Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-877-2019
https://doi.org/10.5194/acp-19-877-2019
Research article
 | 
23 Jan 2019
Research article |  | 23 Jan 2019

New type of evidence for secondary ice formation at around −15 °C in mixed-phase clouds

Claudia Mignani, Jessie M. Creamean, Lukas Zimmermann, Christine Alewell, and Franz Conen

Related authors

Snowfall in Northern Finland derives mostly from ice clouds
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022,https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022,https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Measurement report: Ice-nucleating particles active  ≥ −15 °C in free tropospheric air over western Europe
Franz Conen, Annika Einbock, Claudia Mignani, and Christoph Hüglin
Atmos. Chem. Phys., 22, 3433–3444, https://doi.org/10.5194/acp-22-3433-2022,https://doi.org/10.5194/acp-22-3433-2022, 2022
Short summary
Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022,https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
On the drivers of droplet variability in alpine mixed-phase clouds
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021,https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024,https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023,https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Thermodynamic and cloud evolution in a cold air outbreak during HALO-(AC)3: Quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-2989,https://doi.org/10.5194/egusphere-2023-2989, 2023
Short summary
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023,https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Powering aircraft with 100% sustainable aviation fuel reduces ice crystals in contrails
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2023-2638,https://doi.org/10.5194/egusphere-2023-2638, 2023
Short summary

Cited articles

Bacon, N. J., Swanson, B. D., Baker, M. B., and Davis, E. J.: Breakup of levitated frost particles, J. Geophys. Res., 103, 13763–13775, https://doi.org/10.1029/98JD01162, 1998. 
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. 
Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, 2018. 
Bigg, E. K.: Ice forming nuclei in the high Arctic, Tellus, 48B, 223–233, 1996. 
Braham, R. R.: What is the role of ice in summer rain showers?, J. Atmos. Sci., 21, 640–645, 1964. 
Download
Short summary
A snow crystal can be generated from an ice nucleating particle or from an ice splinter. In this study we made use of the fact that snow crystals with a particular shape (dendrites) grow within a narrow temperature range (−12 to −17 °C) and can be analysed individually for the presence of an ice nucleating particle. Our direct approach revealed that only one in eight crystals contained such a particle and was of primary origin. The other crystals must have grown from ice splinters.
Altmetrics
Final-revised paper
Preprint