Articles | Volume 17, issue 23
https://doi.org/10.5194/acp-17-14181-2017
https://doi.org/10.5194/acp-17-14181-2017
Research article
 | 
29 Nov 2017
Research article |  | 29 Nov 2017

Seasonal variation of fine- and coarse-mode nitrates and related aerosols over East Asia: synergetic observations and chemical transport model analysis

Itsushi Uno, Kazuo Osada, Keiya Yumimoto, Zhe Wang, Syuichi Itahashi, Xiaole Pan, Yukari Hara, Yugo Kanaya, Shigekazu Yamamoto, and Thomas Duncan Fairlie

Related authors

Implementation of an ensemble Kalman filter in the Community Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-level PM2.5
Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu, Keiya Yumimoto, Itsushi Uno, and Chul Han Song
Geosci. Model Dev., 15, 2773–2790, https://doi.org/10.5194/gmd-15-2773-2022,https://doi.org/10.5194/gmd-15-2773-2022, 2022
Short summary
Regional variability in black carbon and carbon monoxide ratio from long-term observations over East Asia: assessment of representativeness for black carbon (BC) and carbon monoxide (CO) emission inventories
Yongjoo Choi, Yugo Kanaya, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Itsushi Uno, Xiaole Pan, Meehye Lee, Hyunjae Kim, and Dong Hee Jung
Atmos. Chem. Phys., 20, 83–98, https://doi.org/10.5194/acp-20-83-2020,https://doi.org/10.5194/acp-20-83-2020, 2020
Short summary
Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes
Xiaole Pan, Baozhu Ge, Zhe Wang, Yu Tian, Hang Liu, Lianfang Wei, Siyao Yue, Itsushi Uno, Hiroshi Kobayashi, Tomoaki Nishizawa, Atsushi Shimizu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 219–232, https://doi.org/10.5194/acp-19-219-2019,https://doi.org/10.5194/acp-19-219-2019, 2019
Variability of depolarization of aerosol particles in the megacity of Beijing: implications for the interaction between anthropogenic pollutants and mineral dust particles
Yu Tian, Xiaole Pan, Tomoaki Nishizawa, Hiroshi Kobayashi, Itsushi Uno, Xiquan Wang, Atsushi Shimizu, and Zifa Wang
Atmos. Chem. Phys., 18, 18203–18217, https://doi.org/10.5194/acp-18-18203-2018,https://doi.org/10.5194/acp-18-18203-2018, 2018
Short summary
A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia
Syuichi Itahashi, Keiya Yumimoto, Itsushi Uno, Hiroshi Hayami, Shin-ichi Fujita, Yuepeng Pan, and Yuesi Wang
Atmos. Chem. Phys., 18, 2835–2852, https://doi.org/10.5194/acp-18-2835-2018,https://doi.org/10.5194/acp-18-2835-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025,https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024,https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary

Cited articles

Appel, B. R., Tokiwa, Y., and Haik, M.: Sampling of nitrates in ambient air, Atmos. Environ., 15, 283–289, 1981.
Bey, I., Jacob, J., Yantosca, R. M., Logan, A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 73–95, 2001.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ. 40, 4946–4959, 2006.
EANET: EANET and Clean Air for Sustainable Development. The Third Report for Policy Makers (RPM3), Acid Deposition Monitoring Network in East Asia (EANET), Pathumthani, Thailand, 2014.
Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of mineral dust in the United States, Atmos. Environ., 41, 1251–1266, 2007.
Download
Short summary
We analyzed long-term fine- and coarse-mode nitrate and related aerosols synergetic observations at Fukuoka, Japan. GEOS Chem model including dust and sea-salt acid uptake processes was used to assess the observed seasonal variation, and the impact of long-range transport from the Asian continent. A numerical model reproduced the seasonal variations of fine aerosols. For coarse nitrate, large-scale dust-nitrate outflow from China was confirmed during all dust events between January and June.
Altmetrics
Final-revised paper
Preprint