Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-15-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-15-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events
Sumira Nazir Zaz
Department of Earth Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
Shakil Ahmad Romshoo
Department of Earth Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
Ramkumar Thokuluwa Krishnamoorthy
CORRESPONDING AUTHOR
National Atmospheric Research Laboratory, Dept. of Space, Govt. of India,
Gadanki, Andhra Pradesh 517112, India
Yesubabu Viswanadhapalli
National Atmospheric Research Laboratory, Dept. of Space, Govt. of India,
Gadanki, Andhra Pradesh 517112, India
Related authors
No articles found.
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
Shakil Ahmad Romshoo, Tariq Abdullah, and Mustafa Hameed Bhat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-28, https://doi.org/10.5194/essd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
The study evaluates the global glacier inventories available for the study area with the newly generated Kashmir University Glacier Inventory (KUGI) for three Himalaya basins; Jhelum, Suru and Chenab. The study also assessed the glacier elevation changes over the study region. The glacier inventory and elevation change estimates would constitute a reliable database for research particularly in hydrology, glaciology, and climate change in the data scarce Himalayan region.
G. Karthick Kumar Reddy, T. K. Ramkumar, and S. Venkatramana Reddy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-118, https://doi.org/10.5194/acp-2016-118, 2016
Revised manuscript not accepted
Short summary
Short summary
Long period oscillations (10–100 days) of the atmosphere found in all the heights of from the lower troposphere to the upper mesosphere (~ 1–100 km height) particularly in the tropical region have posed important questions like how they travel such large heights from below. The present work illustrates the importance of the combined influences of the subtropical tropospheric and mid-high latitude stratospheric jets in refracting back the tropospheric long-period oscillations to the tropical higher altitudes.
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on cirrus clouds, and comparison with global storm-resolving models
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
Examination of aerosol indirect effects during cirrus cloud evolution
In situ microphysics observations of intense pyroconvection from a large wildfire
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model
Snowfall in Northern Finland derives mostly from ice clouds
Observation of secondary ice production in clouds at low temperatures
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Experimental study on the evolution of droplet size distribution during the fog life cycle
Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region
Continental thunderstorm ground enhancement observed at an exceptionally low altitude
Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions
In situ observation of riming in mixed-phase clouds using the PHIPS probe
Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories
Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic
An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds
High concentrations of ice crystals in upper-tropospheric tropical clouds: is there a link to biomass and fossil fuel combustion?
Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model
Mass of different snow crystal shapes derived from fall speed measurements
Measurement report: Impact of African aerosol particles on cloud evolution in a tropical montane cloud forest in the Caribbean
Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes
Reduced ice number concentrations in contrails from low-aromatic biofuel blends
Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China
Estimation of the terms acting on local 1 h surface temperature variations in Paris region: the specific contribution of clouds
Contrasting characteristics of open- and closed-cellular stratocumulus cloud in the eastern North Atlantic
Mass and density of individual frozen hydrometeors
Linear relationship between effective radius and precipitation water content near the top of convective clouds: measurement results from ACRIDICON–CHUVA campaign
Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations
Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon
Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates
Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018)
Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations
Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment
Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic
Coupled and decoupled stratocumulus-topped boundary layers: turbulence properties
Shape dependence of snow crystal fall speed
Captured cirrus ice particles in high definition
What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons
Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud
Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top
Joint cloud water path and rainwater path retrievals from airborne ORACLES observations
Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography
Rachel Atlas and Christopher S. Bretherton
Atmos. Chem. Phys., 23, 4009–4030, https://doi.org/10.5194/acp-23-4009-2023, https://doi.org/10.5194/acp-23-4009-2023, 2023
Short summary
Short summary
The tropical tropopause layer exists between the troposphere and the stratosphere in the tropics. Very thin cirrus clouds cool Earth's surface by scrubbing water vapor (a greenhouse gas) out of air parcels as they ascend through the tropical tropopause layer on their way to the stratosphere. We show observational evidence from aircraft that small-scale (< 100 km) gravity waves and turbulence increase the amount of ice in these clouds and may allow them to remove more water vapor from the air.
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023, https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Short summary
We investigated how different long-range-transported air masses can affect the microphysical properties of low-level clouds in a clean subarctic environment. A connection was revealed. Higher values of cloud droplet number concentrations were related to continental air masses, whereas the lowest values of number concentrations were related to marine air masses. These were characterized by larger cloud droplets. Clouds in all regions were sensitive to increases in cloud number concentration.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023, https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
Short summary
Aerosol indirect effects on cirrus clouds are investigated during cirrus evolution, using global-scale in situ observations and climate model simulations. As cirrus evolves, the mechanisms to form ice crystals also change with time. Both small and large aerosols are found to affect cirrus properties. Southern Hemisphere cirrus appears to be more sensitive to additional aerosols. The climate model underestimates ice crystal mass, likely due to biases of relative humidity and vertical velocity.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Layrson J. M. Gonçalves, Simone M. S. C. Coelho, Paulo Y. Kubota, and Dayana C. Souza
Atmos. Chem. Phys., 22, 15509–15526, https://doi.org/10.5194/acp-22-15509-2022, https://doi.org/10.5194/acp-22-15509-2022, 2022
Short summary
Short summary
This research aims to study the environmental conditions that are favorable and not favorable to cloud formation, in this case specifically for the Amazon region. The results found in this research will be used to improve the representation of clouds in numerical models that are used in weather and climate prediction. In general, it is expected that with better knowledge regarding the cloud–radiation interaction, it is possible to make a better forecast of weather and climate.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022, https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
Short summary
The present study provides the first explicit in situ observation of secondary ice production at temperatures as low as −27 °C, which is well outside the range of the Hallett–Mossop process (−3 to −8 °C). This observation expands our knowledge of the temperature range of initiation of secondary ice in clouds. The obtained results are intended to stimulate laboratory and theoretical studies to develop physically based parameterizations for weather prediction and climate models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022, https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Short summary
The ability of NASA’s Terra and Aqua satellites to retrieve cloud properties and estimate the changes in cloud properties due to aerosol–cloud interactions (ACI) was examined. There was good agreement between satellite retrievals and in situ measurements over the southeast Atlantic Ocean. This suggests that, combined with information on aerosol properties, satellite retrievals of cloud properties can be used to study ACI over larger domains and longer timescales in the absence of in situ data.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022, https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Saleem Ali, Sanjay Kumar Mehta, Aravindhavel Ananthavel, and Tondapu Venkata Ramesh Reddy
Atmos. Chem. Phys., 22, 8321–8342, https://doi.org/10.5194/acp-22-8321-2022, https://doi.org/10.5194/acp-22-8321-2022, 2022
Short summary
Short summary
Multiple cirrus clouds frequently occur over regions of deep convection in the tropics. Tropical convection has a strong diurnal pattern, with peaks in the afternoon to early evening, over the continents. Continuous micropulse lidar observations over a coastal station in the Indian monsoon region enable us, for the first time, to demonstrate a robust diurnal pattern of single and multiple cirrus occurrences, with peaks during the late afternoon and early morning hours, respectively.
Ivana Kolmašová, Ondřej Santolík, Jakub Šlegl, Jana Popová, Zbyněk Sokol, Petr Zacharov, Ondřej Ploc, Gerhard Diendorfer, Ronald Langer, Radek Lán, and Igor Strhárský
Atmos. Chem. Phys., 22, 7959–7973, https://doi.org/10.5194/acp-22-7959-2022, https://doi.org/10.5194/acp-22-7959-2022, 2022
Short summary
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Chem. Phys., 22, 7087–7103, https://doi.org/10.5194/acp-22-7087-2022, https://doi.org/10.5194/acp-22-7087-2022, 2022
Short summary
Short summary
Riming, i.e., the accretion of small droplets on the surface of ice particles via collision, is one of the major uncertainties in model prediction of mixed-phase clouds. We discuss the occurrence (up to 50% of particles) and aging of rimed ice particles and show correlations of the occurrence and the degree of riming with ambient meteorological parameters using data gathered by the Particle Habit Imaging and Polar Scattering (PHIPS) probe during three airborne in situ field campaigns.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Rose M. Miller, and Jennifer D. Small Griswold
Atmos. Chem. Phys., 22, 2769–2793, https://doi.org/10.5194/acp-22-2769-2022, https://doi.org/10.5194/acp-22-2769-2022, 2022
Short summary
Short summary
This study evaluates the impact of biomass burning aerosols on precipitation in marine stratocumulus clouds using observations from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign over the Southeast Atlantic. Instances of contact and separation between aerosol and cloud layers show polluted clouds have a lower precipitation rate and a lower precipitation susceptibility. This information will help improve cloud representation in Earth system models.
Anna E. Luebke, André Ehrlich, Michael Schäfer, Kevin Wolf, and Manfred Wendisch
Atmos. Chem. Phys., 22, 2727–2744, https://doi.org/10.5194/acp-22-2727-2022, https://doi.org/10.5194/acp-22-2727-2022, 2022
Short summary
Short summary
A combination of aircraft and satellite observations is used to show how the characteristics of tropical shallow clouds interact with incoming and outgoing energy. A complete depiction of these clouds is challenging to obtain, but such data are useful for understanding how models can correctly represent them. The amount of cloud is found to be the most important factor, while other cloud characteristics become increasingly impactful when more cloud is present.
Graciela B. Raga, Darrel Baumgardner, Blanca Rios, Yanet Díaz-Esteban, Alejandro Jaramillo, Martin Gallagher, Bastien Sauvage, Pawel Wolff, and Gary Lloyd
Atmos. Chem. Phys., 22, 2269–2292, https://doi.org/10.5194/acp-22-2269-2022, https://doi.org/10.5194/acp-22-2269-2022, 2022
Short summary
Short summary
The In-Service Aircraft for a Global Observing System (IAGOS) is a small fleet of commercial aircraft that carry a suite of meteorological, gas, aerosol, and cloud sensors and have been measuring worldwide for almost 9 years, since late 2011. Extreme ice events (EIEs) have been identified from the IAGOS cloud measurements and linked to surface emissions for biomass and fossil fuel consumption. The results reported here are highly relevant for climate change and flight operations forecasting.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 18669–18688, https://doi.org/10.5194/acp-21-18669-2021, https://doi.org/10.5194/acp-21-18669-2021, 2021
Short summary
Short summary
High-resolution top- and side-view images of snow ice particles taken by the D-ICI instrument are used to determine the shape; size; cross-sectional area; fall speed; and, based upon these properties, the mass of the individual snow particles. The study analyses the relationships between these fundamental properties as a function of particle shape and highlights that the choice of size parameter, maximum dimension or another characteristic length, is crucial when relating fall speed to mass.
Elvis Torres-Delgado, Darrel Baumgardner, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 21, 18011–18027, https://doi.org/10.5194/acp-21-18011-2021, https://doi.org/10.5194/acp-21-18011-2021, 2021
Short summary
Short summary
African dust aerosols can travel thousands of kilometers and reach the Caribbean and other places, where they can serve as ice and cloud condensation nuclei and alter precipitation patterns. Cloud microphysical properties (droplet number and size) were measured in a Caribbean tropical montane cloud forest along with models and satellite products. The results of the study suggest that meteorology and air mass history are more important for cloud processes than aerosols transported from Africa.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Yue Sun and Chuanfeng Zhao
Atmos. Chem. Phys., 21, 16555–16574, https://doi.org/10.5194/acp-21-16555-2021, https://doi.org/10.5194/acp-21-16555-2021, 2021
Short summary
Short summary
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation time over the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) is investigated. Aerosol amount and type have significant influence on precipitation time: precipitation start time is advanced by 3 h in the NCP, delayed 2 h in the PRD, and negligibly changed in the YRD. Aerosol impact on precipitation is also influenced by precipitation type and meteorological conditions.
Oscar Javier Rojas Muñoz, Marjolaine Chiriaco, Sophie Bastin, and Justine Ringard
Atmos. Chem. Phys., 21, 15699–15723, https://doi.org/10.5194/acp-21-15699-2021, https://doi.org/10.5194/acp-21-15699-2021, 2021
Short summary
Short summary
A method is developed and evaluated to quantify each process that affects hourly 2 m temperature variations on a local scale, based almost exclusively on observations retrieved from an observatory near the Paris region. Each term involved in surface temperature variations is estimated, and its contribution and importance are also assessed. It is found that clouds are the main modulator on hourly temperature variations for most hours of the day, and thus their characterization is addressed.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250, https://doi.org/10.5194/acp-21-14235-2021, https://doi.org/10.5194/acp-21-14235-2021, 2021
Short summary
Short summary
Accurate predictions of weather and climate require descriptions of the mass and density of snowflakes as a function of their size. Few measurements have been obtained to date because snowflakes are so small and fragile. This article describes results from a new instrument that automatically measures individual snowflake size, mass, and density. Key findings are that small snowflakes have much lower densities than is often assumed and that snowflake density increases with temperature.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021, https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary
Short summary
Kelvin–Helmholtz (K–H) clouds embedded in a stratiform precipitation event were uncovered via radar Doppler spectral analysis. Given the unprecedented detail of the observations, we show that multiple populations of secondary ice columns were generated in the pockets where larger cloud droplets are formed and not at some constant level within the cloud. Our results highlight that the K–H instability is favorable for liquid droplet growth and secondary ice formation.
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225, https://doi.org/10.5194/acp-21-13207-2021, https://doi.org/10.5194/acp-21-13207-2021, 2021
Short summary
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Youssef Wehbe, Sarah A. Tessendorf, Courtney Weeks, Roelof Bruintjes, Lulin Xue, Roy Rasmussen, Paul Lawson, Sarah Woods, and Marouane Temimi
Atmos. Chem. Phys., 21, 12543–12560, https://doi.org/10.5194/acp-21-12543-2021, https://doi.org/10.5194/acp-21-12543-2021, 2021
Short summary
Short summary
The role of dust aerosols as ice-nucleating particles is well established in the literature, whereas their role as cloud condensation nuclei is less understood, particularly in polluted desert environments. We analyze coincident aerosol size distributions and cloud particle imagery collected over the UAE with a research aircraft. Despite the presence of ultra-giant aerosol sizes associated with dust, an active collision–coalescence process is not observed within the limited depths of warm cloud.
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, https://doi.org/10.5194/acp-21-11955-2021, 2021
Short summary
Short summary
This study analyzes the microphysical characteristics of snow in complex terrain and the nearby ocean according to topography and wind pattern during the ICE-POP 2018 campaign. The observations from collocated vertically pointing radars and disdrometers indicate that the riming in the mountainous region is likely caused by a strong shear and turbulence. The different behaviors of aggregation and riming were found by three different synoptic patterns (air–sea interaction, cold low, and warm low).
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580, https://doi.org/10.5194/acp-21-11563-2021, https://doi.org/10.5194/acp-21-11563-2021, 2021
Short summary
Short summary
Aircraft in situ observations of low-level Beaufort Sea cloud properties and thermodynamics from the ARISE campaign are compared with the Arctic System Reanalysis (ASR) to better understand deficiencies in simulated clouds. ASR produces too little cloud water, which coincides with being too warm and dry. In addition, ASR struggles to produce cloud water even in favorable thermodynamic conditions. A random sampling experiment also shows the effects of the limited aircraft sampling on the results.
Sinan Gao, Chunsong Lu, Yangang Liu, Seong Soo Yum, Jiashan Zhu, Lei Zhu, Neel Desai, Yongfeng Ma, and Shang Wu
Atmos. Chem. Phys., 21, 11225–11241, https://doi.org/10.5194/acp-21-11225-2021, https://doi.org/10.5194/acp-21-11225-2021, 2021
Short summary
Short summary
Only a few studies have been focused on the vertical variation of entrainment mixing with low resolutions which are crucial to cloud-related processes. A sawtooth pattern allows for an examination of mixing with high vertical resolution. A new measure is introduced to estimate entrainment mixing to overcome difficulties in existing measures, where vertical profile indicates that entrainment mixing becomes more homogeneous with decreasing altitudes, consistent with the dynamical measures.
Jianhao Zhang and Paquita Zuidema
Atmos. Chem. Phys., 21, 11179–11199, https://doi.org/10.5194/acp-21-11179-2021, https://doi.org/10.5194/acp-21-11179-2021, 2021
Short summary
Short summary
The subtropical Atlantic hosts one of the planet's largest marine low cloud decks and interacts with biomass burning aerosol from approximately July through October. This study clarifies how the monthly evolution in meteorology and the biomass burning aerosol vertical structure affects the seasonal cycle in its low cloud fraction, such that the July–October evolution in low cloud cover and morphology are reinforced, when compared to scenarios with less aerosol present.
Jakub L. Nowak, Holger Siebert, Kai-Erik Szodry, and Szymon P. Malinowski
Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, https://doi.org/10.5194/acp-21-10965-2021, 2021
Short summary
Short summary
Turbulence properties in two cases of a marine stratocumulus-topped boundary layer have been compared using high-resolution helicopter-borne in situ measurements. In the coupled one, small-scale turbulence was close to isotropic and reasonably followed inertial range scaling according to Kolmogorov theory. In the decoupled one, turbulence was more anisotropic and the scaling deviated from theory. This was more pronounced in the cloud and subcloud layers in comparison to the surface mixed layer.
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 7545–7565, https://doi.org/10.5194/acp-21-7545-2021, https://doi.org/10.5194/acp-21-7545-2021, 2021
Short summary
Short summary
In this work, we present new fall speed measurements of natural snow particles and ice crystals. We study the particle fall speed relationships and how they depend on particle shape. We analyze these relationships as a function of particle size, cross-sectional area, and area ratio for different particle shape groups. We also investigate the dependence of the particle fall speed on the orientation, as it has a large impact on the cross-sectional area.
Nathan Magee, Katie Boaggio, Samantha Staskiewicz, Aaron Lynn, Xuanyi Zhao, Nicholas Tusay, Terance Schuh, Manisha Bandamede, Lucas Bancroft, David Connelly, Kevin Hurler, Bryan Miner, and Elissa Khoudary
Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021, https://doi.org/10.5194/acp-21-7171-2021, 2021
Short summary
Short summary
The cryo-electron microscopy images and analysis in this paper result from the first balloon-borne capture, preservation, and high-resolution imaging of ice particles from cirrus clouds. The images show cirrus particle complexity in unprecedented detail, revealing unexpected morphology, a mixture of surface roughness scales and patterns, embedded aerosols, and a large variety of habits within a single cloud. The results should inform ongoing efforts to refine modeling of cirrus radiative impact.
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021, https://doi.org/10.5194/acp-21-6735-2021, 2021
Short summary
Short summary
This study suggests that there are two distinct modes driving diurnal precipitating convective clouds over the central Amazon. In the wet season, local factors such as turbulence and nighttime cloud coverage are the main controls of daily precipitation, while dry-season daily precipitation is modulated primarily by the mesoscale convective pattern. The results imply that models and parameterizations must consider different formulations based on the seasonal cycle to correctly resolve convection.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Hannes Griesche, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021, https://doi.org/10.5194/acp-21-6347-2021, 2021
Short summary
Short summary
This paper describes a case study of a three-day period with a persistent humidity inversion above a mixed-phase cloud layer in the Arctic. It is based on measurements with a tethered balloon, complemented with results from a dedicated high-resolution large-eddy simulation. Both methods show that the humidity layer acts to provide moisture to the cloud layer through downward turbulent transport. This supply of additional moisture can contribute to the persistence of Arctic clouds.
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys., 21, 5513–5532, https://doi.org/10.5194/acp-21-5513-2021, https://doi.org/10.5194/acp-21-5513-2021, 2021
Short summary
Short summary
This work highlights a new algorithm using data collected from the 2016–2018 NASA ORACLES field campaign. This algorithm synthesizes cloud and rain measurements to attain estimates of cloud and precipitation properties over the southeast Atlantic Ocean. Estimates produced by this algorithm compare well against in situ estimates. Increased rain fractions and rain rates are found in regions of atmospheric instability. This dataset can be used to explore aerosol–cloud–precipitation interactions.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Cited articles
Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: Recent
Northern Hemisphere tropical expansion primarily driven by black carbon and
tropospheric ozone, Nature, 485, 350–354, https://doi.org/10.1038/nature11097, 2012.
Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the
Upper Indus Basin, global teleconnections and hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61, https://doi.org/10.5194/hess-8-47-2004, 2004.
Barnes, E. A. and Polvani, L.: Response of the mid latitude jets, and of
their variability, to increased greenhouse gases in the CMIP5 models, J.
Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013.
Barnes, E. A., Solomon, S., and Polwani, L. M.: Robust wind and precipitation
responses to the Mount Pinatubo eruption, as simulated in the CMIP5 Models,
J. Climate, 29, 4763–4778, https://doi.org/10.1175/JCLI-D-15-0658.1, 2016.
Bartels, J., Peters, D., and Schmitz, G.: Climatological Ertel's potential-vorticity
flux and mean meridional circulation in the extratropical troposphere – lower
stratosphere, Ann. Geophys., 16, 250–265, https://doi.org/10.1007/s00585-998-0250-3, 1998.
Beniston, M.: Impact of climatic change on water and associated economic
activities in the Swiss Alps, J. Hydrol., 412–413, 291–296,
https://doi.org/10.1016/j.jhydrol.2010.06.046, 2010.
Bhutiyani, M. R., Kale, V. S., and Pawar, N. J.: Long-term trends in maximum,
minimum and mean annual air temperatures across the north western Himalaya
during the 20th century, Clim. Change, 85, 159–177, 2007.
Bhutiyani, M. R., Kale, V. S., and Pawar, N. J.: Climate change and the
precipitation variations in the north western Himalaya: 1866–2006, Int. J.
Climatol., 30, 535–548, 2009.
Bhutiyani, M. R., Kale, V. S., and Pawar, N. J.: Climate change and the
precipitation variations in the north western Himalaya: 1866–2006, Int. J.
Climatol., 30, 535–548, 2010.
Bolch, T., Kulkarni, A., and Kaabet, A.: The state and fate of Himalayan
glaciers, Science, 336, 310–314, 2012.
Bookhagen, B.: Appearance of extreme monsoonal rainfall events and their
impact on erosion in the Himalaya, Geomatics, Natural Hazards and Risk, 1, 37–50, https://doi.org/10.1080/19475701003625737, 2010.
Borgaonkar, H. P. and Pant, G. B.: Long-term climate variability over
monsoon Asia as revealed by some proxy sources, Mausam, 52, 9–22, 2001.
Ceppi, P., Zelinka, M. D., and Hartmann, D. L.: The response of the southern
hemispheric eddy-driven jet to future changes in shortwave radiation in
CMIP5, Geophys. Res. Lett., 41, 3244–3250, https://doi.org/10.1002/2014GL060043, 2014.
Chang, E. K. M. and Yu, D. B.: Characteristics of Wave Packets in the Upper
Troposphere. Part I: Northern Hemisphere Winter, J. Atmos. Sci., 56,
1708–1728, 1999.
Chen, F. and Dudhia, J.: Coupling an advanced landsurface/hydrology model with the Penn
State/NCAR MM5 modeling system. Part I: Model description and implementation, Mon.
Weather
Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2,
2001.
Chen, J. and Gupta, A. K.: Parametric Statistical Change Point Analysis,
Birkhauser, Boston, MA, 240, 2012.
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.:
Quasi-resonant circulation regimes and hemispheric synchronization of
extreme weather in boreal summer, P. Natl. Acad. Sci. USA, 111,
12331–12336, https://doi.org/10.1073/pnas.1412797111, 2014.
Dar, R. A., Romshoo, S. A., Chandra, R., and Ahmad, I.: Tectono-geomorphic
study of the 4 Karewa Basin of Kashmir valley, J. Asian Earth Sci.,
92, 143–156, 2014.
Das, M. R., Mukhopadhyay, R. L., Dandekar, M. M., and Kshirsagar, S. R.:
Pre-monsoon western disturbances in relation to monsoon rainfall, its
advancement over NW India and their trends, Curr. Sci. India, 82,
1320–1321, 2002.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B. K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dimri, A. P. and Dash, S. K.: Winter time climatic trends in the western
Himalayas, Clim. Change, 111, 775–800, 2012.
Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment
using a mesoscale twodimensional model, J. Atmos. Sci., 46, 3077–3107
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.: Eliassen-Palm cross
sections for the troposphere, J. Atmos. Sci., 37, 2600–2615, 1980.
Ertel, H.: Ein neuer hydrodynamischer Wirbelsatz, Meteor. Z., 59, 277–281,
1942.
Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. P.,
Parker, D. E., Macadam, I., Jones, P. D., Nicholls, R. N. N., and Sexton, D.
M. H.: Global temperature change and its uncertainties since 1861,
Geophys. Res. Let., 28, 2621–2624, https://doi.org/10.1029/2001GL012877, 2001.
Fowler, H. J. and Archer, D. R.: Conflicting signals of climatic change in the Upper Indus
Basin, J. Climate, 19, 4276–4293, 2006.
Gao, P., Mu, X.-M., Wang, F., and Li, R.: Changes in streamflow and sediment discharge
and the response to human activities in the middle reaches of the Yellow
River, Hydrol. Earth Syst. Sci., 15, 1–10, https://doi.org/10.5194/hess-15-1-2011, 2011.
Garfinkel, C. I. and Waugh, D. W.: Tropospheric Rossby wave breaking and
variability of the latitude of the eddy-driven jet, J. Climate, 27,
7069–7085, https://doi.org/10.1175/JCLI-D-14-00081.1, 2014.
Ghasemi, A. R.: Changes and trends in maximum, minimum and mean temperature
series in Iran, Atmos. Sci. Lett., 16, 366–372, https://doi.org/10.1002/asl2.569,
2015.
Groisman, P. Y., Karl, T. R., Knight, R. W., and Stenchikov, G. L.: Changes of snow cover,
temperature, and radiative heat balance over the northern hemisphere, J. Climate, 7, 1633–1656,
https://doi.org/10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO;2, 1994.
Hansen, A. R., Nastrom, G. D., and Eaton, F. D.: Seasonal variation of
gravity wave activity at 5–20 km observed with VHF radar at White Sands
Missile Range, New Mexico, J. Geophys. Res., 106, 17171–17183, https://doi.org/10.1029/2001JD900137, 2001.
Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G.
E., Lasco, R. D., Lindgren, E., and Surjan, A.: Asia, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B:
Regional Aspects. Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel of Climate Change, edited by: Barros, V. R., Field, C. B., Dokken, D. J.,
Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova,
R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L.
L.,
Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
Homeyer, C. R. and Bowman, K. P.: Rossby Wave Breaking and Transport between
the Tropics and Extratropics above the Subtropical Jet, J. Atmos. Sci.,
70, 607–626, https://doi.org/10.1175/JAS-D-12-0198.1, 2013.
Hong, S. H., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit
treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006.
Hoskins, B. J., Simmons, A. J., and Andrews, D. G.: Energy dispersion in a
barotropic atmosphere, Q. J. Roy. Meteor. Soc., 103, 553–567, 1977.
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. Roy. Meteor.
Soc., 111, 877–946, 1985.
Hunt, K. M. R., Turner, A. G., and Shaffrey, L. C.: Extreme daily rainfall in
Pakistan and north India: scale-interactions, mechanisms, and
precursors, Mon. Weather Rev., 146, 1005–1022, https://doi.org/10.1175/MWR-D-17-0258.1, 2018a.
Hunt, K. M. R., Turner, A. G., and Shaffrey, L. C.: The evolution,
seasonality and impacts of western disturbances, Q. J. Roy. Meteor.
Soc., 144, 278–290, https://doi.org/10.1002/qj.3200,
2018b.
Hurrell, J. W. and van Loon, H.: Decadal variations in climate associated
with the North Atlantic Oscillation, Clim. Change, 36, 301–326, Res.
Lett., 23, 665–668, 1997.
Immerzeel, W., Van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers, Science, 328, 1382–1385, 2010.
IPCC: Climate change (2001), Impacts, adaption and vulnerability.
Contribution of Working Group II to the Third Assessment Report of the
Intergovernmental Panel of Climate Change, Intergovernmental Panel on
Climate Change, Cambridge, UK, 2001.
IPCC: Climate Change 2013, in: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1535, 2013.
Iqbal, M. J. and Kashif, I.: Influence of Icelandic Low pressure on winter
precipitation variability over northern part of Indo-Pak Region Arabian, J.
Geosci., 6, 543–548, https://doi.org/10.1007/s12517-011-0355-y, 2013.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: The evolution of climate over
the last millennium, Science, 292, 662–667, 2001.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol., 43,
170–181, 2004.
Kain, J. S. and Fritsch, J. M.: A One-dimensional entraining/detraining plume model and its
application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain–Fritsch scheme, in:
The Representation of Cumulus Convection in Numerical Models, edited by:
Emanuel,
K. A. and Raymond, D. J., American Meteorological Society, Meteorological Monographs, 46, 1–246, https://doi.org/10.1175/0065-9401-24.46.1, 1993.
Kaul, V. and Qadri, B. A.: Seasons of Kashmir, Geographic Revison India,
41, 123–130, 1979.
Khattak, M. S., Babel M. S., and Sharif, M.: Hydro-meteorological trends in
the upper Indus River basin in Pakistan, Inter-Research, Clim. Res.,
46, 103–119, https://doi.org/10.3354/cr00957, 2011.
Knutti, R., Rogelj, J., Sedláček, J., and Fischer, E. M.: A scientific
critique of the two-degree climate change target, Nat. Geosci., 9,
13–18, 2016.
Kohler, T. and Maselli, D.: Mountains and climate change from understanding
to action, Swiss Agency for Development and Cooperation, Berne, 2009.
Kulkarni, A. V., Mathur, P., Rathore, B. P., Suja, A., Thakur, N., and
Manoj, K.: Effect of global warming on snow ablation pattern in the
Himalaya, Curr. Sci. India, 83, 120–123, 2002.
Kumar, N., Yadav, B. P., Gahlot, S., and Singh, M.: Winter frequency of western
disturbances and precipitation indices over Himachal Pradesh, India:
1977–2007, Atmósfera, 28, 63–70, https://doi.org/10.1016/S0187-6236(15)72160-0, 2015.
Kumar, V. and Jain, S. K.: Trends in seasonal and annual rainfall and rainy
days in Kashmir valley in the last century, Quatern. Int., 212, 64–69,
https://doi.org/10.1016/j.quaint.2009.08.006, 2010.
Kunz, T., Fraedrich, K., and Lunkeit, F.: Response of idealized baroclinic
wave life cycles to stratospheric flow conditions, J. Atmos. Sci., 66,
2288–2302, https://doi.org/10.1175/2009JAS2827.1, 2009.
Langodan, S., Yesubabu, V., and Hoteit, I.: The impact of atmospheric data
assimilation on wave simulations in the Red Sea, Ocean Eng., 116,
200–215, https://doi.org/10.1016/j.oceaneng.2016.02.020, 2016.
Liu, X., Cheng, Z., Yan, L., and Yin, Z. Y.: Elevation dependency of recent and
future minimum surface air temperature trends in the Tibetan Plateau and Its
surroundings, Global Planet Change, 68, 164–174, 2009.
Liu, X. B. and Chen, B.: Climatic warming in the Tibetan Plateau during recent
decades, J. Climate, 20, 1729–1742, 2000.
Lo, J. C. F., Yang, Z. L., and Pielke Sr., R. A.: Assessment of three dynamical
climate downscaling methods using the weather research and forecasting (WRF)
model, J. Geophys. Res., 113, D09112, https://doi.org/10.1029/2007JD009216, 2008.
Lu, J., Sun, L., Wu, Y., and Chen, G.: The role of subtropical irreversible
PV mixing in the zonal mean circulation response to global warming-like
thermal forcing, J. Climate, 27, 2297–2316, https://doi.org/10.1175/JCLI-D-13-00372.1,
2014.
Madala, S., Satyanarayana, A. N. V., and Narayana Rao, T.: Performance
evaluation of PBL and cumulus parameterization schemes of WRF ARW model in
simulating severe thunderstorm events over Gadanki MST radar facility –
Case study, Atmos. Res., 139, 1–17, https://doi.org/10.1016/j.atmosres.2013.12.017,
2014.
Madhura, R. K., Krishnan, R., Revadekar, J. V., Mujumdar, M., and Goswami, B.
N.: Changes in western disturbances over the Western Himalayas in a warming
environment, Clim. Dynam., 44, 1157–1168, https://doi.org/10.1007/s00382-014-2166-9, 2015.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern Hemisphere
Temperature During Past Millennium: Inferences, uncertainties and
Limitations, Geophys. Res. Lett., 26, 759–762, 1999.
Martius, O., Sodemann, H., Joos, H., Pfahl, S., Winschall, A.,
Croci-Maspoli, M., Graf, M., Madonna, E., Mueller, B., Schemm, S.,
Sedlaćek, J., Sprenger, M., and Wernli, H.: The role of upper-level
dynamics and surface processes for the Pakistan flood of July 2010, Q. J. Roy.
Meteor. Soc., 139, 1780–1797, https://doi.org/10.1002/qj.2082, 2012.
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the
stratosphere, Nature, 305, 593–600, 1983.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.
F. B., Stouffer, R. J., and Taylor, K. E.: The WRCP CMIP3 multi-model
dataset: A new era in climate change research, B. Am. Meteorol. Soc., 88,
1383–1394, 2007.
Mlawer, E. J., Taubnam, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer
for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J.
Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Mooley, D. A. and Parthasarthy, B.: Fluctuations of all India summer monsoon
rainfall during 1871–1978, Clim. Change, 6, 287–301, 1984.
Murtaza, K. O. and Romshoo, S. A.: Recent Glacier Changes in the Kashmir
Alpine Himalayas, India, Geocarto International, 32, 188–205, 2016.
Nibanupudi, H. K., Gupta, A. K., and Rawat, P. K.: Mountain Hazards and
Disaster Risk (2015): Mitigating Climatic and Human Induced Disaster Risks
Through Ecosystem Resilience: Harmonizing Built and Natural Environments in
the KHK Region, edited by: Nibanupudi, H. K. and Shaw, R., Springer, Tokyo, Japan, 139–158,
https://doi.org/10.1007/978-4-431-55242-0, 2015.
Niranjan Kumar, K., Phanikumar, D. V., Ouarda, T. B. M. J., Rajeevan, M., Naja, M., and Shukla, K. K.:
Modulation of surface meteorological parameters by extratropical planetary-scale
Rossby waves, Ann. Geophys., 34, 123–132, https://doi.org/10.5194/angeo-34-123-2016, 2016.
Ogura, Y. and Yoshizaki, M.: Numerical study of orographic convective precipitation over the
eastern Arabian Sea and the Ghat Mountains during the summer monsoon, J. Atmos. Sci., 45,
2097–2122, 1988.
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais,
P., Le Quéré, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge to keep global warming below
2 ∘C, Nature, Clim. Change, 3, 4–6, https://doi.org/10.1038/nclimate1783, 2013.
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasi
resonant amplification of planetary waves and recent Northern Hemisphere
weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341, 2013.
Pettitt, A. N.: A non-parametric approach to the change point problem, App.
Stats., 28, 126–135, 1979.
Postel, G. A. and Hitchman, M. H.: Climatology of Rossbywave breaking along
the subtropical tropopause, J. Atmos. Sci., 56, 359–373, 1999.
Priyanka, G., Ramkumar, T. K., Yesubabu, V., and Naidu, C. V.:
Convection-generated high-frequency gravity waves as observed by MST radar
and simulated by WRF model over the Indian tropical station of Gadanki, Q. J. Roy. Meteor.
Soc., 142, 3036–3049,
https://doi.org/10.1002/qj.2887, 2016.
Radziejewski, M., Bardossy, A., and Kundzewicz, Z. W.: Detection of change in
river flow using phase randomization, Hydrol. Sci. J., 45,
547–558, 2000.
Rashid, I., Romshoo, A. S., Chaturvedi, R. K., Ravindranath, N. H., Raman
Sukumar, Mathangi Jayaraman, Thatiparthi Vijaya Lakshmi, and Jagmohan Sharma:
Projected Climate Change Impacts on Vegetation Distribution over Kashmir
Himalaya, Clim. Change, 132, 601–613, https://doi.org/10.1007/s10584-015-1456-5, 2015.
Rasmussen, K. L. R. and Houze, R.: A Flash-Flooding Storm At The Steep Edge
Of High Terrain: Disaster in the Himalayas, B. Am. Meteorol. Soc., 93,
1713–1724, https://doi.org/10.1175/BAMS-D-11-00236.1, 2012.
Rasmussen, K. L. and Houze Jr., R. A.: Convective initiation near the Andes in subtropical
South America, Mon. Weather Rev., 144, 2351–2374, https://doi.org/10.1175/MWR-D-15-0058.1,
2016.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich , M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rivière, G.: A dynamical interpretation of the poleward shift of the jet
streams in global warming scenarios, J. Atmos. Sci., 68, 1253–1272,
https://doi.org/10.1175/2011JAS3641.1, 2011.
Roe, G. H., Montgomery, D. R., and Hallet, B.: Orographic climate feedbacks
and the relief of mountain ranges, J. Geophys. Res., 108, 108, 2315–2327, https://doi.org/10.1029/2001JB001521, 2003.
Romatschke, U. and Houze, R.: Characteristics of Precipitating Convective
Systems in the Premonsoon Season of South Asia, J. Hydrometeorol., 12,
157–180, https://doi.org/10.1175/2010JHM1311.1, 2011.
Romshoo, S. A. and Rashid, I.: Assessing the impacts of changing land cover
and climate on Hokersar wet land in Indian Himalayas, Arab. J.
Geosci., 7, 143–160, https://doi.org/10.1007/s12517-012-0761-9, 2014.
Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., and Zaz, S. N.:
Implications of Shrinking Cryosphere under Changing Climate on the Stream
flows of the Upper Indus Basin, Arct. Antarct. Alp. Res.,
47, 627–644, 2015.
Romshoo, S. A., Altaf, S., Rashid, I., and Dar, R. A.: Climatic, geomorphic
and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin
of Kashmir, India, Geomatics, Natural Hazards and Risk, 9, 224–248,
2017.
Schubert, S., Wang, H., and Suarez, M.: Warm season subseasonal variability
and climate extremes in the Northern Hemisphere: The Role of Stationary
Rossby Waves, J. Climate, 24, 4773–4792, 2011.
Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves
favour particular regional weather extremes, Nat. Clim. Change, 4,
704–709, 2014.
Sharif, M., Archer, D. R., Fowler, H. J., and Forsythe, N.: Trends in timing and
magnitude of flow in the Upper Indus Basin, Hydrol. Earth Syst. Sci., 17, 1503–1516, https://doi.org/10.5194/hess-17-1503-2013,
2013.
Sheikh, M. M., Manzoor, N., Adnan, M., Ashraf, J., and Khan, A. M.: Climate
Profile and pastclimate changes in Pakistan GCISC-RR-01Global Change Impact
studies Center Islamabad, Pakistan, ISBN: 978-969-9395-04, 2009.
Shekhar, M. S., Chand, H., Kumar, S., and Ganju, A.: Climate change
studies in western Himalaya, Ann. Glaciol., 51, 105–112, 2010.
Shrestha, A. B., Wake, C. P., Dibb, J. E., and Mayewski, P. A: Precipitation
fluctuations in the Nepal Himalaya and its vicinity and relationship with
some large scale climatological parameters, Int. J. Climatol., 20,
317–327, 1999.
Shrestha, M. L.: Interannual variation of summer monsoon rainfall over Nepal
and its relation to Southern Oscillation Index, Meteor. Atmos. Phys.,
75, 21–28, https://doi.org/10.1007/s007030070012, 2000.
Sinha Ray, K. C. and Srivastava, A. K.: Is there any change in extreme
events like drought and heavy rainfall?, Curr. Sci. India, 79, 155–158,
2000.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L. (Eds.): Climate change 2007: the physical
science basis, Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
996 pp., 2007.
Srinivas, C. V., Hariprasad, D., Bhaskar Rao, D. V., Anjaneyulu, Y.,
Baskaran, R., and Venkatraman, B.: Simulation of the Indian summer monsoon
regional climate using advanced research WRF model, Int. J. Climatol., 33,
1195–1210. https://doi.org/10.1002/joc.3505, 2013.
Srinivas, C. V., Yesubabu, V., Hari Prasad, D., Hari Prasad, K. B. R. R.,
Greeshmaa, M. M., Baskarana, R., and Venkatramana, B.: Simulation of an extreme
heavy rainfall event over Chennai, India using WRF: Sensitivity to grid
resolution and boundary layer physics, Atmos. Res., 210, 66–82, https://doi.org/10.1016/j.atmosres.2018.04.014, 2018.
Swanson, D., Wooten, K., and Orr, T.: Buckets of ash track tephra flux from Halema'uma'u
crater, Hawai'i, Eos Trans., AGU, 90, 427–428, 2009.
Syed, F. S., Giorgi, F., Pal, J. S., and King, M. P.: Effect of remote forcings
on the winter precipitation of central southwest Asia part 1: observations,
Theor. Appl. Climatol., 86, 147–160, https://doi.org/10.1007/s00704-005-0217-1, 2006.
Tandon, N. F., Gerber, E. P., Sobel, A. H., and Polvani, L. M.: Understanding
Hadley cell expansion versus contraction: Insights from simplified models
and implications for recent observations, J. Climate, 26, 4304–4321,
https://doi.org/10.1175/JCLI-D-12-00598.1, 2013.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Henderson,
K., and Mashiotta, T. A.: Tropical glacier and ice core evidence of climate change on
annual to millennial time scales, Clim. Change, 59, 137–155, 2003.
Viswanadhapalli, Y., Dasari, H. P., Langodan, S., Challa, V. S., and Hoteit,
I.: Climatic features of the Red Sea from a regional assimilative model.
Int. J. Climatol., 37, 2563–2581, https://doi.org/10.1002/joc.4865, 2017.
Vose, R. S., Easterling, D. R., and Gleason, B.: Maximum and minimum
temperature trends for the globe: an update through 2004, Geophys. Res.
Lett., 32, 1–5, 2005.
Waugh, D. W. and Polvani, L. M.: Climatology of intrusions in to the
tropical upper troposphere, Geophys. Res. Lett., 27, 3857–3860, 2000.
Wilcox, L. J., Charlton-Perez, A., and Gray, L. J.: Trends in austral jet
position in ensembles of high-and low-top CMIP5 models, J. Geophys. Res.,
117, D13115, https://doi.org/10.1029/2012JD017597, 2012.
Wiltshire, A. J.: Climate change implications for the glaciers of the Hindu Kush,
Karakoram and Himalayan region, The Cryosphere, 8, 941–958, https://doi.org/10.5194/tc-8-941-2014, 2014.
Wittman, M. A., Charlton, A. J., and Polvani, L. M.: The effect of lower
stratospheric shear on baroclinic instability, J. Atmos. Sci., 64, 479–496,
https://doi.org/10.1175/JAS3828.1, 2007.
World Meteorological Organization: Guide to Meteorological practices, 2nd
edn., WMO No 168, Tech Paper, 82, Geneva, Switzerland, 1970.
Yunling, H. and Yiping, Z.: Climate change from 1960–2000 in the Lancang
River Valley, China, Mt. Res. Dev., 25, 341–348, 2005.
Zarenistana, K. M., Dhorde, A. G., and Kripalani, R. H.: Temperature
analysis over southwest Iran: trends and projections, Theor.
Appl. Climatol., 116, 103–117, 2014.
Short summary
This paper is of first of its kind for the Jammu and Kashmir (western Himalayas) region, India. It shows the clear relation between the upper tropospheric Rossby wave activity (potential vorticity at the 350 K potential temperature and 200 mb level surface pressure) and the surface weather parameters (e.g., precipitation) over a period of 3 decades during 1980–2016. This indicates that the climatic weather pattern over the Kashmir region is influenced mostly by global climate change processes.
This paper is of first of its kind for the Jammu and Kashmir (western Himalayas) region, India....
Altmetrics
Final-revised paper
Preprint