Articles | Volume 18, issue 7
Atmos. Chem. Phys., 18, 4597–4615, 2018
https://doi.org/10.5194/acp-18-4597-2018
Atmos. Chem. Phys., 18, 4597–4615, 2018
https://doi.org/10.5194/acp-18-4597-2018

Research article 05 Apr 2018

Research article | 05 Apr 2018

Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

Chaim I. Garfinkel et al.

Related authors

Stationary Waves and Upward Troposphere-Stratosphere Coupling in S2S Models
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-58,https://doi.org/10.5194/wcd-2021-58, 2021
Preprint under review for WCD
Short summary
Long Range Prediction and the Stratosphere
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniella I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-719,https://doi.org/10.5194/acp-2021-719, 2021
Preprint under review for ACP
Short summary
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021,https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Influence of Arctic stratospheric ozone on surface climate in CCMI models
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019,https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Time-varying changes in the simulated structure of the Brewer–Dobson Circulation
Chaim I. Garfinkel, Valentina Aquila, Darryn W. Waugh, and Luke D. Oman
Atmos. Chem. Phys., 17, 1313–1327, https://doi.org/10.5194/acp-17-1313-2017,https://doi.org/10.5194/acp-17-1313-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
The Brewer–Dobson circulation in CMIP6
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021,https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021,https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021,https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021,https://doi.org/10.5194/acp-21-8615-2021, 2021
Short summary
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021,https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary

Cited articles

Aquila, V., Swartz, W. H., Waugh, D. W., Colarco, P. R., Pawson, S., Polvani, L. M., and Stolarski, R. S.: Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings, J. Geophys. Res.-Atmos., 121, 8067–8082, 2016. a, b, c, d, e, f, g, h
Avery, M. A., Davis, S. M., Rosenlof, K. H., Ye, H., and Dessler, A.: Large anomalies in lower stratospheric water vapor and ice during the 2015-2016 El Nino, Nat. Geosci., 10, 405–409, https://doi.org/10.1038/ngeo2961, 2017. a, b, c, d, e
Bonazzola, M. and Haynes, P.: A trajectory-based study of the tropical tropopause region, J. Geophys. Res.-Atmos., 109, D20112, https://doi.org/10.1029/2003JD004356, 2004. a, b, c, d
Brinkop, S., Dameris, M., Jöckel, P., Garny, H., Lossow, S., and Stiller, G.: The millennium water vapour drop in chemistry-climate model simulations, Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, 2016. a, b, c, d
Calvo, N., Garcia, R., Randel, W., and Marsh, D.: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340, 2010. a, b, c, d
Download
Short summary
The impact of El Niño in the lower stratosphere is nonlinear in spring. While moderate El Niño events lead to cooling in this region, strong El Niño events appear to lead to warming, and hence the water vapor response is nonlinear too. The net effect is that strong El Nino events, such as in 1997/1998 and 2015/2016, lead to qualitatively different water vapor impacts as compared to moderate El Nino events.
Altmetrics
Final-revised paper
Preprint