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Abstract. In this study we evaluate cloud properties sim-
ulated by the Community Atmosphere Model version 5
(CAM5) using in situ measurements from the HIAPER Pole-
to-Pole Observations (HIPPO) campaign for the period of
2009 to 2011. The modeled wind and temperature are nudged
towards reanalysis. Model results collocated with HIPPO
flight tracks are directly compared with the observations, and
model sensitivities to the representations of ice nucleation
and growth are also examined. Generally, CAM5 is able to
capture specific cloud systems in terms of vertical configura-
tion and horizontal extension. In total, the model reproduces
79.8 % of observed cloud occurrences inside model grid
boxes and even higher (94.3 %) for ice clouds (T ≤−40 ◦C).
The missing cloud occurrences in the model are primarily
ascribed to the fact that the model cannot account for the
high spatial variability of observed relative humidity (RH).
Furthermore, model RH biases are mostly attributed to the
discrepancies in water vapor, rather than temperature. At the
micro-scale of ice clouds, the model captures the observed
increase of ice crystal mean sizes with temperature, albeit
with smaller sizes than the observations. The model under-
estimates the observed ice number concentration (Ni) and
ice water content (IWC) for ice crystals larger than 75 µm
in diameter. Modeled IWC and Ni are more sensitive to the
threshold diameter for autoconversion of cloud ice to snow

(Dcs), while simulated ice crystal mean size is more sensitive
to ice nucleation parameterizations than to Dcs. Our results
highlight the need for further improvements to the sub-grid
RH variability and ice nucleation and growth in the model.

1 Introduction

Cirrus clouds, located at high altitudes and composed of ice
crystals, are one of the key components in the climate sys-
tem. They cover about 30 % of the globe (Wang et al., 1996;
Wylie and Menzel, 1999). They have a significant impact on
the earth’s radiation balance via two different effects: scat-
tering and reflecting the incoming shortwave solar radiation
back to space, which leads to a cooling effect on the planet,
and absorbing and re-emitting terrestrial longwave radiation,
leading to a warming effect (Liou, 1986; Ramanathan and
Collins, 1991; Corti et al., 2005). The net radiative effect is
thus a balance of these two effects and mainly depends on
the amount, microphysical, and optical properties of cirrus
clouds (Kay et al., 2006; Fusina et al., 2007; Gettelman et
al., 2012; Tan et al., 2016). Furthermore, as the efficiency of
dehydration at the tropical tropopause layer is strongly influ-
enced by the microphysical processes within cirrus clouds,
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cirrus clouds can also regulate the humidity of air entering
the stratosphere and are recognized as an important modu-
lator for water vapor in the upper troposphere and the lower
stratosphere (Gettelman et al., 2002; Wang and Penner, 2010;
Jensen et al., 2013; Dinh et al., 2014).

Despite their important role in the climate system, there
are still large uncertainties in the representation of cirrus
clouds in global climate models (GCMs) (Boucher et al.,
2013). The uncertainties are the result of several different
aspects. First, our understanding of processes initiating the
cirrus cloud formation is still limited (DeMott et al., 2003;
Kärcher and Spitchtinger, 2009; Hoose and Möhler, 2012).
Ice crystals can form via the homogeneous nucleation of
soluble aerosol particles and the heterogeneous nucleation
associated with insoluble or partly insoluble aerosol parti-
cles (e.g., Hagg et al., 2003; Liu and Penner, 2005; Wang
and Liu, 2014). Homogeneous nucleation generally requires
high ice supersaturation typically of 40–60 % and occurs
at temperatures colder than about −37 ◦C. It can be fairly
well represented by nucleation theory based on laboratory
results (Koop et al., 2000). Heterogeneous nucleation is ini-
tiated by certain types of aerosols (e.g., mineral dust and bi-
ological aerosols) that act as ice nucleating particles (INPs),
which can nucleate ice particles at significantly lower ice su-
persaturations in the environment. Currently there are still
large unknowns about the types of aerosol, modes of ac-
tion (e.g., immersion/condensation, deposition, and contact),
and the efficiencies of heterogeneous nucleation in the atmo-
sphere (Hoose and Möhler, 2012). Other ice microphysical
processes (e.g., ice aggregation, deposition/sublimation, and
sedimentation) as well as interactions among cirrus micro-
physical properties, macroscopic properties (e.g., spatial ex-
tent), and meteorological fields could further render the inter-
pretation of observed ice cloud properties challenging (Diao
et al., 2013; Krämer et al., 2016).

In addition to our limited understanding of ice microphys-
ical processes, it is difficult for GCMs with coarse spatial
resolution (e.g., tens to hundreds of kilometers in the hor-
izontal direction and a kilometer in the vertical) to capture
the sub-grid variability of dynamical and microphysical pro-
cesses that are vital for ice cloud formation and evolution.
The observed microphysical properties of cirrus clouds vary
significantly in time and space (e.g., Hoyle et al., 2005; Diao
et al., 2013, 2014a; Jensen et al., 2013), associated with vari-
ability in relative humidity (RH), temperature, and vertical
wind speed. The spatial extent of clouds is represented in
GCMs by diagnosing the cloud fraction in individual model
grid boxes using a parameterization. Such a cloud fraction
representation needs to be validated with observations in or-
der to identify model biases and to elucidate the reasons be-
hind these biases for future model improvement.

Two types of observational data are currently available for
validating modeled cirrus cloud properties: in situ aircraft
measurements (e.g., Krämer et al., 2009; Lawson et al., 2011;
Diao et al., 2013) and remote-sensing data from spaceborne

or ground-based instruments (Mace et al., 2005; Deng et al.,
2006, 2008; Li et al., 2012). Remote-sensing data may not
be directly comparable to model simulations due to the sam-
pling and algorithmic differences between GCM results and
remote-sensing retrievals unless a proper simulator, i.e., a
so-called “satellite simulator”, is adopted (Bodas-Salcedo et
al., 2011; Kay et al., 2012). In situ aircraft observations can
provide direct measurements of ice crystal properties such
as ice crystal number concentration and size distribution. In
particular, these observations are a good source of accurate
and high-frequency measurements, and they thus provide a
unique tool for constraining GCM cirrus parameterizations
(e.g., Zhang et al., 2013; Eidhammer et al., 2014). How-
ever, the grid scales of GCMs are much larger than those
sampled by in situ observations. Thus direct comparisons at
model grid scales are often hindered unless in situ observa-
tions are adequately distributed within the grid boxes and can
be scaled up. At the micro-scale level of cirrus clouds (sub-
grid scale), statistical comparisons between model simula-
tions and in situ observations, especially in terms of relation-
ships among cloud microphysical and meteorological vari-
ables, are desirable to provide a reliable evaluation of model
microphysics (e.g., Zhang et al., 2013; Eidhammer et al.,
2014). In addition, aircraft measurements are often limited
in their spatial and temporal coverage, which in some sense
limits the scope of model–observation comparisons that can
be conducted.

Previous studies have focused on the evaluation of cirrus
clouds from free-running GCM simulations against in situ
observations (e.g., Wang and Penner, 2010; Zhang et al.,
2013; Eidhammer et al., 2014). However, since the model
meteorology was not constrained by conditions that were
representative of the time of the observations, the model bi-
ases could not be exclusively ascribed to errors in the cirrus
parameterizations. Recently, a nudging technique has been
developed to allow the simulated meteorology to be more
representative of global reanalysis/analysis fields, and thus
the comparison between model simulations and observations
is more straightforward for the interpretation and attribution
of model biases (Kooperman et al., 2012; K. Zhang et al.,
2014). In such simulations, as the meteorology (winds and
temperatures) in the GCM are synchronized with observed
meteorology, direct comparisons can be achieved by select-
ing model results that are collocated with observations in
space and time, and thus the model outputs can be evaluated
in a more rigorous manner.

In this study, we use the in situ aircraft measurements from
the National Science Foundation (NSF) HIAPER Pole-to-
Pole Observations (HIPPO) campaign (Wofsy et al., 2011)
to evaluate the cloud properties simulated by the Com-
munity Atmosphere Model version 5 (CAM5). During the
HIPPO campaign, high-resolution (∼ 230 m, 1 Hz) and com-
prehensive measurements of ambient environmental condi-
tions (such as air temperature, pressure, water vapor, and
wind speed), cloud ice crystals, and droplets were obtained.
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HIPPO also provides a nearly pole-to-pole spatial coverage
and relatively long flight hours (∼ 400 h in total) in various
seasons, making it a valuable data set for GCM evaluations.
To facilitate the evaluation, CAM5 is run with specified dy-
namics where the model meteorological fields (horizontal
winds (U , V ) and temperature (T )) are nudged towards the
NASA Goddard Earth Observing System Model version 5
(GEOS-5) analysis, while water vapor, cloud hydrometeors,
and aerosols are calculated interactively by the model (Lar-
marque et al., 2012). Moreover, we select collocated CAM5
output along the HIPPO aircraft flight tracks and compare
the model simulations and observations directly. Our com-
parisons focus on cloud occurrence and cloud microphysi-
cal properties (e.g., ice water content, number concentration,
and size distribution of ice particles) with a specific focus on
cirrus clouds. We also investigate the sensitivities of model-
simulated cirrus cloud properties to the ice microphysics pa-
rameterizations as well as to the large-scale forcing associ-
ated with the nudging strategy.

The remainder of the paper is organized as follows. In
Sect. 2, we introduce the HIPPO observational data set and
instrumentations. The model simulations and experimental
design are described in Sect. 3. In Sect. 4, we examine the
model performance in simulating cirrus cloud occurrence
and microphysical properties and investigate the reasons be-
hind the model biases. Sensitivities of model results to dif-
ferent nudging strategies are presented in Sect. 5, and discus-
sions and conclusions in Sect. 6.

2 HIPPO aircraft observations

The NSF HIPPO Global campaign provided comprehensive
observations of clouds and aerosols from 87◦ N to 67◦ S over
the Pacific region during 2009 to 2011 (Wofsy et al., 2011).
Observations were acquired using the NSF’s Gulfstream V
(GV) research aircraft, operated by the National Center for
Atmospheric Research (NCAR). During this 3-year period,
five HIPPO deployments were carried out, with each deploy-
ment lasting from 23 days to about 1 month. In total, the
HIPPO campaign included 64 flights, 787 vertical profiles
(from the surface to up to 14 km), and 434 h of high-rate mea-
surements (http://hippo.ucar.edu). In this study, we use the
1 Hz in situ measurements of water vapor, temperature, num-
ber concentration, and size distribution of ice crystals as well
as the number concentration of cloud liquid droplets from
HIPPO#2–5. HIPPO#1 did not have ice probes on board.

Water vapor was measured by a 25 Hz, open-path vertical-
cavity surface-emitting laser (VCSEL) hygrometer (Zondlo
et al., 2010). The accuracy and precision of water vapor
measurements were ∼ 6 and ≤ 1 %, respectively. Tempera-
ture (T ) was recorded by the Rosemount temperature probe.
The accuracy and precision of T measurements were 0.5 and
0.01 K, respectively. Here saturation vapor pressure is calcu-
lated following Murphy and Koop (2005), who stated that

all the commonly used expressions for the saturation vapor
pressure over ice are within 1 % in the range between 170
and 273 K. Then we calculate RH using the saturation va-
por pressure with respect to water (T>0 ◦C) or with respect
to ice (T ≤ 0 ◦C). Unless explicitly stated otherwise, we re-
fer to RH with respect to water when T>0 ◦C and RH with
respect to ice (RHi) when T ≤ 0 ◦C.

Ice crystal concentrations were measured by the two-
dimensional cloud particle imaging (2DC) ice probe (Ko-
rolev et al., 2011). The 2DC measures ice crystals with a 64-
diode laser array at 25 µm resolution and the corresponding
size range of 25–1600 µm. Outside this range, ice crystals be-
tween 1600 and 3200 µm are mathematically reconstructed.
A quality control was further applied to filter out the parti-
cles with sizes below 75 µm in order to minimize the shatter-
ing effect and optical uncertainties associated with 2DC data.
Thus the number concentration (Ni) of ice crystals with di-
ameters from 75 to 3200 µm (binned by 25 µm) was derived
and is used here for model comparisons. The ice water con-
tent (IWC) is derived by integrating the ice crystal mass at
each size bin. Mass is calculated from diameter and Ni us-
ing the mass–dimension (m–D) relationship of Brown and
Francis (1995). For the ice crystal size distribution, a gamma
function is assumed as in CAM5 (Morrison and Gettelman,
2008):

∅(D)=N0D
µexp(−λD), (1)

where D is diameter; N0 is the intercept parameter; µ is the
shape parameter, which is set to 0 currently; and λ is the
slope parameter. The slope and intercept for the observed
ice crystal size distributions are obtained by fitting Eq. (1)
using the least-squares method as described in Heymsfield et
al. (2008). Observed size distributions that provided less than
five bins of nonzero concentrations are not considered in or-
der to maintain a reasonable fit, which is similar to what was
done in Eidhammer et al. (2014). This removes about 8 % of
the total 1 Hz observations of ice clouds (T ≤−40 ◦C). Fur-
thermore, we only retain those fitted size distributions that
are well correlated with the measured ones, i.e., with a cor-
relation coefficient larger than 0.6, which leads to a further
removal of 10 % of the total 1 Hz ice crystal measurements.
Note that these screenings are applied only for the derivation
of the slope and intercept parameters for the ice crystal size
distribution.

The cloud droplet number concentration (Nd) was mea-
sured by the Cloud Droplet Probe (CDP) during the HIPPO
campaign. The CDP measurement range of cloud droplet di-
ameter is 2–50 µm. Because 2DC and CDP probes may re-
port both ice crystals and liquid droplets, we adopted rig-
orous criteria for the detection of clouds in different tem-
perature ranges. Ninety-nine percent of the observed Ni are
greater than 0.1 L−1; thus a threshold of 0.1 L−1 is used
to define in-cloud conditions. For T ≤−40 ◦C, we use the
criterion of Ni>0.1 L−1 to detect the occurrence of ice
clouds; for T>− 40 ◦C, the occurrence of clouds, including
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mixed-phase clouds (−40 ◦C < T ≤ 0 ◦C) and warm clouds
(T>0 ◦C), is defined by the conditions of either Ni > 0.1 L−1

or Nd > 1 cm−3. Here, we only analyze CDP measurements
with Nd>1 cm−3 to avoid measurement noise as determined
by the sensitivity of the instrument.

The HIPPO data set has been previously used for statistical
analyses of ice cloud formation conditions and microphysi-
cal properties, such as the conditions of the birthplaces of
ice clouds – the ice supersaturated regions, the evolutionary
trend of RH andNi inside cirrus clouds, and hemispheric dif-
ferences in these cloud properties (Diao et al., 2013, 2014a,
b). In this study, we will use these observations to evalu-
ate CAM5 simulation of ice clouds. We use 10 s averaged
measurements (∼ 2.3 km horizontal resolution) which are
derived from 1 Hz (∼ 230 m horizontal resolution) observa-
tions. Although variations are found (mostly within a factor
of 2 and sometimes up to 2–3 forNi , IWC, and λ)within 10 s
intervals, the 10 s averaged observations shown in this study
are similar to those based on 1 s measurements.

3 Model and experiment design

3.1 Model

This study uses version 5.3 of CAM5 (Neale et al., 2012), the
atmospheric component of NCAR Community Earth Sys-
tem Model (CESM). The cloud macrophysics scheme in
CAM5 provides an integrated framework for treatment of
cloud processes and imposes full consistency between cloud
fraction and cloud condensates (Park et al., 2014). Deep cu-
mulus, shallow cumulus, and stratus clouds are assumed to
be horizontally distributed in each grid layer without over-
lapping with each other. Liquid stratus and ice stratus are
assumed to have a maximum horizontal overlap with each
other. Stratiform microphysical processes are represented by
a two-moment cloud microphysics scheme (Morrison and
Gettelman et al., 2008; hereafter referred to as version 1 of
the MG scheme (MG1)). MG1 was improved by Gettleman
et al. (2010) to allow for ice supersaturation. It is coupled
with a modal aerosol model (MAM; Liu et al., 2012a) for
aerosol–cloud interactions. Cloud droplets can form via the
activation of aerosols (Abdul-Razzak and Ghan, 2000). Ice
crystals can form via the homogeneous nucleation of sul-
fate aerosol and/or heterogeneous nucleation of dust aerosol
(Liu and Penner, 2005; Liu et al., 2007). The moist turbu-
lence scheme is based on Bretherton and Park (2009). Shal-
low convection is parameterized following Park and Brether-
ton (2009), and deep convection is treated following Zhang
and McFarlane (1995) with further modifications by Richter
and Rasch (2008).

Compared to the default version 5.3, the CAM5.3 version
we use includes a version 2 of the MG scheme (MG2) as
described by Gettelman and Morrison (2015) and Gettelman
et al. (2015). MG2 added prognostic precipitation (i.e., rain

and snow) as compared with the diagnostic precipitation in
MG1. Note that the current version of the MG scheme treats
cloud ice and snow as different categories with their num-
ber and mass predicted, respectively (Morrison and Gettel-
man, 2008). To be consistent with the observations, here the
number and mass concentrations of cloud ice and snow are
combined together to get the slope parameter λ following Ei-
dhammer et al. (2014).

3.2 Experimental design for model–observation
comparisons

Model experiments are performed using specified dynam-
ics; that is, online-calculated meteorological fields (U , V ,
and T ) are nudged towards the GEOS-5 analysis (the control
experiment, referred to as CTL hereafter), while water va-
por, hydrometeors, and aerosols are calculated online by the
model itself (Larmarque et al., 2012). We also conduct two
experiments, one with only U and V nudged (referred to as
NUG_UV) and the other with U , V , T , and water vapor (Q)
nudged (referred to as NUG_UVTQ). These results will be
discussed in Sect. 5. The model horizontal and vertical res-
olutions are 1.9◦× 2.5◦ and 56 vertical levels, respectively.
The time step is 30 min. The critical threshold diameter for
autoconversion of cloud ice to snow (Dcs)was found to be an
important parameter affecting ice cloud microphysics (e.g.,
Zhang et al., 2013; Eidhammer et al., 2014). Dcs is set to
150 µm in MG2. We also conduct two sensitive experiments
using a value of 75 µm (referred to as DCS75) and 300 µm
(referred to as DCS300) for Dcs (Table 1).

In the standard CAM5 model, homogeneous nucleation
takes place on sulfate aerosol in the Aitken mode with diame-
ters greater than 0.1 µm (Gettelman et al., 2010). We conduct
a sensitivity experiment (referred to as SUL) by removing
this size limit (i.e., using all sulfate aerosol particles in the
Aitken mode for homogeneous nucleation). Recently, Shi et
al. (2015) incorporated the effects of pre-existing ice crys-
tals on ice nucleation in CAM5, simultaneously removing
the lower limit of sulfate aerosol size and the upper limit of
the sub-grid updraft velocity used for the ice nucleation pa-
rameterization. Here a sensitivity experiment (referred to as
PRE-ICE) with the Shi et al. (2015) modifications is con-
ducted (Table 1).

We run the model from June 2008 to December 2011 (i.e.,
43 months) with the first 7 months as the model spin-up. For
direct comparisons between model results and observations,
only model output collocated with HIPPO aircraft flights are
recorded. That is, we locate the model grid boxes through
which the HIPPO aircraft was transecting and then output the
model results of these grid boxes at the closest time stamps
with respect to the flight time. In total, we have 130 577
in situ observation samples at 10 s resolution (∼ 363 h) for
HIPPO#2–5. We note that, because the current CAM5 model
cannot explicitly resolve the spatiotemporal variability of dy-
namic fields and cloud properties inside a model grid box,
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Table 1. CAM5 experiments.

Experiment name Nudging Ice microphysics parameterizations

CTL U , V , T Threshold diameter for autoconversion of cloud ice to snow
(Dcs) set to 150 µm

DCS75 U , V , T As CTL but with Dcs = 75 µm
DCS300 U , V , T As CTL but with Dcs = 300 µm
SUL U , V , T As CTL but without the lower limit (0.1 µm) for sulfate particle

diameter for homogeneous freezing
PRE-ICE U , V , T As CTL but with the impacts of pre-existing ice crystals on ice

nucleation (Shi et al., 2015)
NUG_UV U , V As CTL
NUG_UVTQ U , V , T , Q As CTL

there are inevitably certain caveats in its comparison with
in situ observations. For example, as the model time step is
30 min and horizontal grid spacing is ∼ 200 km, there may
be cases where tens to hundreds of flight samples are lo-
cated within one grid box at a specific time stamp. In this
study, we find that there are 1 to 170 observation samples
within a model grid box. Therefore, we may over-sample
the model results within a model grid box with multiple air-
craft samples. However, we note that, because of the spe-
cific flight plan of the HIPPO campaign, most of the HIPPO
flights were designed to follow a nearly constant direction
when flying from one location to the next, and one vertical
profile was generally achieved by about every 3 latitudinal
degrees. This unique flight pattern combined with the com-
paratively long flight hours helps to provide a large amount
of observation samples transecting through various climate
model grid boxes. In total, 635 model grid boxes are used in
the direct comparisons with observations. Considering that
the actual horizontal area fraction of a model grid box that
the aircraft transected through is relatively small, derivations
of grid-scale mean observations which can represent the re-
alistic characteristics for the whole grid box are not possi-
ble. Nevertheless, we also derive the mean of observations
within a model grid box and compare them with model simu-
lations, and the comparison results are similar to those shown
in Sect. 4. Note that vertical interpolation is taken to account
for the altitude variation of model variables for the direct
comparison with aircraft observations.

4 Results

4.1 Cloud occurrence

In this section, we will first demonstrate the model perfor-
mance in simulating the spatial distributions of clouds with a
case study. Then we will show the overall features of cloud
occurrence for all comparison samples. To identify the rea-
sons for the model–observation discrepancies, we will ana-
lyze the meteorology conditions (e.g., T , Q, and RH) and

physics processes associated with the formation of clouds.
The probability density function (PDF) of ice supersatura-
tion under conditions of clear sky and inside ice clouds will
be examined.

4.1.1 Case study – a specific cloud system

During HIPPO deployment #4 and research flight 05, the
GV aircraft flew from the Cook Islands to New Zealand over
the South Pacific Ocean on 25–26 June 2011 (Fig. 1). Low-
level clouds existed along almost all the flight tracks at 700–
1000 hPa, and most of them were warm clouds (T>0 ◦C).
Mid-level (at 400–700 hPa) and high-level clouds (at 250–
400 hPa) were also observed. Generally the model captures
well the locations of cloud systems along the flight tracks on
25 June 2011. The simulated ice clouds are located above
liquid clouds and extend for thousands of kilometers, which
corresponds with the observed mid- to high-level clouds at
250–600 hPa at 22:00–24:00 UTC on 25 June 2011. How-
ever, the model misses the low-level clouds observed late
on 25 June and early on 26 June and simulates a smaller
horizontal extent for the mid-level cloud at 02:30 UTC on
26 June. Overall, the observed clouds on 26 June (further
south) were more scattered than those on 25 June. The model
is less capable of reproducing these scattered clouds. CAM5
is able to better simulate cloud systems with larger spatial ex-
tents, since these systems are controlled by the nudged large-
scale meteorology.

Figure 2 shows the time series of RH, Q, and T dur-
ing the flight segment shown in Fig. 1. The observations
show large spatial variability in RH even during the horizon-
tal flights on 26 June. Overall, the simulated RH is within
the range of the observations, but the model is unable to
simulate the larger variability, which occurred on sub-grid
spatial scales. Both observed and simulated RH values are
above 100 % when the model captures the clouds success-
fully at 22:40–22:50 and 23:10–23:30 UTC on 25 June and
at 00:00–00:10 UTC on 26 June (denoted by green vertical
bars), although the simulated maximum grid-mean RH value
is around 110 %, which is 10–30 % less than observed RH
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Figure 1. Cloud occurrences simulated by CAM5 (blue and green
shaded areas) compared with HIPPO observations (crosses) dur-
ing HIPPO#4 research flight 05 (H4RF05) from Rarotonga, the
Cook Islands (21.2◦ S, 159.77◦W), to Christchurch, New Zealand
(43.48◦ S, 172.54◦ E), on 25–26 June 2011. Modeled in-cloud ice
crystal number concentration and cloud droplet number concentra-
tion are denoted by blue and green shaded areas, respectively. Three
temperature ranges are used to categorize the combined measure-
ments of 2DC and CDP probes. The criteria for defining observed
cloud occurrences are described in Sect. 2.

values. However, the model cannot capture some of the ob-
served clouds with large RH values within the grid boxes.
For example, the model misses the RH associated with low-
level clouds (Fig. 1) at 22:50–23:10 UTC when simulated
grid-mean RH values are around 90 % compared to observed
values of around 100 %. Note that since the aircraft sampled
only portions of the model grid boxes, the “overproduction”
of cloud occurrences by the model shown in Fig. 2 (blue ver-
tical bars) may not necessarily be the case. Thus we will fo-
cus on the cases when the model captures or misses the ob-
served clouds within the model grid boxes.

The spatial distributions of RH play an important role in
determining whether modeled clouds occur at the same times
and locations as those observed. Biases in eitherQ or T may
lead to discrepancies in RH (Fig. 2d and f). For example, at
around 21:50 UTC on 25 June, higher RH in the model is
caused by the larger simulated Q; at 22:50 UTC on 25 June
simulated lower RH is mainly caused by the warmer T . To il-
lustrate whether T orQ biases are the main cause for the RH
biases, we calculate the offline distribution of RH by replac-
ing the modeled Q and T with the aircraft observations, as
shown in Fig. 3a and b, respectively. After adopting the ob-
served T spatial distributions, the updated RH still misses the
RH variability around 02:30–04:00 UTC on 26 June, while
by adopting the observed Q spatial distribution the updated
RH distribution is very close to the observed one. Thus, in
this case study the lack of a large RH spatial variability

shown in the observations mainly results from the model’s
lack of sub-grid-scale variability of Q rather than that of T .

4.1.2 Synthesized analyses on cloud occurrences and
cloud fraction

The overall performance of the model in simulating the cloud
occurrences for all flights in HIPPO 2–5 is shown in Ta-
ble 2. In the model, clouds often occupy a fraction of a
grid box, and cloud fraction and in-cloud liquid/ice number
concentrations are used to represent the occurrence of stra-
tus clouds (Park et al., 2014). For HIPPO, the occurrence of
clouds is derived by combining the observations of both liq-
uid and ice number concentrations as described in Sect. 2.
In total, the model captures 79.8 % of observed cloud occur-
rences inside model grid boxes. For different cloud types, the
model reproduces the highest fraction (94.3 %) of observed
ice clouds and the second-highest fraction (86.1 %) of mixed-
phase clouds. In contrast, the model captures only about half
(49.9 %) of observed warm clouds. As depicted in the case
study in Sect. 4.1.1, the lack of cloud occurrences is mainly
due to the insufficient representation of sub-grid variability
of RH in the model. Next we will further quantify the contri-
bution of sub-grid water vapor and temperature variations to
sub-grid variability of RH.

4.1.3 Decomposition of relative humidity biases

The formation of liquid droplets/ice crystals depends on dy-
namical and thermodynamical conditions such as tempera-
ture, water vapor, and updraft velocity (Abdul-Razzak and
Ghan, 2000; Liu et al., 2007, 2012b; Gettelman et al., 2010).
The fraction of liquid / ice stratus clouds is calculated empir-
ically from the grid-mean RH (Park et al., 2014). Thus RH is
an important factor for model representations both of cloud
occurrences and cloud fraction. RH is a function of pressure,
temperature, and water vapor. Since we only compare ob-
servations with the simulation results on the same pressure
levels, differences of RH (dRH) between simulations and ob-
servations (i.e., model biases in RH) only result from the dif-
ferences in temperature and water vapor. We calculate the
contributions of biases in water vapor and temperature to the
biases in RH following the method that was used to analyze
RH spatial variability in Diao et al. (2014a). RHo (observa-
tions) and RHm (model results) are calculated as

RHo =
eo

es,o
, RHm =

em

es,m
, (2)

where eo and em are observed and simulated water vapor par-
tial pressure, respectively, and es,o and es,m are observed and
simulated saturation vapor pressure over ice (T ≤ 0 ◦C) or
over water (T>0 ◦C) in the observations and the model, re-
spectively.

Here dRH is calculated from the difference of simulated
grid-mean RH (with vertical variances taken into account by
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Figure 2. Spatial variabilities of RH, water vapor (Q), and temperature (T ) from CAM5 simulation and HIPPO observation (left), and their
differences (right). Absolute difference between CAM5 and HIPPO is shown for RH and T , while the ratio between CAM5 and HIPPO is
shown for Q. Model performances are denoted by shaded vertical bars: green (red) denotes when the model captures (misses) the observed
cloud occurrences, and blue denotes when the model simulates a cloud that is not present in the observation.

Table 2. The numbers of cloud occurrences in the 10 s averaged observations (Nobs), as well as those that CAM5 captures (Ncap) or misses
(Nmis) within the model grid boxes for different temperature ranges. The ratio of Ncap and Nmis to Nobs are given in parenthesis next to
them.

Cloud type Temperature ranges Nobs Ncap Nmis

Ice cloud T ≤−40 ◦C 3101 2925 (94.3 %) 176 (5.7 %)
Mixed-phase cloud −40 ◦C < T ≤ 0 ◦C 8768 7546 (86.1 %) 1222 (13.9 %)
Warm cloud T>0 ◦C 3334 1665 (49.9 %) 1669 (50.1 %)
All 15203 12136 (79.8 %) 3067 (20.2 %)

the vertical interpolation) and in situ observations. We define
de = (em− eo) and d

(
1
es

)
=

1
es,m
−

1
es,o

; therefore dRH is

dRH= RHm−RHo = de ·
1
es,o
+ eo · d

(
1
es

)
+ de · d

(
1
es

)
. (3)

Thus dRH can be separated into three terms: the first term
is the contribution from the water vapor partial pressure
(dRHq), the second term from temperature (dRHT ), and the

third term from concurrent impact of biases in temperature
and water vapor (dRHq,T ).

Figure 4 shows the contributions of these three terms to
dRH for different temperature ranges. All the three terms
as well as dRH are given in percentage. The intercepts
and slopes of linear regression lines for dRHq versus dRH,
dRHT versus dRH, and dRHT ,q versus dRH are also pre-
sented. As temperature is constrained by GEOS-5 analy-
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(  )

(  )

Figure 3. As Fig. 2a but for RH recalculated by replacing the model output with either (a) observed Q or (b) observed T values.

sis, the bias in temperature is reduced (although not elim-
inated) to mostly within ±7 ◦C. A considerable amount of
discrepancy in RH exists between model and observations.
The model successfully captures the clouds (green symbols)
when the simulated RH is close to observations in all the
three temperature ranges. The model tends to miss the clouds
(red symbols) when lower RH is simulated and produces spu-
rious clouds (blue symbols) when higher RH is simulated.
Regarding the contributions of dRHq and dRHT to dRH,
the slopes of the linear regression for dRHq versus dRH are
0.748, 0.933, and 0.786 for T ≤−40 ◦C,−40 ◦C < T ≤ 0 ◦C,
and T>0 ◦C, respectively, which are much larger than those
for dRHT versus dRH (0.087, 0.072, and 0.210 for the three
temperature ranges, respectively). This indicates that most
of the biases in RH are contributed by the biases in water
vapor (dRHq). However, for T>0 ◦C, although dRHq still
dominates, dRHT contributes notably to 21 % of the RH bi-
ases. For T ≤−40 ◦C, dRHq,T also contributes about 17 %
to dRH, indicating concurrent impact from biases of tem-
perature and water vapor. In contrast, for −40 ◦C < T ≤ 0 ◦C
and T>0 ◦C, the contributions of dRHq,T to dRH are neg-
ligible. We note that the slopes of linear regression lines for
dRHq versus dRH and dRHT versus dRH indicate the av-
erage contributions from water vapor and temperature biases
to the RH biases, respectively. The values of dRHT can oc-
casionally reach up to ±100 %, which suggests the large im-
pact from temperature biases in these cases. In addition, the

dRHT and dRHq terms can have the same (opposite) signs,
which would lead to larger (lower) total biases in RH. The
coefficients of determination, R2, for the linear regressions
indicate that dRHq versus dRH has a much stronger correla-
tion than that of dRHT versus dRH.

4.1.4 Ice supersaturation

Ice nucleation only occurs in the regions where ice super-
saturation exists. Different magnitudes of ice supersaturation
are required to initiate homogeneous and heterogeneous nu-
cleation (Liu and Penner, 2005). The distribution of ice su-
persaturation may provide insights into the mechanisms for
ice crystal formation (e.g., Haag et al., 2003). In CAM5, ice
supersaturation is allowed (Gettelman et al., 2010). Homo-
geneous nucleation occurs when T ≤−35 ◦C and ice super-
saturation reaches a threshold ranging from 145 to 175 %.
Dust aerosol can serve as INPs when RH > 120 %. Ice su-
persaturation will be relaxed back to saturation via the vapor
deposition process (Liu et al., 2007; Gettelman et al., 2010).

To examine the discrepancies in ice supersaturation be-
tween model results and observations, we compare the dis-
tribution of RH for conditions of clear sky and within cirrus
clouds (Fig. 5). The analysis is limited to the conditions of
T ≤−40 ◦C for both model simulations and observations. In
CAM5, RH diagnosed in different sections of the time inte-
gration procedure can be different due to the time-splitting
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Figure 4. Corresponding (top) dRHq versus dRH, (middle) dRHT versus dRH, and (bottom) dRHq,T versus dRH (unit: %) for different
temperature ranges. The colors indicate three types of model performances in simulating clouds as described in Fig. 2: green (“captured”),
red (“missed”), and blue (“overproduced”). The black lines denote the linear regressions of the samples (i.e., Y = a+b×X), and the intercept
(i.e., a) and slope (i.e., b) of the regression lines as well as the coefficient of determination (i.e., R2) are shown in the legend.

algorithm. We present here the RH both before and after the
microphysical processes.

The observations show that ice supersaturation exists in
both clear-sky and inside-cirrus conditions. In clear-sky envi-
ronments, the PDF of RH shows a continuous decrease with
RH values in subsaturated conditions, followed by a quasi-
exponential decrease with the RH above saturation. The max-
imum RHi reaches up to 150 %. In cirrus clouds, most RH
values range from 50 to 150 % with a peak in the PDF near
100 %. This feature is consistent with the results of Diao et
al. (2014b), who used 1 s HIPPO measurements and sepa-
rated the Southern and the Northern Hemisphere for compar-
ison.

The PDFs of modeled RH before and after the microphys-
ical processes are very similar except that the latter one has
slightly lower probability of RHi above 140 % for inside-
cirrus conditions. The model is capable of simulating the
occurrences of ice supersaturation in both clear-sky and in-
cloud conditions. However, inside cirrus clouds, the simu-
lated PDF of RH peaks around 120 % instead of 100 % as ob-
served. Outside the cirrus clouds (clear sky), the model sim-
ulates a much lower probability of ice supersaturation with

the maximum RH value around 120 %. The largest ice super-
saturation simulated by CAM5 under clear-sky conditions is
around 20 %, which corresponds to the ice supersaturation
of 20 % assumed in the model for the activation of heteroge-
neous nucleation. This indicates the dominant mode of het-
erogeneous nucleation in the model. However, the observa-
tions show much higher frequencies of ice supersaturations
larger than 20 %, indicating higher RH thresholds for homo-
geneous nucleation or heterogeneous nucleation.

4.2 Microphysical properties of ice clouds

Together with cirrus cloud fraction, the ice crystal number
concentration and size distribution within cirrus clouds deter-
mine the radiative forcing of cirrus clouds. In this section, we
will present the evaluation of modeled microphysical proper-
ties of cirrus clouds for T ≤−40 ◦C. As measurements of ice
crystal number concentration include both ice and snow crys-
tals, for comparison with observations, we combine the cloud
ice and snow simulated in the model (hereafter referred to as
ice crystals). Following Eidhammer et al. (2014), the slope
and intercept parameters of the gamma function for the ice
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Figure 5. Observed and simulated probability density functions (PDFs) of relative humidity with respect to ice (RHi; unit: %) for T ≤−40 ◦C
separated into clear-sky and in-cirrus conditions. PDFs of RHi before and after cloud microphysics in the simulations are both shown. The
RHi is binned by 2 % for the calculation of PDF. The PDFs (when RHi > 100 %) follow an exponent decay: ln(PDF)= a+ b×RHi. The
values of a and b for each PDF are also shown in dark red (observed), dark blue (simulated before ice nucleation), and dark green (simulated
after cloud microphysics). Note blue lines are mostly invisible as overlaid by green lines.
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Figure 6. (a–e) Scatterplot of observed versus simulated slope parameter (λ) of the gamma size distribution function for each experiment,
and (f) the frequency of λ for each range. Note that all the comparisons are restricted to the cases when the model captures observed ice
clouds (T ≤−40 ◦C).

crystal size distribution simulated by the model are derived
from the total number concentration and mass mixing ratio
of cloud ice and snow, which are the integrations of the first
and third moments of the size distribution function. The sim-
ulated number concentration of ice crystals with sizes larger
than 75 µm is calculated by the integration of gamma size dis-
tributions from 75 µm to infinity. The simulated IWC for ice
crystals with sizes larger than 75 µm is also derived by inte-
grating the mass concentration of cloud ice and snow from

75 µm to infinity. We note that about 94 % of total cirrus
cloud samples are at temperatures between−60 and−40 ◦C.

4.2.1 Ice crystal size distribution

Direct comparison of the slope parameter (λ) for ice crys-
tal size distributions is shown in Fig. 6. The slope parame-
ter λ determines the decay rate of a gamma function in re-
lation to the increasing diameter. With a larger λ, the decay
of a gamma function with increasing size is faster, and there
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are relatively fewer large ice crystals. The number-weighted
mean diameter can be defined as the inverse of λ (i.e., λ−1).
As shown in Fig. 6, the observed λ is generally within the
range from 103 to 105 m−1. The model reproduces the mag-
nitude of λ for some of the observations but tends to overesti-
mate the observations for smaller λ values (103 to 104 m−1).
This indicates that the model produces higher fractions of
ice crystals at smaller sizes, and the number-weighted mean
diameter is underestimated. Moreover, the model generally
simulates λ in a narrower range of 7.5× 103 to 7× 104 m−1

for the three experiments with different Dcs(CTL, DCS75,
and DCS300). SUL and PRE-ICE simulate a wider range
of λ, which is comparable to the observations but tends to
shift λ to larger values (5× 104 to 1× 105 m−1). All the ex-
periments rarely simulate the occurrence of small λ (below
7.5× 103 m−1).

Figure 7 shows the relationship of λwith temperature from
observations and model simulations. Here, both the geomet-
ric means and the standard deviations of λ for each temper-
ature interval of 4 ◦C are also shown. Although the observed
λ does not monotonically decrease with increasing temper-
ature, overall decreasing trend can be found for the whole
temperature range below −40 ◦C. This indicates a general
increase in the number-weighted mean diameter of ice crys-
tals with increasing temperature. The correlation between
λ and temperature from HIPPO is similar to that from the
Atmospheric Radiation Measurements Spring Cloud Inten-
sive Operational Period in 2000 (ARM-IOP) and the Trop-
ical Composition, Cloud and Climate Coupling (TC4) cam-
paigns as shown in Eidhammer et al. (2014), but the HIPPO
observations extend to lower temperatures than ARM-IOP
and TC4 observations, where temperatures are mostly above
−56 ◦C. In addition, HIPPO observations show a broader
scatter range of λ, which may be because HIPPO sampled ice
crystals at various environment conditions as the flight tracks
covered much wider areas and lasted for much longer peri-
ods. The decrease of λ with increasing temperature has been
shown in many other studies (e.g., Heymsfield et al., 2008,
2013). Such a feature is mainly due to more small ice par-
ticles at lower temperatures, which can be explained by less
water vapor available for ice crystal growth as well as more
ice crystals formed from nucleation (more likely from ho-
mogeneous nucleation than from heterogeneous nucleation)
at lower temperatures (Eidhammer et al., 2014).

Compared to the observations, the simulated mean λ is
about 2–4 times larger for all the experiments, indicating that
the model simulates smaller mean sizes for ice crystals. The
simulated λ decreases with increasing temperature, which is
generally consistent with the observations. In addition, the
geometric standard deviations (less than 2) of simulated λ
are smaller than observed (around 2–3). This can be partly
explained by the fact that in situ observations sampled the
sub-grid variability of cloud properties.

The difference of simulated λ is within a factor of 2 among
the five experiments when temperature is between −40 and
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Figure 7. λ versus temperature from the measurements and simu-
lations. The lines are the geometric mean binned by 4 ◦C, with the
vertical bars denoting the geometric standard deviation. Note that
the comparisons are restricted to the cases when the model captures
the observed ice clouds (T ≤−40 ◦C).

−56 ◦C, and it is larger (around 2–4) when temperature is
below−56 ◦C. For the experiments with differentDcs, CTL-
and DCS75-simulated λ are close to each other when tem-
perature is between−40 and−60 ◦C, and DCS300 simulates
larger λ compared to DCS75 and CTL. For temperatures be-
tween −64 and −72 ◦C, CTL- and DCS300-simulated λ are
close to each other and both are larger than that of DCS75.
For the experiments with different ice nucleation parameter-
izations, both SUL and PRE-ICE simulate larger λ than CTL
especially for temperatures below −56 ◦C. SUL simulates
the largest λ of all the experiments. This can be explained
by much larger number concentration of ice crystals (for all
size range; figure not shown) simulated by SUL, while IWC
is not very different from other experiments (Sect. 4.2.3).

4.2.2 Ice crystal number concentration

Figure 8 shows the comparison of in-cloud number concen-
trations (Ni) of ice crystals with diameters larger than 75 µm
between observations and simulations. The magnitude of ob-
served Ni varies by 3 orders of magnitude from 10−1 to
102 L−1. The model simulates reasonably well the range of
Ni in cirrus clouds. However, the model tends to underes-
timate Ni for all the experiments except DCS75. About 13
(DCS75) to 30 % (PRE-ICE) of observations are underesti-
mated in the model by a factor of 10. The underestimation
of Ni may be partly attributed to the fact that the model un-
derestimates the ice crystal size (Sect. 4.2.1), leading to a
smaller fraction of ice crystals with diameters larger than
75 µm. Additional bias may result from the bias in the to-
tal ice crystal number concentration, although the observa-
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Figure 8. As Fig. 6 but for the number concentrations (Ni) of ice crystals with diameters larger than 75 µm for all the experiments. The inset
in (f) is the frequency of Ni plotted for Ni > 50 L−1. Note that both the comparisons are restricted to the cases when the model captures
observed ice clouds (T ≤−40 ◦C).

tions are not available for comparison. We also compare sim-
ulated Ni with observed in-cloud Ni averaged within the
model grid boxes. We choose the flight segments with over
300 1 s aircraft measurements within an individual model
grid and calculate the average for in-cloud Ni of ice clouds
(T ≤−40 ◦C). The comparison results are, however, similar
to those shown in Fig. 8.

DCS75 reasonably simulates the occurrence frequency
of Ni<1 L−1 albeit with significantly higher frequency for
Ni around 1–5 L−1 and lower frequency for Ni around 5–
10 L−1. Most of the experiments cannot reproduce the oc-
currence frequency of high Ni (Ni>50 L−1) except DCS75
and PRE-ICE.

The relationships between Ni and temperature are shown
in Fig. 9. Since Ni here only takes into account ice crystals
larger than 75 µm, the geometric mean of observed Ni gen-
erally ranges between 5 and 10 L−1 for temperatures below
−40 ◦C, which is 1–2 orders of magnitude lower than the
number of ice crystals between 0.3 and 775 µm from obser-
vations complied by Krämer et al. (2009) and between 10
and 3000 µm from the SPARTICUS campaign (Zhang et al.,
2013) but is comparable to the number of ice crystals in the
same size range from the ARM-IOP and TC4 campaigns (Ei-
dhammer et al., 2014). The geometric standard deviation of
observed Ni within a temperature interval of 4 ◦C can be as
high as a factor of 5.

The model simulates no apparent trends of Ni when tem-
perature decreases from −40 to −60 ◦C for the experiments
CTL, DCS75, and PRE-ICE. The model somehow simulates
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Figure 9. As Fig. 7 but for Ni .

larger Ni with decreasing temperatures for the experiments
DCS300 and SUL. Increase of Ni at lower temperatures in
SUL may indicate the occurrence of homogeneous nucle-
ation. Overall, simulated Ni is sensitive to Dcs. Simulated
Ni is also sensitive to the number of sulfate aerosol parti-
cles for homogeneous nucleation. With the removal of the
lower size limit (0.1 µm diameter) of sulfate aerosol particles
for homogeneous nucleation in the experiment SUL, simu-
lated Ni is significantly higher than that in CTL because of
the substantial increase in the total ice crystal number con-
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Figure 10. As Fig. 8 but for the comparison of ice water content (IWC).

centration in SUL, although the slope parameter in SUL is
larger, indicating a smaller fraction of ice crystals with larger
sizes (e.g., larger than 75 µm). This result is consistent with
that of Wang et al. (2014).

Although some experiments can simulate a similar magni-
tude of Ni as the observations in some temperature ranges,
most of the experiments underestimate Ni , and some experi-
ments (CTL and PRE-ICE) underestimate Ni for all the tem-
perature ranges. Overall DCS75 simulates the closest magni-
tude of Ni with the observations for temperatures from −40
to −64 ◦C.

4.2.3 Ice water content

Figure 10 shows the comparison of in-cloud IWC for ice
crystals with diameters larger than 75 µm between obser-
vations and simulations. The magnitude of observed IWC
varies by 4 orders of magnitude from 10−2 to 102 mg m−3,
which is within the range of observed IWC in previous stud-
ies (Kramer et al., 2016; Luebke et al., 2016). Observed IWC
here is mostly larger than 1 mg m−3. Compared to the ob-
servations, the model for all the experiments underestimates
observed IWC for 70–95 % of the samples and by 1 or-
der of magnitude for 25–45 % of the samples. Although the
model reproduces the highest occurrence frequency of IWC
around 1–5 mg m−3, the model simulates more occurrence of
IWC below 1 mg m−3 and fewer occurrence of IWC above
5 mg m−3.

The relationships between IWC and temperature are
shown in Fig. 11. An overall increasing trend of observed
IWC with temperature is found for the entire temperature

range. The observed relationship between IWC and temper-
ature is consistent with those shown in the previous studies
(e.g., Kramer et al., 2016; Luebke et al., 2016). However, the
mean IWC from HIPPO is 3–5 times as large as previous
observations (Kramer et al., 2016; Luebke et al., 2016). Ob-
servations here only account for ice crystals with diameters
larger than 75 µm, and thus it is less frequent that observed
IWC is lower than 1 mg m−3. In contrast, previous studies
showed that IWC (including smaller sizes of ice crystals)
lower than 1 mg m−3 was often measured in observations.
This contributes to the mean IWC shown here being larger
than that in the previous studies.

The simulated IWC is lower than observations for all the
experiments at temperatures between −40 and −60 ◦C, at
which most of the observations were made. The model also
simulates less variation of IWC with temperature when tem-
perature is between −40 and −60 ◦C. When temperature is
below −60 ◦C, a steep decrease of IWC is found in some ex-
periments (e.g., CTL, SUL). Considering the large scatter of
IWC and relatively few samples available, this may be due
to a lack of a sufficient number of samples. Therefore, more
observations are needed to have a robust comparison for rel-
atively low temperatures (i.e., temperatures below −60 ◦C).
Simulated IWC is more sensitive to Dcs than to ice nucle-
ation.

5 Impact of nudging

In previous sections, we have nudged the simulated winds
and temperature towards the GEOS-5 analysis but kept the
water vapor online-calculated by the model itself. We showed
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Table 3. The intercepts and slopes of the regression lines (i.e., Y = a+ b×X) for dRHq versus dRH, dRHT versus dRH, and dRHq,T
versus dRH in the three experiments CTL, NUG_UV, and NUG_UVTQ, respectively. The coefficients of determination (i.e., R2) for each
regression line are also presented.

T ≤−40 ◦C −40 ◦C < T ≤ 0 ◦C T>0 ◦C

a b R2 a b R2 a b R2

CTL dRHq 5.209 0.748 0.663 4.632 0.933 0.786 0.177 0.786 0.840
dRHT −0.798 0.087 0.071 −3.013 0.072 0.039 −0.706 0.210 0.262
dRHq,T −4.411 0.165 0.241 −1.619 −0.005 0.0004 0.529 0.004 0.001

NUG_UV dRHq −16.85 0.723 0.562 −5.589 0.866 0.614 −5.207 0.658 0.698
dRHT 29.96 −0.103 0.024 10.09 −0.013 .0005 4.804 0.265 0.188
dRHq,T −13.11 0.380 0.487 −4.498 0.148 0.088 0.402 0.078 0.085

NUG_UVTQ dRHq −2.851 0.813 0.770 2.260 0.925 0.672 −1.773 0.733 0.761
dRHT 3.964 0.073 0.040 −0.265 0.094 0.038 1.892 0.308 0.311
dRHq,T −1.113 0.114 0.262 −1.996 −0.019 0.003 −0.119 −0.041 0.095
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Figure 11. As Fig. 9 but for ice water content (IWC) versus tem-
perature.

that the model captures a large portion (79.8 %) of cloud oc-
currences presented in the observations. We also identified
the RH bias in the simulation and attributed the RH bias
mainly to the bias in water vapor. As the bias in tempera-
ture is reduced in the nudging run compared to the free run,
the attribution of RH bias in the free-running model (i.e., no
nudging applied) is still unclear. To examine the impact of
nudging strategies on the cloud occurrences and the attribu-
tion of RH bias, we conducted two additional experiments:
one with neither temperature nor specific humidity nudged
towards the analysis (hereafter referred to as NUG_UV),
and the other one with both temperature and specific hu-
midity nudged towards the analysis (hereafter referred to as
NUG_UVTQ). Without nudging temperature, the model ex-
periment (NUG_UV) has a cold temperature bias of−1.8 ◦C

on average relative to the HIPPO observations (figure not
shown). In comparison, the temperatures simulated by CTL
and NUG_UVTQ are more consistent with in situ aircraft
observations, and the mean temperature is slightly underesti-
mated by 0.22 and 0.28 ◦C in these two experiments, respec-
tively. By nudging specific humidity, the model experiment
(NUG_UVTQ) improves the simulation of grid-mean wa-
ter vapor concentrations by eliminating the biases especially
for the cases with low water vapor concentrations (less than
20 ppmv; figure not shown). NUG_UV captures 86.0, 80.9,
and 39.7 % of observed ice, mixed-phase, and warm clouds,
respectively, which are slightly smaller than those of CTL
(i.e., 94.3, 86.1, and 49.9 %, respectively). For NUG_UVTQ,
although 73.5 % of ice clouds are captured, the model cap-
tures only 61.8 % of mixed-phase clouds and 31.4 % of warm
clouds. The worse simulation in NUG_UVTQ may be be-
cause the nudged water vapor is not internally consistent with
the modeled cloud physics, which deteriorates the simulation
of cloud occurrences. The bias in cloud occurrences may also
be related to the RH threshold values used in the cloud frac-
tion scheme in the model (Park et al., 2014), and further study
is needed to address the model sensitivity to the RH threshold
values.

As seen in Table 3, in the two new nudging experi-
ments (NUG_UV and NUG_UVTQ), modeled RH biases
in the comparison with in situ observations also mainly re-
sult from the discrepancies of water vapor. The contribu-
tion of dRHq to dRH ranges from 65.8 to 92.5 %, which
are slightly smaller than those in CTL. In NUG_UV, as
the model underestimates the temperature, modeled RH is
systematically higher than observations, especially for T ≤
−40 ◦C, at which temperature the absolute value of RH is
overestimated by 30 % on average. The large T bias leads to
a smaller contribution from the water vapor bias (dRHq) and
a larger contribution from the concurrent bias in temperature
and water vapor (dRHq,T ). When both T and Q are nudged
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in NUG_UVTQ, the contributions of the three terms to dRH
are generally similar to those in CTL. A larger contribution
from temperature (dRHT ) is found for temperature above
0 ◦C in NUG_UVTG. This may be a result of smaller con-
tributions from either dRHq or dRHq,T due to the reduced
water vapor bias. We also examined the in-cirrus microphys-
ical properties simulated by these two new nudging experi-
ments. The model features such as underestimations of Ni ,
IWC, and mean ice crystal size are similar to those in CTL
and are not sensitive to the nudging strategy used.

6 Discussion and conclusions

In this study, we evaluated the macro- and microphysical
properties of ice clouds simulated by CAM5 using in situ
measurements from the HIPPO campaign. The HIPPO cam-
paign sampled over the Pacific region from 67◦ S to 87◦ N
across several seasons, making it distinctive from other pre-
vious campaigns and valuable for providing insight into eval-
uating model performance. To eliminate the impact of large-
scale circulation biases on the simulated cloud processes, we
ran CAM5 using specified dynamics with simulated meteo-
rology (U , V , and T ) nudged towards the GEOS-5 analy-
sis while keeping water vapor, hydrometeors, and aerosols
online-calculated by the model itself. Model results collo-
cated with the flight tracks spatially and temporally were di-
rectly compared with the observations. Modeled cloud oc-
currences and in-cloud ice crystal properties were evaluated,
and the reasons for the biases examined. We also examined
the model sensitivity to Dcs and different parameterizations
for ice nucleation.

The model can reasonably capture the vertical configura-
tion and horizontal extension of specific cloud systems. In to-
tal, the model captures 79.8 % of observed cloud occurrences
within model grid boxes. For each cloud type, the model cap-
tures 94.3 % of observed ice clouds, 86.1 % of mixed-phase
clouds, and 49.9 % of warm clouds. This result is only mod-
estly sensitive to whether meteorological fields (T and Q)
are nudged. The model cannot capture the large spatial vari-
ability of observed RH, which is responsible for much of
the model missing low-level warm clouds. A large portion
of the RH bias results from the discrepancy in water vapor,
with a small portion from the discrepancy in temperature.
The model also underestimates the occurrence frequencies
of ice supersaturation higher than 20 % under clear-sky con-
ditions (i.e., outside of cirrus clouds), which may indicate
too low of a threshold for initiating heterogeneous ice nucle-
ation in the model. In fact, a study comparing the observed
RH distributions with real-case simulations of the Weather
Research and Forecasting (WRF) model suggested that the
threshold for initiating heterogeneous nucleation should be
set at RHi≥ 125 % (D’Alessandro et al., 2017).

Down to the micro-scale of cirrus clouds (T ≤−40 ◦C),
the model captures well the decreasing trend of λ with in-

creasing temperature from −72 to −40 ◦C. However, the
simulated λ values are on average about 2–4 times larger
than observations at all the 4 ◦C temperature ranges for all
the experiments with different Dcs and different ice nucle-
ation parameterizations. This indicates that the model simu-
lates a smaller mean size of ice crystals in each temperature
range. The model is mostly able to reproduce the magnitude
of observed Ni (to within 1 order of magnitude) for ice crys-
tals with diameters larger than 75 µm yet generally underes-
timates Ni except for the DCS75 simulation. Simulated Ni
is sensitive toDcs and the number of sulfate aerosol particles
for homogeneous nucleation used in the model. No apparent
correlations between the mean Ni and temperature are found
in the observations, while a decrease of Ni with increasing
temperature is found in the two simulations (DCS300 and
SUL). All the experiments underestimate the magnitude of
IWC for ice crystals larger than 75 µm. The observations
show an overall decreasing trend of IWC with decreasing
temperature, while the model-simulated trends are not as
strong. Simulated IWC is sensitive to Dcs but less sensitive
to the different parameterizations of ice nucleation examined
here.

Current climate models have typical horizontal resolutions
of tens to hundreds of kilometers and are unable to repre-
sent the large spatial variability of environmental conditions
for cloud formation and evolution within a model grid box.
A previous study of Diao et al. (2014a) shows that the spa-
tial variability of water vapor dominantly contributes to the
spatial variability in RH, compared with the contributions
from those of temperature. Here our comparisons of model
simulations with observations show that the biases in water
vapor spatial distributions are the dominant sources of the
model biases in RH spatial distributions. Thus it is a pri-
ority to develop parameterizations that are able to treat the
sub-grid variability of water vapor for climate models. There
are also substantial sub-grid variations of cloud microphysi-
cal properties shown in previous observational studies (e.g.,
Lebsock et al., 2013). Recently, a framework for treating the
sub-grid variability of temperature, moisture, and vertical ve-
locity has been developed and implemented into CAM5 (Bo-
genschutz et al., 2013). A multi-scale modeling framework
has also been developed to explicitly resolve the cloud dy-
namics and cloud microphysics down to the scales of cloud-
resolving models (e.g., Wang et al., 2011; C. Zhang et al.,
2014). The PDFs of sub-grid-scale distributions can be sam-
pled on sub-columns for cloud microphysics (Thayer-Calder
et al., 2015). With the increase of model resolutions for fu-
ture global model developments, the sub-grid variability of
temperature, moisture, and cloud microphysics and dynam-
ics will be better resolved. In this study, we choose the res-
olution of 1.9◦× 2.5◦ because this resolution is still widely
used in climate model simulations. We plan to evaluate the
model performances at higher resolutions and to understand
the resolution dependence of model results.
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Given the various environmental conditions and aerosol
characteristics in the atmosphere, the formation and evolu-
tion of ice crystals are not well understood, and it is even
more challenging for climate models to represent these pro-
cesses. For the bulk ice microphysics used in our model, sev-
eral assumptions have to be made to simulate both Ni and
λ. One of them is to partition the ice crystals into cloud ice
and snow categories, while using Dcs to convert cloud ice
to snow. Thus a more physical treatment of ice crystal evo-
lution such as using bin microphysics (e.g., Bardeen et al.,
2013; Khain et al., 2015) or a single category to represent
all ice-phase hydrometeors (Morrison and Milbrandt, 2015;
Eidhammer et al., 2017) is needed.

Data availability. The HIPPO observations are available at https:
//www.eol.ucar.edu/field_projects/hippo (HIPPO, 2015). The mod-
eled data used in this study are available upon request from the cor-
responding author X. Liu (xliu6@uwyo.edu).
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