Articles | Volume 17, issue 14
https://doi.org/10.5194/acp-17-9205-2017
https://doi.org/10.5194/acp-17-9205-2017
Research article
 | 
31 Jul 2017
Research article |  | 31 Jul 2017

Uncertainty assessment and applicability of an inversion method for volcanic ash forecasting

Birthe Marie Steensen, Arve Kylling, Nina Iren Kristiansen, and Michael Schulz

Related authors

Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017,https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
The operational eEMEP model version 10.4 for volcanic SO2 and ash forecasting
Birthe M. Steensen, Michael Schulz, Peter Wind, Álvaro M. Valdebenito, and Hilde Fagerli
Geosci. Model Dev., 10, 1927–1943, https://doi.org/10.5194/gmd-10-1927-2017,https://doi.org/10.5194/gmd-10-1927-2017, 2017
Short summary
A model study of the pollution effects of the first 3 months of the Holuhraun volcanic fissure: comparison with observations and air pollution effects
Birthe Marie Steensen, Michael Schulz, Nicolas Theys, and Hilde Fagerli
Atmos. Chem. Phys., 16, 9745–9760, https://doi.org/10.5194/acp-16-9745-2016,https://doi.org/10.5194/acp-16-9745-2016, 2016
Short summary
MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015,https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
Atmos. Chem. Phys., 25, 3109–3130, https://doi.org/10.5194/acp-25-3109-2025,https://doi.org/10.5194/acp-25-3109-2025, 2025
Short summary
Characterization of brown carbon absorption in different European environments through source contribution analysis
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025,https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025,https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025,https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
A global dust emission dataset for estimating dust radiative forcings in climate models
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025,https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary

Cited articles

Arason, P., Petersen, G. N., and Bjornsson, H.: Plume-top altitude time-series during 2010 volcanic eruption of Eyjafjallajökull, Icelandic Meteorological Office, Reykjavik, https://doi.org/10.1594/PANGAEA.760690, 2011.
Boichu, M., Menut, L., Khvorostyanov, D., Clarisse, L., Clerbaux, C., Turquety, S., and Coheur, P.-F.: Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallajökull eruption case study, Atmos. Chem. Phys., 13, 8569–8584, https://doi.org/10.5194/acp-13-8569-2013, 2013.
Casadevall, T.: The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations, J. Volcanol. Geoth. Res., 62, 301–316, https://doi.org/10.1016/0377-0273(94)90038-8, 1994.
Clarisse, L., Prata, F., Lacour, J. L., Hurtmans, D., Clerbaux, C., and Coheur, P. F.: A correlation method for volcanic ash detection using hyperspectral infrared measurements, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044828, 2010.
Corradini, S., Spinette, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer Measurements, J. Appl. Remote Sens., 2, 023550, https://doi.org/10.1117/1.3046674 674, 2008.
Download
Short summary
An inversion method is tested in a forecasting setting for constraining ash dispersion by satellite observations. The sensitivity of a priori and satellite uncertainties is tested for the a posteriori term. The a posteriori is also tested with four different assumptions affecting the retrieved ash satellite data. In forecasting mode, the a posteriori changes after only 12 h of satellite observations and produces better forecasts than a priori.
Share
Altmetrics
Final-revised paper
Preprint