Volume 20, issue 18

Volume 20, issue 18

15 Sep 2020
An EARLINET early warning system for atmospheric aerosol aviation hazards
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020,https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
15 Sep 2020
Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020,https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
15 Sep 2020
Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020,https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
15 Sep 2020
What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?
Jinhui Gao, Ying Li, Bin Zhu, Bo Hu, Lili Wang, and Fangwen Bao
Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020,https://doi.org/10.5194/acp-20-10831-2020, 2020
Short summary
18 Sep 2020
Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign
Li Li, Zhengqiang Li, Wenyuan Chang, Yang Ou, Philippe Goloub, Chengzhe Li, Kaitao Li, Qiaoyun Hu, Jianping Wang, and Manfred Wendisch
Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020,https://doi.org/10.5194/acp-20-10845-2020, 2020
Short summary
18 Sep 2020
Determination of the absorption cross sections of higher-order iodine oxides at 355 and 532 nm
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020,https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
22 Sep 2020
CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry–aerosol–climate models
James Weber, Scott Archer-Nicholls, Paul Griffiths, Torsten Berndt, Michael Jenkin, Hamish Gordon, Christoph Knote, and Alexander T. Archibald
Atmos. Chem. Phys., 20, 10889–10910, https://doi.org/10.5194/acp-20-10889-2020,https://doi.org/10.5194/acp-20-10889-2020, 2020
Short summary
22 Sep 2020
Examining the atmospheric radiative and snow-darkening effects of black carbon and dust across the Rocky Mountains of the United States using WRF-Chem
Stefan Rahimi, Xiaohong Liu, Chun Zhao, Zheng Lu, and Zachary J. Lebo
Atmos. Chem. Phys., 20, 10911–10935, https://doi.org/10.5194/acp-20-10911-2020,https://doi.org/10.5194/acp-20-10911-2020, 2020
Short summary
22 Sep 2020
Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020,https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
24 Sep 2020
Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020,https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
24 Sep 2020
Aerosol pollution maps and trends over Germany with hourly data at four rural background stations from 2009 to 2018
Jost Heintzenberg, Wolfram Birmili, Bryan Hellack, Gerald Spindler, Thomas Tuch, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 10967–10984, https://doi.org/10.5194/acp-20-10967-2020,https://doi.org/10.5194/acp-20-10967-2020, 2020
Short summary
24 Sep 2020
Assessing contributions of natural surface and anthropogenic emissions to atmospheric mercury in a fast-developing region of eastern China from 2015 to 2018
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020,https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
25 Sep 2020
Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020,https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
25 Sep 2020
Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds
Adeyemi A. Adebiyi, Paquita Zuidema, Ian Chang, Sharon P. Burton, and Brian Cairns
Atmos. Chem. Phys., 20, 11025–11043, https://doi.org/10.5194/acp-20-11025-2020,https://doi.org/10.5194/acp-20-11025-2020, 2020
Short summary
28 Sep 2020
Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020,https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
28 Sep 2020
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020,https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
29 Sep 2020
The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020,https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
29 Sep 2020
Meteorology-normalized impact of the COVID-19 lockdown upon NO2 pollution in Spain
Hervé Petetin, Dene Bowdalo, Albert Soret, Marc Guevara, Oriol Jorba, Kim Serradell, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 20, 11119–11141, https://doi.org/10.5194/acp-20-11119-2020,https://doi.org/10.5194/acp-20-11119-2020, 2020
Short summary
29 Sep 2020
Modulation of springtime surface sensible heating over the Tibetan Plateau on the interannual variability of East Asian dust cycle
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020,https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
29 Sep 2020
A dedicated flask sampling strategy developed for Integrated Carbon Observation System (ICOS) stations based on CO2 and CO measurements and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020,https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
CC BY 4.0