Articles | Volume 17, issue 7
https://doi.org/10.5194/acp-17-4731-2017
https://doi.org/10.5194/acp-17-4731-2017
Research article
 | 
11 Apr 2017
Research article |  | 11 Apr 2017

Direct comparisons of ice cloud macro- and microphysical properties simulated by the Community Atmosphere Model version 5 with HIPPO aircraft observations

Chenglai Wu, Xiaohong Liu, Minghui Diao, Kai Zhang, Andrew Gettelman, Zheng Lu, Joyce E. Penner, and Zhaohui Lin

Related authors

Understanding processes that control dust spatial distributions with global climate models and satellite observations
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020,https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models
Chenglai Wu, Zhaohui Lin, and Xiaohong Liu
Atmos. Chem. Phys., 20, 10401–10425, https://doi.org/10.5194/acp-20-10401-2020,https://doi.org/10.5194/acp-20-10401-2020, 2020
Short summary
Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: experiments using variable-resolution CESM
Stefan Rahimi, Xiaohong Liu, Chenglai Wu, William K. Lau, Hunter Brown, Mingxuan Wu, and Yun Qian
Atmos. Chem. Phys., 19, 12025–12049, https://doi.org/10.5194/acp-19-12025-2019,https://doi.org/10.5194/acp-19-12025-2019, 2019
Short summary
CAM6 simulation of mean and extreme precipitation over Asia: sensitivity to upgraded physical parameterizations and higher horizontal resolution
Lei Lin, Andrew Gettelman, Yangyang Xu, Chenglai Wu, Zhili Wang, Nan Rosenbloom, Susan C. Bates, and Wenjie Dong
Geosci. Model Dev., 12, 3773–3793, https://doi.org/10.5194/gmd-12-3773-2019,https://doi.org/10.5194/gmd-12-3773-2019, 2019
Short summary
Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5)
Hunter Brown, Xiaohong Liu, Yan Feng, Yiquan Jiang, Mingxuan Wu, Zheng Lu, Chenglai Wu, Shane Murphy, and Rudra Pokhrel
Atmos. Chem. Phys., 18, 17745–17768, https://doi.org/10.5194/acp-18-17745-2018,https://doi.org/10.5194/acp-18-17745-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds
Gabrielle R. Leung, Stephen M. Saleeby, G. Alexander Sokolowsky, Sean W. Freeman, and Susan C. van den Heever
Atmos. Chem. Phys., 23, 5263–5278, https://doi.org/10.5194/acp-23-5263-2023,https://doi.org/10.5194/acp-23-5263-2023, 2023
Short summary
Mixed-phase direct numerical simulation: ice growth in cloud-top generating cells
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023,https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023,https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023,https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023,https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation, 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, 2000.
Bardeen, C. G., Gettelman, A., Jensen, E. J., Heymsfield, A., Conley, A. J., Delanoë, J., Deng, M., and Toon, O. B.: Improved cirrus simulations in a GCM using CARMA sectional microphysics, J. Geophys. Res., 118, 11679–11697, https://doi.org/10.1002/2013JD020193, 2013.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: A satellite simulation software for model assessment, Bull. Amer. Meteor. Soc., 92, 1023–1043, 2011.
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and Schanen, D. P.: Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model, J. Clim., 26, 9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535, 571–657, 2013.
Download
Short summary
This study utilizes a novel approach to directly compare the CAM5-simulated cloud macro- and microphysics with the collocated HIPPO observations for the period of 2009 to 2011. The model cannot capture the large spatial variabilities of observed RH, which is responsible for much of the model missing low-level warm clouds. A large portion of the RH bias results from the discrepancy in water vapor. The model underestimates the observed number concentration and ice water content.
Altmetrics
Final-revised paper
Preprint