Articles | Volume 20, issue 18
https://doi.org/10.5194/acp-20-10911-2020
https://doi.org/10.5194/acp-20-10911-2020
Research article
 | 
22 Sep 2020
Research article |  | 22 Sep 2020

Examining the atmospheric radiative and snow-darkening effects of black carbon and dust across the Rocky Mountains of the United States using WRF-Chem

Stefan Rahimi, Xiaohong Liu, Chun Zhao, Zheng Lu, and Zachary J. Lebo

Related authors

An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286, https://doi.org/10.5194/gmd-17-2265-2024,https://doi.org/10.5194/gmd-17-2265-2024, 2024
Short summary
Simulations of winter ozone in the Upper Green River basin, Wyoming, using WRF-Chem
Shreta Ghimire, Zachary J. Lebo, Shane Murphy, Stefan Rahimi, and Trang Tran
Atmos. Chem. Phys., 23, 9413–9438, https://doi.org/10.5194/acp-23-9413-2023,https://doi.org/10.5194/acp-23-9413-2023, 2023
Short summary

Cited articles

Bassett, R., Young, P. J., Blair, G. S., Samreen, F., and Simm, W.: A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model, J. Geophys. Res.-Atmos., 125, e2019JD031286, https://doi.org/10.1029/2019JD031286, 2020. 
Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1. Model description and preliminary results, J. Geophys. Res., 100, 26191–26209, https://doi.org/10.1029/95JD02093, 1995. 
Broxton, P. D., Dawson, N., and Zeng, X.: Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth, Earth Space Sci., 3, 246–256, 2016. 
Caldwell, P., Chin, H.-N. S., Bader, D. C., and Bala, G.: Evaluation of a WRF dynamical downscaling simulation over California, Climatic Change, 95, 499–521, https://doi.org/10.1007/s10584-009-9583-5, 2009. 
Download
Short summary
Dark particles emitted to the atmosphere can absorb sunlight and heat the air. As these particles settle, they may darken the surface, especially over snow-covered regions like the Rocky Mountains. This darkening of the surface may lead to changes in snowpack, affecting the local meteorology and hydrology. We seek to evaluate whether these light-absorbing particles more prominently affect this region through their atmospheric presence or their on-snow presence.
Share
Altmetrics
Final-revised paper
Preprint