Articles | Volume 15, issue 11
Atmos. Chem. Phys., 15, 6113–6125, 2015
Atmos. Chem. Phys., 15, 6113–6125, 2015

Research article 04 Jun 2015

Research article | 04 Jun 2015

Ice crystal concentrations in wave clouds: dependencies on temperature, D > 0.5 μm aerosol particle concentration, and duration of cloud processing

L. Peng, J. R. Snider, and Z. Wang L. Peng et al.
  • Department of Atmospheric Sciences, University of Wyoming, Laramie, WY, USA

Abstract. Model equations used to either diagnose or prognose the concentration of heterogeneously nucleated ice crystals depend on combinations of cloud temperature, aerosol properties, and elapsed time of supersaturated-vapor or supercooled-liquid conditions. The validity of these equations has been questioned. Among many uncertain factors there is a concern that practical limitations on aerosol particle time of exposure to supercooled-liquid conditions, within ice nucleus counters, has biased the predictions of a diagnostic model equation. In response to this concern, this work analyzes airborne measurements of crystals made within the downwind glaciated portions of wave clouds. A streamline model is used to connect a measurement of aerosol concentration, made upwind of a cloud, to a downwind ice crystal (IC) concentration. Four parameters are derived for 80 streamlines: (1) minimum cloud temperature along the streamline, (2) aerosol particle concentration (diameter, D > 0.5 μm) measured within ascending air upwind of the cloud, (3) IC concentration measured in descending air downwind, and (4) the duration of water-saturated conditions along the streamline. The latter are between 38 and 507 s and the minimum temperatures are between −34 and −14 °C. Values of minimum temperature, D > 0.5 μm aerosol concentration, and IC concentration are fitted using the equation developed for ice nucleating particles (INPs) by by DeMott et al. (2010; D10). Overall, there is reasonable agreement among measured IC concentrations, INP concentrations derived using D10's fit equation, and IC concentrations derived by fitting the airborne measurements with the equation developed by D10.

Short summary
The study analyzes a novel set of cloud measurements relevant to the genesis of atmospheric ice particles. Issues addressed are 1) the DeMott et al. (2010) formula describing the abundance of ice nucleating particles and the degree to which that formula is consistent with our in situ measurements, 2) the discrepancy between the DeMott et al. formula and measurements made in the AIDA chamber in Karlsruhe, Germany (Niemand et al., 2012), and 3) the time dependence of atmospheric ice nucleation.
Final-revised paper