Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5249-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-5249-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hadley cell expansion in CMIP6 models
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA 22904, USA
Sean M. Davis
NOAA Earth System Research Laboratory Chemical Sciences Division,
Boulder, CO 80305, USA
Related authors
Ori Adam, Kevin M. Grise, Paul Staten, Isla R. Simpson, Sean M. Davis, Nicholas A. Davis, Darryn W. Waugh, Thomas Birner, and Alison Ming
Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, https://doi.org/10.5194/gmd-11-4339-2018, 2018
Short summary
Short summary
Due to incoherent methodologies, estimates of tropical width variations differ significantly across studies. Here, methods for eight commonly-used metrics of the tropical width are implemented in the Tropical-width Diagnostics (TropD) code package. The method compilation and analysis provide tools and information which help reduce the methodological component of the uncertainty associated with calculations of the tropical width.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, William Randel, Sean Davis, Michael Schwartz, Nathaniel Livesey, and Anne Smith
Atmos. Chem. Phys., 24, 12925–12941, https://doi.org/10.5194/acp-24-12925-2024, https://doi.org/10.5194/acp-24-12925-2024, 2024
Short summary
Short summary
Greenhouse gas emissions that warm the troposphere also result in stratospheric cooling. The cooling rate is difficult to quantify above 35 km due to a deficit of long-term observational data with high vertical resolution in this region. We use satellite observations from several instruments, including a new temperature product from OSIRIS, to show that the upper stratosphere, from 35–60 km, cooled by 0.5 to 1 K per decade over 2005–2021 and by 0.6 K per decade over 1979–2021.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, and Robin Pilch Kedzierski
Atmos. Chem. Phys., 24, 7405–7419, https://doi.org/10.5194/acp-24-7405-2024, https://doi.org/10.5194/acp-24-7405-2024, 2024
Short summary
Short summary
Satellite data challenge the idea of an overall cooling trend in the tropical tropopause layer. From 2002 to 2022, a warming trend was observed, diverging from earlier findings. Tropopause height changes indicate dynamic processes alongside radiative effects. Upper-tropospheric warming contrasts with lower-stratosphere temperatures. The study highlights the complex interplay of factors shaping temperature trends.
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023, https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
Short summary
Ozone in the lower part of the stratosphere has not increased and has perhaps even continued to decline in recent decades. This study demonstrates that the amount of ozone in this region is highly sensitive to the amount of air upwelling into the stratosphere in the tropics and that simulations from a climate model nudged to historical meteorological fields often fail to accurately capture the variations in tropical upwelling that control short-term trends in lower-stratospheric ozone.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022, https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Short summary
We analyze seasonal dependence of stratospheric ozone trends over 2000–2018. We demonstrate that the mid-latitude upper stratospheric ozone recovery maximizes during local winters and equinoxes. In the tropics, a very strong seasonal dependence of ozone trends is observed at all altitudes. We found hemispheric asymmetry of summertime ozone trend patterns below 35 km. The seasonal dependence of ozone trends and stratospheric temperature trends shows a clear inter-relation of the trend patterns.
Nicholas A. Davis, Sean M. Davis, Robert W. Portmann, Eric Ray, Karen H. Rosenlof, and Pengfei Yu
Geosci. Model Dev., 13, 717–734, https://doi.org/10.5194/gmd-13-717-2020, https://doi.org/10.5194/gmd-13-717-2020, 2020
Short summary
Short summary
Large-scale waves drive upward motion in the tropical stratosphere, with major impacts on stratospheric chemistry and climate. However, some of the modeling methods which attempt to simulate the past evolution of the stratosphere do not seem to be able to recreate important trends. We believe this is due to disagreements between the basic climate of the model and observations, but if the method is constructed more carefully, the disagreement becomes smaller and the trends become more realistic.
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Short summary
The tropical tropopause layer is an important atmospheric region right in between the troposphere and the stratosphere. We evaluate the representation of this layer in reanalyses data sets, which create a complete picture of the state of Earth's atmosphere using atmospheric modeling and available observations. The recent reanalyses show realistic temperatures in the tropical tropopause layer. However, where the temperature is lowest, the so-called cold point, the reanalyses are too cold.
William T. Ball, Justin Alsing, Johannes Staehelin, Sean M. Davis, Lucien Froidevaux, and Thomas Peter
Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, https://doi.org/10.5194/acp-19-12731-2019, 2019
Short summary
Short summary
We analyse long-term stratospheric ozone (60° S–60° N) trends over the 1985–2018 period. Previous work has suggested that lower stratosphere ozone declined over 1998–2016. We demonstrate that a large ozone upsurge in 2017 is likely related to QBO variability, but that lower stratospheric ozone trends likely remain lower in 2018 than in 1998. Tropical stratospheric ozone (30° S–30° N) shows highly probable decreases in both the lower stratosphere and in the integrated stratospheric ozone layer.
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019, https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Short summary
Ozone depletion in the Antarctic has been shown to influence surface conditions, but the effects of ozone depletion in the Arctic on surface climate are unclear. We show that Arctic ozone does influence surface climate in both polar regions and tropical regions, though the proximate cause of these surface impacts is not yet clear.
Ori Adam, Kevin M. Grise, Paul Staten, Isla R. Simpson, Sean M. Davis, Nicholas A. Davis, Darryn W. Waugh, Thomas Birner, and Alison Ming
Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, https://doi.org/10.5194/gmd-11-4339-2018, 2018
Short summary
Short summary
Due to incoherent methodologies, estimates of tropical width variations differ significantly across studies. Here, methods for eight commonly-used metrics of the tropical width are implemented in the Tropical-width Diagnostics (TropD) code package. The method compilation and analysis provide tools and information which help reduce the methodological component of the uncertainty associated with calculations of the tropical width.
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018, https://doi.org/10.5194/essd-10-1473-2018, 2018
Chaim I. Garfinkel, Amit Gordon, Luke D. Oman, Feng Li, Sean Davis, and Steven Pawson
Atmos. Chem. Phys., 18, 4597–4615, https://doi.org/10.5194/acp-18-4597-2018, https://doi.org/10.5194/acp-18-4597-2018, 2018
Short summary
Short summary
The impact of El Niño in the lower stratosphere is nonlinear in spring. While moderate El Niño events lead to cooling in this region,
strong El Niño events appear to lead to warming, and hence the water vapor response is nonlinear too. The net effect is that strong
El Nino events, such as in 1997/1998 and 2015/2016, lead to qualitatively different water vapor impacts as compared to moderate
El Nino events.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Michael R. Giordano, Lars E. Kalnajs, Anita Avery, J. Douglas Goetz, Sean M. Davis, and Peter F. DeCarlo
Atmos. Chem. Phys., 17, 1–20, https://doi.org/10.5194/acp-17-1-2017, https://doi.org/10.5194/acp-17-1-2017, 2017
Short summary
Short summary
This paper summarizes two field measurements of particles and gases made in coastal Antarctica and represents the first real-time composition measurements of particles in this understudied area of the world. Using the combined data from both field measurements, we find that there is a constant background of particles in coastal Antarctica and that they are mostly sulfate. Seasonal transitions from winter to spring add additional particles, and that from spring to summer adds additional sulfate.
Sean M. Davis, Karen H. Rosenlof, Birgit Hassler, Dale F. Hurst, William G. Read, Holger Vömel, Henry Selkirk, Masatomo Fujiwara, and Robert Damadeo
Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, https://doi.org/10.5194/essd-8-461-2016, 2016
Short summary
Short summary
This paper describes the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, whose main feature is a combined data product created by homogenizing multiple satellite records. This motivation for SWOOSH is that in order to study multiyear to decadal variability in ozone and water vapor concentrations, it is necessary to have a continuous and smooth record without artificial jumps in the data.
Dale F. Hurst, William G. Read, Holger Vömel, Henry B. Selkirk, Karen H. Rosenlof, Sean M. Davis, Emrys G. Hall, Allen F. Jordan, and Samuel J. Oltmans
Atmos. Meas. Tech., 9, 4447–4457, https://doi.org/10.5194/amt-9-4447-2016, https://doi.org/10.5194/amt-9-4447-2016, 2016
Short summary
Short summary
This study compares stratospheric water vapor measurements by the Aura Microwave Limb Sounder (MLS) and balloon-borne frost point hygrometers (FPs) at five sites that launch two different types of FPs. The results demonstrate that FP and MLS measurements have been diverging at statistically significant rates of 0.6 to 1.5 % per year since approximately 2010. Similarities in the divergences at different sites suggest a positive drift in MLS retrievals since approximately 2010.
Nicholas A. Davis, Dian J. Seidel, Thomas Birner, Sean M. Davis, and Simone Tilmes
Atmos. Chem. Phys., 16, 10083–10095, https://doi.org/10.5194/acp-16-10083-2016, https://doi.org/10.5194/acp-16-10083-2016, 2016
Short summary
Short summary
In the Hadley cells, air rises at the Equator and sinks over the subtropics, drying the air and creating deserts on land. We investigated simple climate model experiments and found that the Hadley cells expand in response to increasing carbon dioxide. The climate of some models warms more than others, and these models also have greater Hadley cell expansion. This expansion could shift deserts toward more populated areas, with potentially major impacts on water resources and surface climate.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
F. Tummon, B. Hassler, N. R. P. Harris, J. Staehelin, W. Steinbrecht, J. Anderson, G. E. Bodeker, A. Bourassa, S. M. Davis, D. Degenstein, S. M. Frith, L. Froidevaux, E. Kyrölä, M. Laine, C. Long, A. A. Penckwitt, C. E. Sioris, K. H. Rosenlof, C. Roth, H.-J. Wang, and J. Wild
Atmos. Chem. Phys., 15, 3021–3043, https://doi.org/10.5194/acp-15-3021-2015, https://doi.org/10.5194/acp-15-3021-2015, 2015
Short summary
Short summary
Understanding ozone trends in the vertical is vital in terms of assessing the success of the Montreal Protocol. This paper compares and analyses the long-term trends in stratospheric ozone from seven new merged satellite data sets. The data sets largely agree well with each other, particularly for the negative trends seen in the early period 1984-1997. For the 1998-2011 period there is less agreement, but a clear shift from negative to mostly positive trends.
D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, and F. G. Wienhold
Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, https://doi.org/10.5194/amt-7-3177-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Valley floor inclination affecting valley winds and transport of passive tracers in idealised simulations
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
To what extent is the description of streets important in estimating local air-quality? A case study over Paris
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Extreme ozone episodes in a major Mediterranean urban area
Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Variability and trends in the PV-gradient dynamical tropopause
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Effect of the boundary layer low-level jet on fast fog spatial propagation
Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations
Using synthetic case studies to explore the spread and calibration of ensemble atmospheric dispersion forecasts
Meteorological modeling sensitivity to parameterizations and satellite-derived surface datasets during the 2017 Lake Michigan Ozone Study
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Lagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
Determination of the chemical equator from GEOS-Chem model simulation: a focus on the tropical western Pacific region
Uncertainty in parameterized convection remains a key obstacle for estimating surface fluxes of carbon dioxide
Antarctic atmospheric Richardson number from radiosonde measurements and AMPS
Divergent convective outflow in large-eddy simulations
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Evaluation and bias correction of probabilistic volcanic ash forecasts
The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
The Sun's role in decadal climate predictability in the North Atlantic
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1900, https://doi.org/10.5194/egusphere-2024-1900, 2024
Short summary
Short summary
This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere which would for example lead to higher potential for long-range transport.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024, https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Short summary
We examined the links between the El Niño–Southern Oscillation (ENSO) and tropospheric ozone (O3) using model data. Our results show that ENSO impacts on tropospheric O3 are mainly found over oceans, while the signature of ENSO over continents is largely unclear. These impacts in the midlatitude regions over the Southern Hemisphere may be more significant than previously known. The responses of O3 to ENSO are weak in the middle troposphere and stronger in the upper and lower troposphere.
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024, https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
Short summary
Models are used to make forecasts of volcanic ash dispersion during eruptions. These models have unknown inputs relating to the eruption itself, physical processes, and meteorological conditions. We use statistical models to predict the output of the expensive physical model and show we can account for the effects of the different inputs. We compare the model to real-world observations and show that accounting for all sources of uncertainty may lead to different conclusions about the inputs.
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1043, https://doi.org/10.5194/egusphere-2024-1043, 2024
Short summary
Short summary
This study highlights the interest of using a street network model to estimate pollutant concentrations of NOx, NO2, and PM2.5 in heterogeneous urban areas, particularly those adjacent to highways, compared with the Subgrid approach embedded in the 3D eulerian model CHIMERE. However, the study also reveals comparable performance between the two approaches for the aforementioned pollutants in areas near the city centre, where urban characteristics are more uniform.
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115, https://doi.org/10.5194/acp-24-5099-2024, https://doi.org/10.5194/acp-24-5099-2024, 2024
Short summary
Short summary
Based on long-term observational, reanalysis, and numerical model simulation datasets from 1901 through 2014, this study shows that precipitation over the East Asian monsoon boundary zone featured prominent interdecadal changes, with dry summers during the periods preceding 1927, 1939–1945, 1968–1982, and 1998–2010 and wet summers during 1928–1938, 1946–1967, and 2011 onwards. The Indian Ocean basin mode is an important oceanic modulator responsible for its interdecadal variations.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472, https://doi.org/10.5194/acp-24-4451-2024, https://doi.org/10.5194/acp-24-4451-2024, 2024
Short summary
Short summary
Extreme warming events with surface temperature going above 0°C can occur in the high-Arctic winter. Although reanalysis data show that these events were short-lived and occurred rarely during 1980–2021, they have become more frequent, stronger, and longer lasting latterly. A dipole pattern, comprising high- and low-pressure systems, is found to be the key in driving them. These findings have implications for the recent changes in sea ice, hydrological cycle, and ecosystem over the Arctic.
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024, https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Short summary
To show that the three-dimensional dispersion of plumes simulated by the Atmospheric Radionuclide Transport Model within the planetary boundary layer agrees with real plumes, we identify the most important input parameters and analyse the turbulence properties of five different turbulence models in very unstable stratification conditions using their deviation from the well-mixed state. Simulations show that one model agrees slightly better in unstable stratification conditions.
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
EGUsphere, https://doi.org/10.5194/egusphere-2024-471, https://doi.org/10.5194/egusphere-2024-471, 2024
Short summary
Short summary
The tropopause separates the troposphere, the lowest atmospheric layer where weather occurs, from the stratosphere. We computed the PV-gradient (PVG) tropopause, which is based on transport barriers between both layers. In 1980–2017, the PVG tropopause shifted poleward at lower altitudes and equatorward above. These shifts may signify height-dependent changes in atmospheric transport, influencing the distribution of pollutants and, e.g., greenhouse gases responsible for global warming.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023, https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Short summary
Accurate fog forecasting is difficult in a complex environment. Spatial variations in soil moisture could impact fog. Here, we carried out fog simulations with spatially different soil moisture in complex topography. The soil moisture was calculated using satellite observations. The results show that the spatial variations in soil moisture do not have a significant impact on where fog occurs but do impact how long fog lasts. This finding could improve fog forecasts in the future.
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023, https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Short summary
In this study, we quantitatively study the effect of the boundary layer low-level jet (BLLJ) on fast fog spatial propagation; i.e., the fog area expands very fast along a certain direction. The wind speed (10 m s−1) and direction (southeast) of the BLLJ core are consistent with fog propagation (9.6 m s−1). The BLLJ-induced temperature and moisture advections are possible reasons for fast fog propagation. The propagation speed would decrease by 6.4 m s−1 if these advections were turned off.
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023, https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary
Short summary
This study focuses on three medicanes, tropical-like cyclones that form in the Mediterranean Sea, studied by ensemble forecasting. This involved multiple simulations of the same event by varying initial conditions and model physics parameters, especially related to convection, which showed comparable results. It is found that medicane development is influenced by the model's ability to predict precursor events and the interaction between upper and lower atmosphere dynamics and thermodynamics.
Andrew R. Jones, Susan J. Leadbetter, and Matthew C. Hort
Atmos. Chem. Phys., 23, 12477–12503, https://doi.org/10.5194/acp-23-12477-2023, https://doi.org/10.5194/acp-23-12477-2023, 2023
Short summary
Short summary
The paper explores spread and calibration properties of ensemble atmospheric dispersion forecasts for hypothetical release events. Real-time forecasts from an ensemble weather prediction system were used to generate an ensemble of dispersion predictions and assessed against simulations produced using analysis meteorology. Results demonstrate good performance overall but highlight more skilful predictions for material released in the upper air compared with releases near the surface.
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
Atmos. Chem. Phys., 23, 7589–7609, https://doi.org/10.5194/acp-23-7589-2023, https://doi.org/10.5194/acp-23-7589-2023, 2023
Short summary
Short summary
Atmospheric convection plays a key role in tracer transport in the troposphere. Global meteorological forecasts and reanalyses typically have a coarse spatiotemporal resolution that does not adequately resolve the dynamics, transport, and mixing of air associated with storm systems or deep convection. We discuss the application of the extreme convection parameterization in a Lagrangian transport model to improve simulations of tracer transport from the boundary layer into the free troposphere.
Angshuman Modak and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 7535–7549, https://doi.org/10.5194/acp-23-7535-2023, https://doi.org/10.5194/acp-23-7535-2023, 2023
Short summary
Short summary
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental temperature record including the corrections for the pattern effect. The improved estimate factors in the uncertainty caused by the underlying sea-surface temperature datasets used in the estimates of pattern effect. This together with the inter-model spread lifts the corresponding IPCC AR6 estimate to 3.2 K [1.8 to 11.0], which is lower and better constrained than in past studies.
Xiaoyu Sun, Mathias Palm, Katrin Müller, Jonas Hachmeister, and Justus Notholt
Atmos. Chem. Phys., 23, 7075–7090, https://doi.org/10.5194/acp-23-7075-2023, https://doi.org/10.5194/acp-23-7075-2023, 2023
Short summary
Short summary
The tropical western Pacific (TWP) is an active interhemispheric transport region contributing significantly to the global climate. A method to determine the chemical equator was developed by model simulations of a virtual passive tracer to analyze transport in the tropics, with a focus on the TWP region. We compare the chemical equator with tropical rain belts and wind fields and obtain a vertical pattern of interhemispheric transport processes which shows tilt structure in certain seasons.
Andrew E. Schuh and Andrew R. Jacobson
Atmos. Chem. Phys., 23, 6285–6297, https://doi.org/10.5194/acp-23-6285-2023, https://doi.org/10.5194/acp-23-6285-2023, 2023
Short summary
Short summary
A comparison of atmospheric carbon dioxide concentrations resulting from two different atmospheric transport models showed large differences in predicted concentrations with significant space–time correlations. The vertical mixing of long-lived trace gases by convection was determined to be the main driver of these differences. The resulting uncertainty was deemed significant to the application of using atmospheric gradients of carbon dioxide to estimate surface fluxes of carbon dioxide.
Qike Yang, Xiaoqing Wu, Xiaodan Hu, Zhiyuan Wang, Chun Qing, Tao Luo, Pengfei Wu, Xianmei Qian, and Yiming Guo
Atmos. Chem. Phys., 23, 6339–6355, https://doi.org/10.5194/acp-23-6339-2023, https://doi.org/10.5194/acp-23-6339-2023, 2023
Short summary
Short summary
The AMPS-forecasted Richardson number was first comprehensively validated over the Antarctic continent. Some potential underlying reasons for the discrepancies between the forecasts and observations were analyzed. The underlying physical processes of triggering atmospheric turbulence in Antarctica were investigated. Our results suggest that the estimated Richardson number by the AMPS is reasonable and the turbulence conditions in Antarctica are well revealed.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023, https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Cited articles
Adam, O., Grise, K. M., Staten, P., Simpson, I. R., Davis, S. M., Davis, N. A., Waugh, D. W., Birner, T., and Ming, A.: The TropD software package (v1): standardized methods for calculating tropical-width diagnostics, Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, 2018a.
Adam, O., Grise, K. M., Staten, P., Simpson, I., Davis, S. M., Davis, N. A., Waugh, D. W., and Birner, T.: TropD: Tropical width diagnostics software package (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.1157043, 2018b.
Allen, R. J. and Ajoku, O.: Future aerosol reductions and widening of the
northern tropical belt, J. Geophys. Res.-Atmos., 121, 6765–6786,
https://doi.org/10.1002/2016JD024803, 2016.
Allen, R. J. and Kovilakam, M.: The role of natural climate variability in
recent tropical expansion, J. Climate, 30, 6329–6350,
https://doi.org/10.1175/JCLI-D-16-0735.1, 2017.
Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: Recent
Northern Hemisphere tropical expansion primarily driven by black carbon and
tropospheric ozone, Nature, 485, 350–354,
https://doi.org/10.1038/nature11097, 2012.
Allen, R. J., Norris, J. R., and Kovilakam, M.: Influence of anthropogenic
aerosols and the Pacific Decadal Oscillation on tropical belt width, Nat.
Geosci., 7, 270–274, https://doi.org/10.1038/ngeo2091, 2014.
Amaya, D. J., Siler, N., Xie, S., and Miller, A. J.: The interplay of
internal and forced modes of Hadley Cell expansion: lessons from the global
warming hiatus, Clim. Dynam., 51, 305–319,
https://doi.org/10.1007/s00382-017-3921-5, 2018.
Birner, T., Davis, S. M., and Seidel, D. J.: The changing width of Earth's
tropical belt, Phys. Today, 67, 38–44, https://doi.org/10.1063/PT.3.2620,
2014.
Choi, J., Son, S.-W., Lu, J., and Min, S.-K.: Further observational evidence
of Hadley cell widening in the Southern Hemisphere, Geophys. Res. Lett., 41,
2590–2597, https://doi.org/10.1002/2014GL059426, 2014.
Choi, J., Son, S.-W., and Park, R. J.: Aerosol versus greenhouse gas impacts
on Southern Hemisphere general circulation changes, Clim. Dynam., 52,
4127–4142, https://doi.org/10.1007/s00382-018-4370-5, 2019.
Cook, K. H. and Vizy, E. K.: Expanding width of the tropics: Impacts on the
ocean, US CLIVAR Variations, 16, 27–32,
https://doi.org/10.5065/D69Z93QF, 2018.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home, 2017.
Davis, N. and Birner, T.: On the discrepancies in tropical belt expansion
between reanalyses and climate models and among tropical belt width metrics,
J. Climate, 30, 1211–1231, https://doi.org/10.1175/JCLI-D-16-0371.1, 2017.
Davis, N. A. and Davis, S. M.: Reconciling Hadley cell expansion trend
estimates in reanalyses, Geophys. Res. Lett., 45, 11439–11446,
https://doi.org/10.1029/2018GL079593, 2018.
Davis, N. A., Seidel, D. J., Birner, T., Davis, S. M., and Tilmes, S.: Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations, Atmos. Chem. Phys., 16, 10083–10095, https://doi.org/10.5194/acp-16-10083-2016, 2016.
Davis, S. M. and Rosenlof, K. H.: A multidiagnostic intercomparison of
tropical-width time series using reanalyses and satellite observations, J.
Climate, 25, 1061–1078, https://doi.org/10.1175/JCLI-D-11-00127.1, 2012.
Davis, S. M., Hassler, B., and Rosenlof, K. H.: Revisiting ozone
measurements as an indicator of tropical width, Progress in Earth and
Planetary Science, 5, 56, https://doi.org/10.1186/s40645-018-0214-5, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy,
S.B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B.M., Morcrette,
J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,
J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Dima, I. M. and Wallace, J. M.: On the seasonality of the Hadley Cell, J.
Atmos. Sci., 60, 1522–1527,
https://doi.org/10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2, 2003.
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-Interim Project, ECMWF Public Datasets Web Interface, available at: http://apps.ecmwf.int/datasets/data/interim-full-moda (last access: 10 May 2019), 2009.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith, C. J.: Latest
climate models confirm need for urgent mitigation, Nat. Clim. Change, 10,
7–10, https://doi.org/10.1038/s41558-019-0660-0, 2020.
Frierson, D. M. W., Lu, J., and Chen, G.: Width of the Hadley cell in simple
and comprehensive general circulation models, Geophys. Res. Lett., 34,
L18804, https://doi.org/10.1029/2007GL031115, 2007.
Fu, Q., Johanson, C. M., Wallace, J. M., and Reichler, T.: Enhanced
mid-latitude tropospheric warming in satellite measurements, Science, 312,
1179–1179, https://doi.org/10.1126/science.1125566, 2006.
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.
Garfinkel, C. I., Waugh, D. W., and Polvani, L. M.: Recent Hadley cell
expansion: The role of internal atmospheric variability in reconciling
modeled and observed trends, Geophys. Res. Lett., 42, 10824–10831,
https://doi.org/10.1002/2015GL066942, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, 2016.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly mean, Time-Averaged,Single-Level, Assimilation,Single-Level Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/AP1B0BA5PD2K, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 instM_3d_asm_Np: 3d, Monthly mean,Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/2E096JV59PK7, 2015b.
Grise, K. M. and Polvani, L. M.: The response of mid-latitude jets to
increased CO2: Distinguishing the roles of sea surface temperature and
direct radiative forcing, Geophys. Res. Lett., 41, 6863–6871,
https://doi.org/10.1002/2014GL061638, 2014.
Grise, K. M. and Polvani, L. M.: Is climate sensitivity related to
dynamical sensitivity?, J. Geophys. Res.-Atmos., 121, 5159–5176,
https://doi.org/10.1002/2015JD024687, 2016.
Grise, K. M., Davis, S. M., Staten, P. W., and Adam, O.: Regional and
seasonal characteristics of the recent expansion of the tropics, J. Climate,
31, 6839–6856, https://doi.org/10.1175/JCLI-D-18-0060.1, 2018.
Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R.
J., Rosenlof, K. H., Ummenhofer, C. C., Karnauskas, K. B., Maycock, A. C.,
Quan, X.-W., Birner, T., and Staten, P. W.: Recent tropical expansion:
Natural variability or forced response?, J. Climate, 32, 1551–1571,
https://doi.org/10.1175/JCLI-D-18-0444.1, 2019.
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys.
Res. Lett., 39, L01702,
https://doi.org/10.1029/2011GL050087, 2012.
Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M.,
Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsletter, 159,
17–24, https://doi.org/10.21957/vf291hehd7, 2019.
Hoskins, B. J., Yang, G.-Y., and Fonseca, R. M.: The detailed dynamics of
the June–August Hadley Cell, Q. J. Roy. Meteor. Soc., 146, 557–575,
https://doi.org/10.1002/qj.3702, 2020.
Hu, Y. and Fu, Q.: Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys., 7, 5229–5236, https://doi.org/10.5194/acp-7-5229-2007, 2007.
Hu, Y., Tao, L., and Liu, J.: Poleward expansion of the Hadley circulation
in CMIP5 simulations, Adv. Atmos. Sci., 30, 790–795,
https://doi.org/10.1007/s00376-012-2187-4, 2013.
Hudson, R. D., Andrade, M. F., Follette, M. B., and Frolov, A. D.: The total ozone field separated into meteorological regimes – Part II: Northern Hemisphere mid-latitude total ozone trends, Atmos. Chem. Phys., 6, 5183–5191, https://doi.org/10.5194/acp-6-5183-2006, 2006.
Japan Meteorological Agency/Japan: JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D60G3H5B, 2013.
Johanson, C. M. and Fu, Q.: Hadley cell widening: Model simulations versus
observations, J. Climate, 22, 2713–2725,
https://doi.org/10.1175/2008JCLI2620.1, 2009.
Kang, S. M., Polvani, L. M., Fyfe, J. C., and Sigmond, M.: Impact of polar
ozone depletion on subtropical precipitation, Science, 332, 951–954,
https://doi.org/10.1126/science.1202131, 2011.
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy:
Generation CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199,
https://doi.org/10.1002/grl.50256, 2013.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General specifications and basic
characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5-48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kossin, J., Emanuel, K., and Vecchi, G.: The poleward migration of the
location of tropical cyclone maximum intensity,
Nature, 509, 349–352, https://doi.org/10.1038/nature13278, 2014.
Kovilakam, M. and Mahajan, S.: Black carbon aerosol-induced Northern
Hemisphere tropical expansion, Geophys. Res. Lett., 42, 4964–4972,
https://doi.org/10.1002/2015GL064559, 2015.
Levine, X. J. and Schneider, T.: Response of the Hadley Circulation to
climate change in an aquaplanet GCM coupled to a simple representation of
ocean heat transport, J. Atmos. Sci., 68, 769–783,
https://doi.org/10.1175/2010JAS3553.1, 2011.
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under
global warming, Geophys. Res. Lett., 34, L06805,
https://doi.org/10.1029/2006GL028443, 2007.
Lucas, C., Nguyen, H., and Timbal, B.: An observational analysis of Southern
Hemisphere tropical expansion, J. Geophys. Res., 117, D17112,
https://doi.org/10.1029/2011JD017033, 2012.
Lucas, C., Timbal, B., and Nguyen, H.: The expanding tropics: a critical
assessment of the observational and modeling studies, WIREs Clim. Change, 5,
89–112, https://doi.org/10.1002/wcc.251, 2014.
Maher, P., Kelleher, M. E., Sansom, P. G., and Methven, J.: Is the
subtropical jet shifting poleward?, Clim. Dynam., 54, 1741–1759,
https://doi.org/10.1007/s00382-019-05084-6, 2020.
Mantsis, D. F., Sherwood, S., Allen, R., and Shi, L.: Natural variations of
tropical width and recent trends, Geophys. Res. Lett., 44, 3825–3832,
https://doi.org/10.1002/2016GL072097, 2017.
McLandress, C., Shepherd, T. G., Scinocca, J. F., Plummer, D. A., Sigmond,
M., Jonsson, A. I., and Reader, M. C.: Separating the dynamical effects of
climate change and ozone depletion. Part II: Southern Hemisphere
troposphere, J. Climate, 24, 1850–1868,
https://doi.org/10.1175/2010JCLI3958.1, 2011.
Min, S.-K. and Son, S.-W.: Multimodel attribution of the Southern
Hemisphere Hadley cell widening: Major role of ozone
Depletion, J. Geophys. Res.-Atmos., 118, 3007–3015,
https://doi.org/10.1002/jgrd.50232, 2013.
Nguyen, H., Lucas, C., Evans, A., Timbal, B., and Hanson, L.: Expansion of
the Southern Hemisphere Hadley cell in
response to greenhouse gas forcing, J. Climate, 28, 8067–8077,
https://doi.org/10.1175/JCLI-D-15-0139.1, 2015.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric
circulation changes in the Southern Hemisphere, J. Climate, 24, 795–812,
https://doi.org/10.1175/2010JCLI3772.1, 2011.
Quan, X.-W., Hoerling, M. P., Perlwitz, J., and Diaz, H. F.: On the time of
emergence of tropical width change, J. Climate, 31, 7225–7236,
https://doi.org/10.1175/JCLI-D-18-0068.1, 2018.
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M.,
Black, B. A., and Bograd, S. J.: Poleward displacement of coastal
upwelling-favorable winds in the ocean's eastern boundary currents through
the 21st century, Geophys. Res. Lett., 42, 6424–6431,
https://doi.org/10.1002/2015GL064694, 2015.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell,
M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M.,
Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W.,
Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen,
Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.:
The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91,
1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010a.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast System Reanalysis (CFSR) Monthly Products, January 1979 to December 2010, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6DN438J, 2010b.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D69021ZF, 2012.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.
P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Scheff, J. and Frierson, D. M. W.: Robust future precipitation declines in
CMIP5 largely reflect the poleward expansion of model subtropical dry zones, Geophys. Res. Lett., 39, L18704,
https://doi.org/10.1029/2012GL052910, 2012.
Schmidt, D. F. and Grise, K. M.: The response of local precipitation and
sea level pressure to Hadley Cell expansion, Geophys. Res. Lett., 44,
10573–10582, https://doi.org/10.1002/2017GL075380, 2017.
Schwendike, J., Govekar, P., Reeder, M. J., Wardle, R., Berry, G. J., and
Jakob, C.: Local partitioning of the overturning circulation in the tropics
and the connection to the Hadley and Walker circulations, J. Geophys. Res.-Atmos., 119, 1322–1339, https://doi.org/10.1002/2013JD020742, 2014.
Seidel, D. J. and Randel, W. J.: Recent widening of the tropical belt:
Evidence from tropopause observations, J. Geophys. Res.-Atmos., 112, D20113,
https://doi.org/10.1029/2007JD008861, 2007.
Seidel, D. J., Fu, Q., Randel, W. J., and Reichler, T. J.: Widening of the
tropical belt in a changing climate, Nat. Geosci., 1, 21–24,
https://doi.org/10.1038/ngeo.2007.38, 2008.
Sharmila, S. and Walsh, K. J. E.: Recent poleward shift of tropical cyclone
formation linked to Hadley cell expansion, Nat. Clim. Change, 8, 730–736,
https://doi.org/10.1038/ s41558-018-0227-5, 2018.
Shaw, T. and Voigt, A.: Tug of war on summertime circulation between
radiative forcing and sea surface warming, Nat. Geosci., 8, 560–566,
https://doi.org/10.1038/ngeo2449, 2015.
Solomon, A. and Polvani, L. M.: Highly significant responses to
anthropogenic forcings of the midlatitude jet in the Southern Hemisphere, J.
Climate, 29, 3463–3460, https://doi.org/10.1175/JCLI-D-16-0034.1, 2016.
Solomon, A., Polvani, L. M., Waugh, D. W., and Davis, S. M.: Contrasting
upper and lower atmospheric metrics of tropical expansion in the Southern
Hemisphere, Geophys. Res. Lett., 43, 10496–10503,
https://doi.org/10.1002/2016GL070917, 2016
Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P.,
Seo, K.-H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin,
J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N.,
Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny,
H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini,
E., Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G.,
Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale,
D., Teyssèdre, H., Tian, W., and Yamashita, Y.: Impact of stratospheric
ozone on Southern Hemisphere circulation change: A multimodel assessment, J.
Geophys. Res.-Atmos., 115, D00M07, https://doi.org/10.1029/2010JD014271,
2010.
Staten, P. W., Lu, J., Grise, K. M., Davis, S. M., and Birner, T.:
Re-examining tropical expansion, Nat. Clim. Change, 8, 768–775,
https://doi.org/10.1038/s41558-018-0246-2, 2018.
Staten, P. W., Grise, K. M., Davis, S. M., Karnauskas, K., and Davis, N.:
Regional widening of tropical overturning: Forced change, natural
variability, and recent trends, J. Geophys. Res.-Atmos., 124, 6104–6119,
https://doi.org/10.1029/2018JD030100, 2019.
Studholme, J. and Gulev, S.: Concurrent changes to Hadley circulation and
the meridional distribution of tropical cyclones, J. Climate, 31,
4367–4389, https://doi.org/10.1175/JCLI-D-17-0852.1, 2018.
Tandon, N., Gerber, E., Sobel, A., and Polvani, L.: Understanding Hadley
Cell expansion versus contraction: Insights from simplified models and
implications for recent observations, J. Climate, 26, 4304–4321,
https://doi.org/10.1175/JCLI-D-12-00598.1, 2013.
Tao, L., Hu, Y., and Liu, J.: Anthropogenic forcing on the Hadley
circulation in CMIP5 simulations, Clim. Dynam., 46, 3337–3350,
https://doi.org/10.1007/s00382-015-2772-1, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thomas, J. L., Waugh, D. W., and Gnanadesikan, A.: Southern Hemisphere
extratropical circulation: Recent trends and natural variability, Geophys.
Res. Lett., 42, 5508–5515, https://doi.org/10.1002/2015GL064521, 2015.
Watt-Meyer, O., Frierson, D. M. W., and Fu, Q.: Hemispheric asymmetry of
tropical expansion under CO2 forcing, Geophys. Res. Lett., 46, 9231–9240,
https://doi.org/10.1029/2019GL083695, 2019.
Waugh, D. W., Garfinkel, C. I., and Polvani, L. M.: Drivers of the recent
tropical expansion in the Southern Hemisphere:
Changing SSTs or ozone depletion?, J. Climate, 28, 6581–6586,
https://doi.org/10.1175/JCLI-D-15-0138.1, 2015.
Waugh, D. W., Grise, K. M., Seviour, W. J. M., Davis, S. M., Davis, N.,
Adam, O., Son, S.-W., Simpson, I. R., Staten, P. W., Maycock, A. C.,
Ummenhofer, C. C., Birner, T., and Ming, A.: Revisiting the relationship
among metrics of tropical expansion, J. Climate, 31, 7565–7581,
https://doi.org/10.1175/JCLI-D-18-0108.1, 2018.
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017.
World Climate Research Programme (WCRP): Coupled Model Intercomparison Project, Phase 5, Earth System Grid Federation, Lawrence Livermore National Laboratory, available at: https://esgf-node.llnl.gov/search/cmip5/ (last access: 7 March 2018), 2011.
World Climate Research Programme (WCRP): Coupled Model Intercomparison Project, Phase 6, Earth System Grid Federation, Lawrence Livermore National Laboratory, available at: https://esgf-node.llnl.gov/search/cmip6/, 2019.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019GL085782, 2020.
Zhou, W., Xie, S.-P., and Yang, D.: Enhanced equatorial warming causes
deep-tropical contraction and subtropical monsoon shift, Nat. Clim. Change,
9, 834–839, https://doi.org/10.1038/s41558-019-0603-9, 2019.
Short summary
As Earth's climate warms, the tropical overturning circulation (Hadley circulation) is projected to expand, potentially pushing subtropical dry zones further poleward. This study examines projections of the Hadley circulation from the latest generation of computer models and finds several notable differences from older models. For example, the Northern Hemisphere circulation has expanded northward at a greater rate in recent decades than would be expected from increasing greenhouse gases alone.
As Earth's climate warms, the tropical overturning circulation (Hadley circulation) is projected...
Altmetrics
Final-revised paper
Preprint