu, Xu-Ri, Y. S. Wang, Y. P. Pan, and S. L. Piao
Atmos. Chem. Phys., 15, 11683–11700, https://doi.org/10.5194/acp-15-11683-2015, https://doi.org/10.5194/acp-15-11683-2015, 2015
Short summary
Short summary
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining in situ measurements in this and previous studies, the average wet deposition of NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. Results suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP.
Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze
Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, https://doi.org/10.5194/acp-15-10905-2015, 2015
Short summary
Short summary
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind. This work analyzes the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific. Both nitrogen emissions and meteorology, largely controlled by the East Asian Monsoon, determine the seasonality of nitrogen deposition. Ascribing deposition over the marginal seas to nitrogen sources from different regions and sectors shows important contribution from fertilizer use.
J. K. Zhang, D. S. Ji, Z. R. Liu, B. Hu, L. L. Wang, X. J. Huang, and Y. S. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-18537-2015, https://doi.org/10.5194/acpd-15-18537-2015, 2015
Revised manuscript has not been submitted
Y. H. Wang, Z. R. Liu, J. K. Zhang, B. Hu, D. S. Ji, Y. C. Yu, and Y. S. Wang
Atmos. Chem. Phys., 15, 3205–3215, https://doi.org/10.5194/acp-15-3205-2015, https://doi.org/10.5194/acp-15-3205-2015, 2015
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
T. Wang, F. Hendrick, P. Wang, G. Tang, K. Clémer, H. Yu, C. Fayt, C. Hermans, C. Gielen, J.-F. Müller, G. Pinardi, N. Theys, H. Brenot, and M. Van Roozendael
Atmos. Chem. Phys., 14, 11149–11164, https://doi.org/10.5194/acp-14-11149-2014, https://doi.org/10.5194/acp-14-11149-2014, 2014
J. K. Zhang, Y. Sun, Z. R. Liu, D. S. Ji, B. Hu, Q. Liu, and Y. S. Wang
Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, https://doi.org/10.5194/acp-14-2887-2014, 2014
Y. H. Wang, B. Hu, D. S. Ji, Z. R. Liu, G. Q. Tang, J. Y. Xin, H. X. Zhang, T. Song, L. L. Wang, W. K. Gao, X. K. Wang, and Y. S. Wang
Atmos. Chem. Phys., 14, 2419–2429, https://doi.org/10.5194/acp-14-2419-2014, https://doi.org/10.5194/acp-14-2419-2014, 2014
N. Chao, G. Tang, Y. Wang, H. Wang, J. Huang, and J. Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-4905-2014, https://doi.org/10.5194/acpd-14-4905-2014, 2014
Revised manuscript not accepted
Y. Kanaya, H. Akimoto, Z.-F. Wang, P. Pochanart, K. Kawamura, Y. Liu, J. Li, Y. Komazaki, H. Irie, X.-L. Pan, F. Taketani, K. Yamaji, H. Tanimoto, S. Inomata, S. Kato, J. Suthawaree, K. Okuzawa, G. Wang, S. G. Aggarwal, P. Q. Fu, T. Wang, J. Gao, Y. Wang, and G. Zhuang
Atmos. Chem. Phys., 13, 8265–8283, https://doi.org/10.5194/acp-13-8265-2013, https://doi.org/10.5194/acp-13-8265-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of East Asian Winter Monsoon circulation
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Steady-State Mixing State of Black Carbon Aerosols from a Particle-Resolved Model
The effectiveness of solar radiation management for marine cloud brightening geoengineering by fine sea spray in worldwide different climatic regions
Accounting for Black Carbon Aging Process in a Two-way Coupled Meteorology – Air Quality Model
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2493, https://doi.org/10.5194/egusphere-2024-2493, 2024
Short summary
Short summary
We proposed a composite statistical method to discern the long-term moving spatial distribution with Quasi-weekly oscillation (QWO) of regional PM2.5 transport over China. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian Winter Monsoon circulation with the periodic activities of Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Zhe Song, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, Pengfei Li, Daniel Rosenfeld, and Shaocai Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2263, https://doi.org/10.5194/egusphere-2024-2263, 2024
Short summary
Short summary
Our results with injected sea-salt aerosols for five open oceans show that the sea-salt aerosols with low injection amounts dominated the shortwave radiation mainly through the indirect effects. As indirect aerosol effects saturated with increasing injection rates, direct effects exceeded indirect effects. This implies that marine cloud brightening was best implemented in areas with extensive cloud cover, while the aerosol direct scattering effects remained dominant when clouds were scarce.
Yuzhi Jin, Jiandong Wang, David C. Wong, Chao Liu, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2372, https://doi.org/10.5194/egusphere-2024-2372, 2024
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full account. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing Bare/Coated BC species and their conversion. Our findings show that BC mixing states have distinct spatiotemporal distribution characteristics, and BC wet deposition is dominated by Coated BC. Accounting for BC aging process improves aerosol optics simulation accuracy.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923, https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Short summary
The Mongolian cyclone, compared to the cold high-pressure system, caused more frequent and severe dust weather in North China during the spring seasons of 2015–2023. Different intensities of 500 hPa cyclonic and anticyclonic anomalies, control near-surface meteorological conditions, leading to two dust weather types in North China. The common predictor for the two types of dust weather successfully captured 76.1 % of dust days and provided a dust signal two days in advance.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Cited articles
Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential of
urban trees and shrubs, Atmos. Environ., 32, 53–68, 1998.
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone
in urban areas and their use in assessing ozone trends, Atmos.
Environ., 41, 7127–7137, 2007.
Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.:
Urban heat islands in China enhanced by haze pollution, Nat.
Commun., 7, 1–7, 2016.
Cardelino, C. A. and Chameides, W. L.: Natural hydrocarbons, urbanization,
and urban ozone, J. Geophys. Res., 95, 13971, https://doi.org/10.1029/JD095iD09p13971, 1990.
Chen, H. and Wang, H.: Haze Days in North China and the associated
atmospheric circulations based on daily visibility data from 1960 to 2012,
J. Geophys. Res.-Atmos., 120, 5895–5909, 2015.
Coulter, R. L.: A Comparison of three methods for measuring mixing-layer
height, J. Appl. Meteorol., 18, 1495–1499, 1979.
Crutzen, P. J.: New directions: the growing urban heat and pollution
“island” effect-impact on chemistry and climate, Atmos. Environ., 38,
3539–3540, 2004.
Fan, S.: Assessment report of regional high resolution model (RMAPS-ST), IUM
Technical Note IUM/2018-1, Beijing, China, IUM, 2018.
Folberth, G. A., Rumbold, S. T., Collins, W. J., and Butler, T. M.: Global
radiative forcing and megacities, Urban Climate, 1, 4–19, 2014.
Grimmond, S. U. E.: Urbanization and global environmental change: local
effects of urban warming, Geogr. J., 173, 83–88, 2007.
Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., and Winker,
D. M.: Summer dust aerosols detected from CALIPSO over the Tibetan
Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938,
2007.
Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., and
Ayers, J. K.: Long-range transport and vertical structure of Asian dust from
CALIPSO and surface measurements during PACDEX, J. Geophys.
Res., 113, D23212, https://doi.org/10.1029/2008JD010620, 2008a.
Huang, J., Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z.,
Yang, S., Zhang, B., Wang, G., Feng, G., Yuan, J., Zhang, L., Zuo, H., Wang, S., Fu, C.,
and Chou, J.: An overview of the semi-arid climate and environment research
observatory over the Loess Plateau, Adv. Atmos. Sci., 25,
1–16, https://doi.org/10.1007/s00376-008-0906-7, 2008b.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis
rate coefficient and temperature profiles over an urban airshed, J.
Geophys. Res., 103, 10593–10604, 1998.
Kain, J. S.: The Kain–Fritsch convective parameterization: An update,
J. Appl. Meteorol., 43, 170–181, 2004.
Li, D. and Bou-Zeid, E.: Synergistic interaction between urban heat islands
and heat waves: the impact in cities is larger than the sum of its parts, J.
Appl. Meteorol. Clim., 52, 2051–2064, 2013.
Liu, Q., Geng, H., and Chen, Y.: Vertical distribution of aerosols during
different intense dry haze period around Shanghai, China Environmental
Science, 32, 207–213, 2012 (in Chinese).
Miao, S. and Chen, F.: Enhanced modeling of latent heat flux from urban
surfaces in the Noah/single-layer urban canopy coupled model, Sci. China
Earth Sci., 57, 2408–2416, 2014.
Miao, S., Dou J., Chen, F., Li, J., and Li, A.: Analysis of observations on
the urban surface energy balance in Beijing, Sci. China Earth
Sci., 55, 1881–1890, 2012.
Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017.
Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, G., Luley, C. J., and
Crane, D. E.: A modeling study of the impact of urban trees on
ozone, Atmos. Environ., 34, 1601–1613, 2000.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, 1982.
Oke, T. R.: The heat island of the urban boundary layer: Characteristics,
causes and effects, Nato Adv. Sci. Inst. Se., 277, 81–107, 1995.
Pei, L., Yan, Z., Chen, D., and Miao, S.: Climate variability or
anthropogenic emissions: which caused Beijing Haze?, Environ. Res.
Lett., 15, 034004, https://doi.org/10.1088/1748-9326/ab6f11, 2020.
Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.:
Characteristics of heavy aerosol pollution during the 2012–2013 winter in
Beijing, China, Atmos. Environ., 88, 83–89, 2014.
Ren, Y., Zhang, H., Wei, W., Wu, B., Cai, X., and Song, Y.: Effects of turbulence structure and urbanization on the heavy haze pollution process, Atmos. Chem. Phys., 19, 1041–1057, https://doi.org/10.5194/acp-19-1041-2019, 2019.
Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of organic aerosol:
bridging the gap between laboratory and field studies, Ann. Rev. Phys.
Chem., 58, 321–352, 2007.
Skamarock, W.
C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Wang, W., and Powers,
J. G.: A description of the advanced research WRF version 3, NCAR/TN-475 +
STR, 2008.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The
impact of relative humidity on
aerosol composition and evolution processes during wintertime in Beijing,
China, Atmos.
Environ., 77, 927–934, 2013.
Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and
anthropogenic heat, Energ. Buildings, 25, 99–103, 1997.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
Tao, W., Liu, J., Ban-Weiss, G. A., Hauglustaine, D. A., Zhang, L., Zhang, Q., Cheng, Y., Yu, Y., and Tao, S.: Effects of urban land expansion on the regional meteorology and air quality of eastern China, Atmos. Chem. Phys., 15, 8597–8614, https://doi.org/10.5194/acp-15-8597-2015, 2015.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics
scheme. Part II: Implementation of a new snow parameterization, Mon.
Weather Rev., 136, 5095–5115, 2008.
Wang, K., Wang, J., Wang, P., Sparrow, M., Yang, J., and Chen, H.: Influences of
urbanization on surface characteristics as derived from the
Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing
metropolitan area, J. Geophys. Res., 112, D22S06,
https://doi.org/10.1029/2006jd007997, 2007.
Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., Liu, Z., Hu, B., Ji, D., Wang, L., Zhu, X., Yan, C., Ehn, M., Gao, W., Pan, Y., Xin, J., Sun, Y., Kerminen, V.-M., Kulmala, M., and Petäjä, T.: Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing, Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, 2020.
Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y., and Li, J.: Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953–12967, https://doi.org/10.5194/acp-18-12953-2018, 2018.
Wu, D., Wu, X, Li, F., Tan, H., Chen, J, Cao, Z., Sun, X., Chen, H., and Li, H.: Temporal and spatial variation of haze during
1951–2005 in Chinese mainland, Acta Meteorolgica Sinica, 68, 680–688, 2010 (in
Chinese).
Xu, X., Chen, F., Barlage, M., Gochis, D., Miao, S., and Shen, S.: Lessons
learned from modeling irrigation from field to regional scales, J.
Adv. Model. Earth Sy., 11, 2428–2448,https://doi.org/10.1029/2018MS001595, 2019.
Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., Wang, T., Li, Q., Shi, C., Ning, G., and Li, Y.:
PM2.5 pollution modulates wintertime urban heat island intensity in the
Beijing-Tianjin-Hebei Megalopolis, China, Geophys. Res. Lett.,
47, GL084288, https://doi.org/10.1029/2019GL084288, 2020.
Yu, M., Miao, S., and Li, Q.: Synoptic analysis and urban signatures of a
heavy rainfall on 7 August 2015 in Beijing, J. Geophys. Res.-Atmos., 122, 65–78, https://doi.org/10.1002/2016JD025420,
2017.
Yu, M., Liu, Y. M., Dai, Y. F., and Yang, A.: Impact of urbanization on boundary
layer structure in Beijing, Climatic Change, 120, 123–136, 2013.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhang, C., Liu, C., Hu, Q., Cai, Z., Su, W., Xia, C., and Liu, J.:
Satellite UV-Vis spectroscopy: implications for air quality trends and their
driving forces in China during 2005–2017, Light-Sci. Appl.,
8, 1–12, 2019.
Zhang, W., Zhuang, G., Guo, J., Xu, D., Wang, W., and Baumgardner,
D., and Yang, W.: Sources of aerosol as determined from
elemental composition and size distributions in Beijing, Atmos.
Res., 95, 197–209, https://doi.org/10.1016/j.atmosres.2009.09.017, 2010.
Zhang, Z., Zhao, X., Xiong, Y., and Ma, X. H.: The Fog/Haze Medium-range
Forecast Experiments Based on Dynamic Statistic Method, J. Appl.
Meteorol. Sci., 29, 57–69, 2018 (in Chinese).
Zhao, P. S., Xu, X. F., Meng, W., Dong, F., and Zhang, X. L.:
Characteristics of haze days in the region of Beijing, Tianjin, and Hebei,
China Environmental Science, 31, 31–36, 2012 (in Chinese).
Zhao, X. J., Li, Z. M., and Xu, J.: Modification and performance tests of
visibility parameterizations for haze days, Environmental Science, 40,
1688–1696, 2019 (in Chinese).
Zhong, S., Qian, Y., Zhao, C., Leung, R., and Yang, X. Q.: A case study of
urbanization impact on summer precipitation in the Greater Beijing
Metropolitan Area: Urban heat island versus aerosol effects, J.f
Geophys. Res.-Atmos., 120, 10903–10914,
https://doi.org/10.1002/2015JD023753, 2015.
Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X.-Q., and Liu, D.: Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China, Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, 2017.
Zhong, S., Qian, Y., Sarangi, C., Zhao, C., Leung, R., Wang,
H., and Yang, B.: Urbanization effect on winter haze in the
Yangtze River Delta region of China, Geophys. Res. Lett., 45,
6710–6718, https://doi.org/10.1029/2018GL077239, 2018.
Zhu, X., Tang, G., Guo, J., Hu, B., Song, T., Wang, L., Xin, J., Gao, W., Münkel, C., Schäfer, K., Li, X., and Wang, Y.: Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei, Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, 2018.
Altmetrics
Final-revised paper
Preprint