Articles | Volume 18, issue 11
Atmos. Chem. Phys., 18, 8313–8330, 2018
https://doi.org/10.5194/acp-18-8313-2018
Atmos. Chem. Phys., 18, 8313–8330, 2018
https://doi.org/10.5194/acp-18-8313-2018

Research article 14 Jun 2018

Research article | 14 Jun 2018

Multivariate analysis of Kelvin wave seasonal variability in ECMWF L91 analyses

Marten Blaauw and Nedjeljka Žagar

Related authors

Indices of the Hadley circulation strength and associated circulation trends
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-50,https://doi.org/10.5194/wcd-2021-50, 2021
Preprint under review for WCD
Short summary
Equality of opportunities for next generation researchers in Europe: a snapshot discussion motivated by the ERC statistics
Nedjeljka Žagar and Thomas Schäfer
Adv. Geosci., 53, 65–72, https://doi.org/10.5194/adgeo-53-65-2020,https://doi.org/10.5194/adgeo-53-65-2020, 2020
Short summary
Gravity waves excited during a minor sudden stratospheric warming
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Söder, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018,https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions
R. Žabkar, L. Honzak, G. Skok, R. Forkel, J. Rakovec, A. Ceglar, and N. Žagar
Geosci. Model Dev., 8, 2119–2137, https://doi.org/10.5194/gmd-8-2119-2015,https://doi.org/10.5194/gmd-8-2119-2015, 2015
Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community
N. Žagar, A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka
Geosci. Model Dev., 8, 1169–1195, https://doi.org/10.5194/gmd-8-1169-2015,https://doi.org/10.5194/gmd-8-1169-2015, 2015
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021,https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021,https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Convective self–aggregation in a mean flow
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021,https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary
The potential for geostationary remote sensing of NO2 to improve weather prediction
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021,https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary

Cited articles

Alexander, M. J. and Ortland, D. A.: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data, J. Geophys. Res., 115, D24111, https://doi.org/10.1029/2010JD014782, 2010. a, b, c, d, e, f, g
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmospheric dynamics, Academic Press, 1987. a, b
Boyd, J. P.: The Effects of Latitudinal Shear on Equatorial Waves. Part II: Applications to the Atmosphere, J. Atmos. Sci., 35, 2259–2267, 1978. a
Boyd, J. P.: Dynamics of the Equatorial Ocean, Springer-Verlag GmbH Germany, 2018. a, b, c
Download
Short summary
The equatorial Kelvin wave (KW) is the most studied wave feature of the tropical atmosphere, yet not well quantified. Our study simultaneously analyses wind and temperature fields of KWs from ECMWF analyses without any prior data filtering. We provide the KW energy spectrum and its seasonal variability for three KW frequency ranges. We developed a webpage to show the spatial structure of KWs propagating in time through the ECMWF data, http://modes.fmf.uni-lj.si, updated on a daily basis.
Altmetrics
Final-revised paper
Preprint