Articles | Volume 17, issue 9
https://doi.org/10.5194/acp-17-5973-2017
https://doi.org/10.5194/acp-17-5973-2017
Research article
 | 
16 May 2017
Research article |  | 16 May 2017

Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories

Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace

Related authors

A climatology of thermodynamic vs. dynamic Arctic wintertime sea ice thickness effects during the CryoSat-2 era
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 17, 2871–2889, https://doi.org/10.5194/tc-17-2871-2023,https://doi.org/10.5194/tc-17-2871-2023, 2023
Short summary
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022,https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic
Yinghui Liu
Atmos. Chem. Phys., 22, 8151–8173, https://doi.org/10.5194/acp-22-8151-2022,https://doi.org/10.5194/acp-22-8151-2022, 2022
Short summary
Multidecadal Arctic sea ice thickness and volume derived from ice age
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020,https://doi.org/10.5194/tc-14-1325-2020, 2020
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
Atmos. Chem. Phys., 24, 14239–14256, https://doi.org/10.5194/acp-24-14239-2024,https://doi.org/10.5194/acp-24-14239-2024, 2024
Short summary
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489,https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary

Cited articles

Blanchard, Y., Pelon, J., Eloranta, E. W., Moran, K. P., Delanoë, J., and Sèze, G.: A synergistic analysis of cloud cover and vertical distribution from A-Train and ground-based sensors over the high Arctic station EUREKA from 2006 to 2010, J. Appl. Meteorol. Climatol., 53, 2553–2570, 2014.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhan, X. Y.: Clouds and aerosols, Climate Change 2013: The Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Devasthale, A., Tjernstrom, M., Karlsson, K.-G., Thomas, M. A., Jones, C., Sedlar, J., and Omar, A. H.: The vertical distribution of thin features over the Arctic analysed from CALIPSO observations, Tellus B, 63, 77–85, https://doi.org/10.1111/j.1600-0889.2010.00516.x, 2011.
Devasthale, A., Tjernström, M., Caian, M., Thomas, M. A., Kahn, B. H., and Fetzer, E. J.: Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites, Atmos. Chem. Phys., 12, 10535–10544, https://doi.org/10.5194/acp-12-10535-2012, 2012.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012.
Download
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Altmetrics
Final-revised paper
Preprint