Articles | Volume 17, issue 14
Atmos. Chem. Phys., 17, 9205–9222, 2017
https://doi.org/10.5194/acp-17-9205-2017
Atmos. Chem. Phys., 17, 9205–9222, 2017
https://doi.org/10.5194/acp-17-9205-2017

Research article 31 Jul 2017

Research article | 31 Jul 2017

Uncertainty assessment and applicability of an inversion method for volcanic ash forecasting

Birthe Marie Steensen et al.

Related authors

Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017,https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
The operational eEMEP model version 10.4 for volcanic SO2 and ash forecasting
Birthe M. Steensen, Michael Schulz, Peter Wind, Álvaro M. Valdebenito, and Hilde Fagerli
Geosci. Model Dev., 10, 1927–1943, https://doi.org/10.5194/gmd-10-1927-2017,https://doi.org/10.5194/gmd-10-1927-2017, 2017
Short summary
A model study of the pollution effects of the first 3 months of the Holuhraun volcanic fissure: comparison with observations and air pollution effects
Birthe Marie Steensen, Michael Schulz, Nicolas Theys, and Hilde Fagerli
Atmos. Chem. Phys., 16, 9745–9760, https://doi.org/10.5194/acp-16-9745-2016,https://doi.org/10.5194/acp-16-9745-2016, 2016
Short summary
MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015,https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021,https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021,https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Atmos. Chem. Phys., 21, 13247–13267, https://doi.org/10.5194/acp-21-13247-2021,https://doi.org/10.5194/acp-21-13247-2021, 2021
Short summary
Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning
Chien Wang
Atmos. Chem. Phys., 21, 13149–13166, https://doi.org/10.5194/acp-21-13149-2021,https://doi.org/10.5194/acp-21-13149-2021, 2021
Short summary
Improving prediction of trans-boundary biomass burning plume dispersion: from northern peninsular Southeast Asia to downwind western North Pacific Ocean
Maggie Chel-Gee Ooi, Ming-Tung Chuang, Joshua S. Fu, Steven S. Kong, Wei-Syun Huang, Sheng-Hsiang Wang, Sittichai Pimonsree, Andy Chan, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 12521–12541, https://doi.org/10.5194/acp-21-12521-2021,https://doi.org/10.5194/acp-21-12521-2021, 2021
Short summary

Cited articles

Arason, P., Petersen, G. N., and Bjornsson, H.: Plume-top altitude time-series during 2010 volcanic eruption of Eyjafjallajökull, Icelandic Meteorological Office, Reykjavik, https://doi.org/10.1594/PANGAEA.760690, 2011.
Boichu, M., Menut, L., Khvorostyanov, D., Clarisse, L., Clerbaux, C., Turquety, S., and Coheur, P.-F.: Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallajökull eruption case study, Atmos. Chem. Phys., 13, 8569–8584, https://doi.org/10.5194/acp-13-8569-2013, 2013.
Casadevall, T.: The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations, J. Volcanol. Geoth. Res., 62, 301–316, https://doi.org/10.1016/0377-0273(94)90038-8, 1994.
Clarisse, L., Prata, F., Lacour, J. L., Hurtmans, D., Clerbaux, C., and Coheur, P. F.: A correlation method for volcanic ash detection using hyperspectral infrared measurements, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044828, 2010.
Corradini, S., Spinette, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer Measurements, J. Appl. Remote Sens., 2, 023550, https://doi.org/10.1117/1.3046674 674, 2008.
Download
Short summary
An inversion method is tested in a forecasting setting for constraining ash dispersion by satellite observations. The sensitivity of a priori and satellite uncertainties is tested for the a posteriori term. The a posteriori is also tested with four different assumptions affecting the retrieved ash satellite data. In forecasting mode, the a posteriori changes after only 12 h of satellite observations and produces better forecasts than a priori.
Altmetrics
Final-revised paper
Preprint