Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12983-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12983-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinetics of dimethyl sulfide (DMS) reactions with isoprene-derived Criegee intermediates studied with direct UV absorption
Mei-Tsan Kuo
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei
10617, Taiwan
Isabelle Weber
Univ. Lille, CNRS, UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l'Atmosphère, 59000 Lille, France
Present address: Department of Applied Chemistry and Institute of
Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
Christa Fittschen
Univ. Lille, CNRS, UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l'Atmosphère, 59000 Lille, France
Luc Vereecken
Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Institute for Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei
10617, Taiwan
Department of Chemistry, National Taiwan University, Taipei 10617,
Taiwan
Related authors
No articles found.
Sungah Kang, Jürgen Wildt, Iida Pullinen, Luc Vereecken, Cheng Wu, Andreas Wahner, Sören R. Zorn, and Thomas F. Mentel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2772, https://doi.org/10.5194/egusphere-2025-2772, 2025
Short summary
Short summary
Highly oxygenated organic molecules by atmospheric oxidation of plant emitted monoterpenes are important components in secondary organic aerosol formation. Autoxidation of organic peroxy radicals is one important pathway of their formation. We show that isomerization of highly oxygenated alkoxy radicals leads to highly oxygenated peroxy radicals that continue the autoxidation chain. Alkoxy-peroxy steps may dominate the formation of highly oxygenated molecules at high nitrogen oxide levels.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Ernst-Peter Röth and Luc Vereecken
Atmos. Chem. Phys., 24, 2625–2638, https://doi.org/10.5194/acp-24-2625-2024, https://doi.org/10.5194/acp-24-2625-2024, 2024
Short summary
Short summary
The paper presents the radical and molecular product quantum yields in the photolysis reaction of CHDO at wavelengths above 300 nm. Two different approaches based on literature data are used, with results falling within both approaches' uncertainty ranges. Simple functional forms are presented for use in photochemical models of the atmosphere.
Hao Luo, Luc Vereecken, Hongru Shen, Sungah Kang, Iida Pullinen, Mattias Hallquist, Hendrik Fuchs, Andreas Wahner, Astrid Kiendler-Scharr, Thomas F. Mentel, and Defeng Zhao
Atmos. Chem. Phys., 23, 7297–7319, https://doi.org/10.5194/acp-23-7297-2023, https://doi.org/10.5194/acp-23-7297-2023, 2023
Short summary
Short summary
Oxidation of limonene, an element emitted by trees and chemical products, by OH, a daytime oxidant, forms many highly oxygenated organic molecules (HOMs), including C10-20 compounds. HOMs play an important role in new particle formation and growth. HOM formation can be explained by the chemistry of peroxy radicals. We found that a minor branching ratio initial pathway plays an unexpected, significant role. Considering this pathway enables accurate simulations of HOMs and other concentrations.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Yindong Guo, Hongru Shen, Iida Pullinen, Hao Luo, Sungah Kang, Luc Vereecken, Hendrik Fuchs, Mattias Hallquist, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, Defeng Zhao, and Thomas F. Mentel
Atmos. Chem. Phys., 22, 11323–11346, https://doi.org/10.5194/acp-22-11323-2022, https://doi.org/10.5194/acp-22-11323-2022, 2022
Short summary
Short summary
The oxidation of limonene, a common volatile emitted by trees and chemical products, by NO3, a nighttime oxidant, forms many highly oxygenated organic molecules (HOM), including C10-30 compounds. Most of the HOM are second-generation organic nitrates, in which carbonyl-substituted C10 nitrates accounted for a major fraction. Their formation can be explained by chemistry of peroxy radicals. HOM, especially low-volatile ones, play an important role in nighttime new particle formation and growth.
Mike J. Newland, Camille Mouchel-Vallon, Richard Valorso, Bernard Aumont, Luc Vereecken, Michael E. Jenkin, and Andrew R. Rickard
Atmos. Chem. Phys., 22, 6167–6195, https://doi.org/10.5194/acp-22-6167-2022, https://doi.org/10.5194/acp-22-6167-2022, 2022
Short summary
Short summary
Alkene ozonolysis produces Criegee intermediates, which can act as oxidants or decompose to give a range of closed-shell and radical products, including OH. Therefore it is essential to accurately represent the chemistry of Criegee intermediates in atmospheric models in order to understand their impacts on atmospheric composition. Here we provide a mechanism construction protocol by which the central features of alkene ozonolysis chemistry can be included in an automatic mechanism generator.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Defeng Zhao, Iida Pullinen, Hendrik Fuchs, Stephanie Schrade, Rongrong Wu, Ismail-Hakki Acir, Ralf Tillmann, Franz Rohrer, Jürgen Wildt, Yindong Guo, Astrid Kiendler-Scharr, Andreas Wahner, Sungah Kang, Luc Vereecken, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 9681–9704, https://doi.org/10.5194/acp-21-9681-2021, https://doi.org/10.5194/acp-21-9681-2021, 2021
Short summary
Short summary
The reaction of isoprene, a biogenic volatile organic compound with the globally largest emission rates, with NO3, an nighttime oxidant influenced heavily by anthropogenic emissions, forms a large number of highly oxygenated organic molecules (HOM). These HOM are formed via one or multiple oxidation steps, followed by autoxidation. Their total yield is much higher than that in the daytime oxidation of isoprene. They may play an important role in nighttime organic aerosol formation and growth.
Matias Berasategui, Damien Amedro, Luc Vereecken, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 13541–13555, https://doi.org/10.5194/acp-20-13541-2020, https://doi.org/10.5194/acp-20-13541-2020, 2020
Short summary
Short summary
Peracetic acid is one of the most abundant organic peroxides in the atmosphere. We combine experiments and theory to show that peracetic acid reacts orders of magnitude more slowly with OH than presently accepted, which results in a significant extension of its atmospheric lifetime.
Cited articles
Andreae, M. O., and Crutzen, P. J.: Atmospheric aerosols: biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Atkinson, R. and Aschmann, S. M.: Hydroxyl radical production from the
gas-phase reactions of ozone with a series of alkenes under atmospheric
conditions, Environ. Sci. Technol., 27, 1357–1363, https://doi.org/10.1021/es00044a010, 1993.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141–4496, https://doi.org/10.5194/acp-8-4141-2008, 2008.
Bain, M., Hansen, C. S., and Ashfold, M. N. R.: Communication: Multi-mass
velocity map imaging study of the ultraviolet photodissociation of dimethyl
sulfide using single photon ionization and a PImMS2 sensor, J. Chem. Phys.,
149, 081103, https://doi.org/10.1063/1.5048838, 2018.
Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J.,
Klippenstein, S. J., and Lester, M. I.: Four-Carbon Criegee Intermediate
from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared
Spectrum, and OH Production, J. Am. Chem. Soc., 140, 10866–10880,
https://doi.org/10.1021/jacs.8b06010, 2018.
Beames, J. M., Liu, F., Lu, L., and Lester, M. I.: UV spectroscopic
characterization of an alkyl substituted Criegee intermediate CH3CHOO,
J. Chem. Phys., 138, 244307, https://doi.org/10.1063/1.4810865,
2013.
Bell, R. D. and Wilson, A. K.: SO3 revisited: Impact of tight d augmented
correlation consistent basis sets on atomization energy and structure,
Chem. Phys. Lett., 394, 105–109, https://doi.org/10.1016/j.cplett.2004.06.127, 2004.
Bonn, B., Bourtsoukidis, E., Sun, T. S., Bingemer, H., Rondo, L., Javed, U., Li, J., Axinte, R., Li, X., Brauers, T., Sonderfeld, H., Koppmann, R., Sogachev, A., Jacobi, S., and Spracklen, D. V.: The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany, Atmos. Chem. Phys., 14, 10823–10843, https://doi.org/10.5194/acp-14-10823-2014, 2014.
Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer, C., Sipilä, M., Petäjä, T., Mauldin, L., Berresheim, H., and Kulmala, M.: Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations, Atmos. Chem. Phys., 13, 3865–3879, https://doi.org/10.5194/acp-13-3865-2013, 2013.
Caravan, R. L., Vansco, M. F., Au, K., Khan, M. A. H., Li, Y.-L., Winiberg,
F. A. F., Zuraski, K., Lin, Y.-H., Chao, W., Trongsiriwat, N., Walsh, P. J.,
Osborn, D. L., Percival, C. J., Lin, J. J.-M., Shallcross, D. E., Sheps, L.,
Klippenstein, S. J., Taatjes, C. A., and Lester, M. I.: Direct kinetic
measurements and theoretical predictions of an isoprene-derived Criegee
intermediate, P. Natl. Acad. Sci. USA, 117, 9733–9740,
https://doi.org/10.1073/pnas.1916711117, 2020.
Chang, Y.-P., Chang, C.-H., Takahashi, K., and Lin, J. J.-M.: Absolute UV
absorption cross sections of dimethyl substituted Criegee intermediate
(CH3)2COO, Chem. Phys. Lett., 653, 155–160, https://doi.org/10.1016/j.cplett.2016.04.082, 2016.
Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic
measurement of the reaction of the simplest Criegee intermediate with water
vapor, Science, 347, 751–754, https://doi.org/10.1126/science.1261549, 2015.
Chao, W., Lin, Y.-H., Yin, C., Lin, W.-H., Takahashi, K., and Lin, J. J.-M.:
Temperature and isotope effects in the reaction of CH3CHOO with
methanol, Phys. Chem. Chem. Phys., 21, 13633–13640, https://doi.org/10.1039/C9CP02534K, 2019.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 328,
655–661, https://doi.org/10.1038/326655a0, 1987.
Chhantyal-Pun, R., Davey, A., Shallcross, D. E., Percival, C. J., and
Orr-Ewing, A. J.: A kinetic study of the CH2OO Criegee intermediate
self-reaction, reaction with SO2 and unimolecular reaction using cavity
ring-down spectroscopy, Phys. Chem. Chem. Phys., 17, 3617–3626,
https://doi.org/10.1039/c4cp04198d, 2015.
Chhantyal-Pun, R., Shannon, R. J., Tew, D. P., Caravan, R. L., Duchi, M.,
Wong, C., Ingham, A., Feldman, C., McGillen, M. R., Khan, M. A. H., Antonov,
I. O., Rotavera, B., Ramasesha, K., Osborn, D. L., Taatjes, C. A., Percival,
C. J., Shallcross, D. E., and Orr-Ewing, A. J.: Experimental and
computational studies of Criegee intermediate reactions with NH3 and
CH3NH2, Phys. Chem. Chem. Phys., 21, 14042–14052, https://doi.org/10.1039/C8CP06810K, 2019.
Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-472, in review, 2020.
Decker, Z. C. J., Au, K., Vereecken, L., and Sheps, L.: Direct experimental
probing and theoretical analysis of the reaction between the simplest
Criegee intermediate CH2OO and isoprene, Phys. Chem. Chem. Phys., 19,
8541–8551, https://doi.org/10.1039/C6CP08602K, 2017.
Dunning, T. H.: Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys.,
90, 1007–1023, 10.1063/1.456153, 1989.
Dunning, T. H., Peterson, K. A., and Wilson, A. K.: Gaussian basis sets for
use in correlated molecular calculations. X. The atoms aluminum through
argon revisited, J. Chem. Phys., 114, 9244–9253, 10.1063/1.1367373, 2001.
Eskola, A. J., Wojcik-Pastuszka, D., Ratajczak, E., and Timonen, R. S.:
Kinetics of the reactions of CH2Br and CH2I radicals with
molecular oxygen at atmospheric temperatures, Phys. Chem. Chem. Phys., 8,
1416–1424, https://doi.org/10.1039/B516291B, 2006.
Faloona, I.: Sulfur processing in the marine atmospheric boundary layer: A
review and critical assessment of modeling uncertainties, Atmos. Environ.,
43, 2841–2854, https://doi.org/10.1016/j.atmosenv.2009.02.043,
2009.
Foreman, E. S., Kapnas, K. M., and Murray, C.: Reactions between Criegee
intermediates and the inorganic acids HCl and HNO3: kinetics and
atmospheric implications, Angew. Chem. Int. Edit., 55, 10419–10422,
https://doi.org/10.1002/anie.201604662, 2016.
Gutbrod, R., Kraka, E., Schindler, R. N., and Cremer, D.: Kinetic and
theoretical investigation of the gas-phase ozonolysis of isoprene:? carbonyl
oxides as an important source for OH radicals in the atmosphere, J. Am.
Chem. Soc., 119, 7330–7342, https://doi.org/10.1021/ja970050c,
1997.
Hatakeyama, S. and Akimoto, H.: Reactions of criegee intermediates in the
gas phase, Res. Chem. Intermediat., 20, 503–524, https://doi.org/10.1163/156856794X00432, 1994.
Huang, H.-L., Chao, W., and Lin, J. J.-M.: Kinetics of a Criegee
intermediate that would survive high humidity and may oxidize atmospheric
SO2, P. Natl. Acad. Sci. USA, 112, 10857–10862, https://doi.org/10.1073/pnas.1513149112 2015.
Jardine, K., Yañez-Serrano, A. M., Williams, J., Kunert, N., Jardine,
A., Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C. N., House,
E., Florentino, A. P., Manzi, A., Higuchi, N., Kesselmeier, J., Behrendt,
T., Veres, P. R., Derstroff, B., Fuentes, J. D., Martin, S. T., and Andreae,
M. O.: Dimethyl sulfide in the Amazon rain forest, Global Biogeochem.
Cy., 29, 19–32, https://doi.org/10.1002/2014GB004969, 2015.
Johnson, D., Lewin, A. G., and Marston, G.: The Effect of
Criegee-Intermediate Scavengers on the OH Yield from the Reaction of Ozone
with 2-methylbut-2-ene, J. Phys. Chem. A, 105, 2933–2935, https://doi.org/10.1021/jp003975e,
2001.
Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated
volatile organic compounds in the troposphere, Chem. Soc. Rev., 37, 699–716,
https://doi.org/10.1039/B704260B, 2008.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and
Shallcross, D. E.: Criegee intermediates and their impacts on the
troposphere, Environmental Science: Processes & Impacts, 20, 437–453,
https://doi.org/10.1039/C7EM00585G, 2018.
Kim, S., Guenther, A., Lefer, B., Flynn, J., Griffin, R., Rutter, A. P.,
Gong, L., and Cevik, B. K.: Potential role of stabilized Criegee radicals in
sulfuric acid production in a high biogenic VOC environment, Environ. Sci.
Technol., 49, 3383–3391, https://doi.org/10.1021/es505793t,
2015.
Lee, Y. P.: Perspective: Spectroscopy and kinetics of small gaseous Criegee
intermediates, J. Chem. Phys., 143, 020901, https://doi.org/10.1063/1.4923165, 2015.
Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct
evidence for a substantive reaction between the Criegee intermediate,
CH2OO, and the water vapour dimer, Phys. Chem. Chem. Phys., 17,
4859-4863, https://doi.org/10.1039/C4CP04750H, 2015.
Li, Y.-L., Lin, Y.-H., Yin, C., Takahashi, K., Chiang, C.-Y., Chang, Y.-P.,
and Lin, J. J.-M.: Temperature-dependent rate coefficient for the reaction
of CH3SH with the simplest Criegee intermediate, J. Phys. Chem. A, 123,
4096–4103, https://doi.org/10.1021/acs.jpca.8b12553, 2019.
Li, Y.-L., Kuo, M.-T., and Lin, J. J.-M.: Unimolecular decomposition rates
of a methyl-substituted Criegee intermediate syn-CH3CHOO, RSC Advances,
10, 8518–8524, https://doi.org/10.1039/D0RA01406K, 2020.
Limão-Vieira, P., Eden, S., Kendall, P. A., Mason, N. J., and Hoffmann,
S. V.: High resolution VUV photo-absorption cross-section for
dimethylsulphide, (CH3)2S, Chem. Phys. Lett., 366, 343–349,
https://doi.org/10.1016/S0009-2614(02)01651-2, 2002.
Lin, H.-Y., Huang, Y.-H., Wang, X., Bowman, J. M., Nishimura, Y., Witek, H.
A., and Lee, Y.-P.: Infrared identification of the Criegee intermediates
syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity,
Nat. Commun., 6, 7012, https://doi.org/10.1038/ncomms8012,
2015.
Lin, J. J.-M., and Chao, W.: Structure-dependent reactivity of Criegee
intermediates studied with spectroscopic methods, Chem. Soc. Rev., 46,
7483–7497, https://doi.org/10.1039/C7CS00336F, 2017.
Lin, Y.-H., Takahashi, K., and Lin, J. J.-M.: Reactivity of Criegee
intermediates toward carbon dioxide, J. Phys. Chem. Lett., 9, 184–188,
https://doi.org/10.1021/acs.jpclett.7b03154, 2018.
Lin, Y.-H., Li, Y.-L., Chao, W., Takahashi, K., and Lin, J. J.-M.: The role
of the iodine-atom adduct in the synthesis and kinetics of methyl vinyl
ketone oxide – a resonance-stabilized Criegee intermediate, Phys. Chem.
Chem. Phys., 22, 13603–13612, https://doi.org/10.1039/D0CP02085K, 2020.
Liu, F., Beames, J. M., Green, A. M., and Lester, M. I.: UV spectroscopic
characterization of dimethyl- and ethyl-substituted carbonyl oxides, J.
Phys. Chem. A, 118, 2298–2306, https://doi.org/10.1021/jp412726z, 2014a.
Liu, F., Beames, J. M., Petit, A. S., McCoy, A. B., and Lester, M. I.:
Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates
to OH radical products, Science, 345, 1596–1598, https://doi.org/10.1126/science.1257158,
2014b.
Liu, Y., Bayes, K. D., and Sander, S. P.: Measuring Rate Constants for
Reactions of the Simplest Criegee Intermediate (CH2OO) by Monitoring
the OH Radical, J. Phys. Chem. A, 118, 741–747, 10.1021/jp407058b, 2014c.
McCarthy, M. C., Cheng, L., Crabtree, K. N., Martinez, O., Nguyen, T. L.,
Womack, C. C., and Stanton, J. F.: The simplest Criegee intermediate
(H2C-O–O): isotopic spectroscopy, equilibrium structure, and possible
formation from atmospheric lightning, J. Phys. Chem. Lett., 4, 4133–4139,
https://doi.org/10.1021/jz4023128, 2013.
Meidan, D., Holloway, J. S., Edwards, P. M., Dubé, W. P., Middlebrook,
A. M., Liao, J., Welti, A., Graus, M., Warneke, C., Ryerson, T. B., Pollack,
I. B., Brown, S. S., and Rudich, Y.: Role of Criegee intermediates in
secondary sulfate aerosol formation in nocturnal power plant plumes in the
southeast US, ACS Earth Space Chem., 3, 748–759, https://doi.org/10.1021/acsearthspacechem.8b00215, 2019.
Mir, Z. S., Lewis, T. R., Onel, L., Blitz, M. A., Seakins, P. W., and Stone,
D.: CH2OO Criegee intermediate UV absorption cross-sections and
kinetics of CH2OO + CH2OO and CH2OO + I as a function of
pressure, Phys. Chem. Chem. Phys., 22, 9448–9459, https://doi.org/10.1039/D0CP00988A, 2020.
Nakajima, M., Yue, Q., and Endo, Y.: Fourier-transform microwave
spectroscopy of an alkyl substituted Criegee intermediate
anti-CH3CHOO, J. Mol. Spectrosc., 310, 109–112, https://doi.org/10.1016/j.jms.2014.11.004, 2015.
Newland, M. J., Rickard, A. R., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide, Atmos. Chem. Phys., 15, 9521–9536, https://doi.org/10.5194/acp-15-9521-2015, 2015.
Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H.,
Schwantes, R. H., Coggon, M. M., Zhang, L., Feiner, P., Milller, D. O.,
Skog, K. M., Rivera-Rios, J. C., Dorris, M., Olson, K. F., Koss, A., Wild,
R. J., Brown, S. S., Goldstein, A. H., de Gouw, J. A., Brune, W. H.,
Keutsch, F. N., Seinfeld, J. H., and Wennberg, P. O.: Atmospheric fates of
Criegee intermediates in the ozonolysis of isoprene, Phys. Chem. Chem.
Phys., 18, 10241–10254, https://doi.org/10.1039/C6CP00053C,
2016.
Novelli, A., Vereecken, L., Lelieveld, J., and Harder, H.: Direct
observation of OH formation from stabilised Criegee intermediates, Phys.
Chem. Chem. Phys., 16, 19941–19951, 10.1039/C4CP02719A, 2014.
Novelli, A., Hens, K., Tatum Ernest, C., Martinez, M., Nölscher, A. C., Sinha, V., Paasonen, P., Petäjä, T., Sipilä, M., Elste, T., Plass-Dülmer, C., Phillips, G. J., Kubistin, D., Williams, J., Vereecken, L., Lelieveld, J., and Harder, H.: Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument, Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, 2017.
Osborn, D. L. and Taatjes, C. A.: The physical chemistry of Criegee
intermediates in the gas phase, Int. Rev. Phys. Chem., 34, 309–360,
10.1080/0144235x.2015.1055676, 2015.
Percival, C. J., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L.,
Topping, D. O., Lowe, D., Utembe, S. R., Bacak, A., M c Figgans, G., Cooke,
M. C., Xiao, P., Archibald, A. T., Jenkin, M. E., Derwent, R. G., Riipinen,
I., Mok, D. W. K., Lee, E. P. F., Dyke, J. M., Taatjes, C. A., and
Shallcross, D. E.: Regional and global impacts of Criegee intermediates on
atmospheric sulphuric acid concentrations and first steps of aerosol
formation, Faraday Discuss., 165, 45–73, https://doi.org/10.1039/C3FD00048F, 2013.
Purvis, G. D., and Bartlett, R. J.: A full coupled-cluster singles and
doubles model: The inclusion of disconnected triples, J. Chem. Phys., 76,
1910–1918, https://doi.org/10.1063/1.443164, 1982.
Sander, S. P., Abbat, J., Barker, J. R., Burkholder, J. B., Friedl, R. R.,
Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K.,
Orkin, V. L., and Wine, P. H.: Chemical kinetics and photochemical data for
use in atmospheric studies, Evaluation No. 17, in: hJPL Publication 10-6,
Pasadena, 2011.
Sheps, L.: Absolute ultraviolet absorption spectrum of a Criegee
intermediate CH2OO, J. Phys. Chem. Lett., 4, 4201–4205,
https://doi.org/10.1021/jz402191w, 2013.
Smith, M. C., Ting, W.-L., Chang, C.-H., Takahashi, K., Boering, K. A., and
Lin, J. J.-M.: UV absorption spectrum of the C2 Criegee intermediate
CH3CHOO, J. Chem. Phys., 141, 074302, https://doi.org/10.1063/1.4892582, 2014.
Smith, M. C., Chao, W., Takahashi, K., Boering, K. A., and Lin, J. J.-M.:
Unimolecular decomposition rate of the Criegee intermediate
(CH3)2COO measured directly with UV absorption spectroscopy,
J. Phys. Chem. A, 120, 4789–4798, https://doi.org/10.1021/acs.jpca.5b12124, 2016.
Stephenson, T. A. and Lester, M. I.: Unimolecular decay dynamics of Criegee
intermediates: energy-resolved rates, thermal rates, and their atmospheric
impact, Int. Rev. Phys. Chem., 39, 1–33, https://doi.org/10.1080/0144235X.2020.1688530, 2020.
Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P. W.:
Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and
CH3CHO as a function of pressure, Phys. Chem. Chem. Phys., 16,
1139–1149, https://doi.org/10.1039/C3CP54391A, 2014.
Su, M.-N. and Lin, J. J.-M.: Note: A transient absorption spectrometer
using an ultra bright laser-driven light source, Rev. Sci. Instrum., 84,
086106, https://doi.org/10.1063/1.4818977, 2013.
Su, Y.-T., Huang, Y.-H., Witek, H. A., and Lee, Y.-P.: Infrared absorption
spectrum of the simplest Criegee intermediate CH2OO, Science, 340,
174–176, https://doi.org/10.1126/science.1234369, 2013.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L., Lee,
E. P. F., Dyke, J. M., Mok, D. W. K., Shallcross, D. E., and Percival, C.
J.: Direct measurement of Criegee intermediate (CH2OO) reactions with
acetone, acetaldehyde, and hexafluoroacetone, Phys. Chem. Chem. Phys., 14,
10391–10400, 10.1039/c2cp40294g, 2012.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. K. W.,
Osborn, D. L., and Percival, C. J.: Direct measurements of
conformer-dependent reactivity of the Criegee intermediate CH3CHOO,
Science, 340, 177–180, https://doi.org/10.1126/science.1234689,
2013.
Ting, W.-L., Chen, Y.-H., Chao, W., Smith, M. C., and Lin, J. J.-M.: The UV
absorption spectrum of the simplest Criegee intermediate CH2OO, Phys.
Chem. Chem. Phys., 16, 10438–10443, https://doi.org/10.1039/C4CP00877D, 2014.
Truhlar, D. G., Garrett, B. C., and Klippenstein, S. J.: Current Status of
Transition-State Theory, J. Phys. Chem., 100,
12771-12800, https://doi.org/10.1021/jp953748q, 1996.
Vansco, M. F., Marchetti, B., and Lester, M. I.: Electronic spectroscopy of
methyl vinyl ketone oxide: a four-carbon unsaturated Criegee intermediate
from isoprene ozonolysis, J. Chem. Phys., 149, 244309, https://doi.org/10.1063/1.5064716, 2018.
Vansco, M. F., Marchetti, B., Trongsiriwat, N., Bhagde, T., Wang, G., Walsh,
P. J., Klippenstein, S. J., and Lester, M. I.: Synthesis, electronic
spectroscopy, and photochemistry of methacrolein oxide: a four-carbon
unsaturated Criegee intermediate from isoprene ozonolysis, J. Am. Chem.
Soc., 141, 15058–15069, https://doi.org/10.1021/jacs.9b05193,
2019.
Vereecken, L., Novelli, A., and Taraborrelli, D.: Unimolecular decay
strongly limits the atmospheric impact of Criegee intermediates, Phys. Chem.
Chem. Phys., 19, 31599–31612, 2017.
Wang, M. Y., Yao, L., Zheng, J., Wang, X., Chen, J. M., Yang, X., Worsnop,
D. R., Donahue, N. M., and Wang, L.: Reactions of atmospheric particulate
stabilized Criegee intermediates lead to high-molecular-weight aerosol
components, Environ. Sci. Technol., 50, 5702–5710, https://doi.org/10.1021/acs.est.6b02114, 2016.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., J., P. C., Shallcross,
D. E., and Taatjes, C. A.: Direct kinetic measurements of Criegee
intermediate CH2OO formed by reaction of CH2I with O2,
Science, 335, 204–204, https://doi.org/10.1126/science.1213229,
2012.
Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee, J. D., Scheer, A.
M., Osborn, D. L., Lowe, D., Murray B., A., Xiao, P., Khan, M. A. H.,
Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of
C1 and C2 Criegee intermediate reactions with formic and acetic acid near
the collision limit: direct kinetics measurements and atmospheric
implications, Angew. Chem., Int. Edit., 53, 4547–4550, https://doi.org/10.1002/anie.201400964, 2014.
Yvon, S. A., Saltzman, E. S., Cooper, D. J., Bates, T. S., and Thompson, A.
M.: Atmospheric sulfur cycling in the tropical Pacific marine boundary layer
(12∘ S, 135∘ W): a comparison of field data and model
results: 1. dimethylsulfide, J. Geophys. Res.-Atmos., 101, 6899–6909,
https://doi.org/10.1029/95JD03356, 1996.
Zhang, D., Lei, W., and Zhang, R.: Machanism of OH formation from ozonolysis
of isoprene: kinetics and product yield, Chem. Phys. Lett., 358, 171–179,
https://doi.org/10.1016/S0009-2614(02)00260-9, 2002.
Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc., 120, 215-241, 10.1007/s00214-007-0310-x, 2008.
Zhou, X., Liu, Y., Dong, W., and Yang, X.: Unimolecular reaction rate
measurement of syn-CH3CHOO, J. Phys. Chem. Lett., 10, 4817–4821,
https://doi.org/10.1021/acs.jpclett.9b01740, 2019.
Short summary
Dimethyl sulfide (DMS) is the major sulfur-containing species in the troposphere. Previous work by Newland et al. (2015) reported very high reactivity of isoprene-derived Criegee intermediates (CIs) towards DMS. By monitoring CIs with direct UV absorption, we found CI + DMS reactions are very slow, in contrast to the results of Newland et al. (2015), suggesting these CIs would not oxidize atmospheric DMS at any substantial level.
Dimethyl sulfide (DMS) is the major sulfur-containing species in the troposphere. Previous work...
Altmetrics
Final-revised paper
Preprint