Articles | Volume 17, issue 17
https://doi.org/10.5194/acp-17-10535-2017
https://doi.org/10.5194/acp-17-10535-2017
Research article
 | 
08 Sep 2017
Research article |  | 08 Sep 2017

A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

Ingo Wohltmann, Ralph Lehmann, and Markus Rex

Related authors

Air mass transport to the tropical western Pacific troposphere inferred from ozone and relative humidity balloon observations above Palau
Katrin Müller, Peter von der Gathen, and Markus Rex
Atmos. Chem. Phys., 24, 4693–4716, https://doi.org/10.5194/acp-24-4693-2024,https://doi.org/10.5194/acp-24-4693-2024, 2024
Short summary
Transport parameterization of the Polar SWIFT model (version 2)
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022,https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020,https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
A Lagrangian convective transport scheme including a simulation of the time air parcels spend in updrafts (LaConTra v1.0)
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019,https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019,https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
Atmos. Chem. Phys., 25, 4349–4366, https://doi.org/10.5194/acp-25-4349-2025,https://doi.org/10.5194/acp-25-4349-2025, 2025
Short summary
Ozone trends in homogenized Umkehr, ozonesonde, and COH overpass records
Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard Barras, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerard Ancellet, Richard Querel, Roeland Van Malderen, and Daniel Zawada
Atmos. Chem. Phys., 25, 2895–2936, https://doi.org/10.5194/acp-25-2895-2025,https://doi.org/10.5194/acp-25-2895-2025, 2025
Short summary
Evaluating reanalysis representations of climatological trace gas distributions in the Asian monsoon tropopause layer
Jonathon S. Wright, Shenglong Zhang, Jiao Chen, Sean M. Davis, Paul Konopka, Mengqian Lu, Xiaolu Yan, and Guang J. Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-135,https://doi.org/10.5194/egusphere-2025-135, 2025
Short summary
On the atmospheric budget of 1,2-dichloroethane and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024,https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
Quantifying the decay rate of volcanic sulfur dioxide in the stratosphere
Paul A. Nicknish, Kane Stone, Susan Solomon, and Simon A. Carn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3525,https://doi.org/10.5194/egusphere-2024-3525, 2024
Short summary

Cited articles

Bernath, P. F.: The Atmospheric Chemistry Experiment (ACE), J. Quant. Spectrosc. Ra., 186, 3–16, 2017.
Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005, J. Geophys. Res., 118, 2673–2688, https://doi.org/10.1002/jgrd.50226, 2013.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere, D. Reidel Publishing Company, Dordrecht, 2005.
Brasseur, G., Orlando, J. J., and Tyndall, G. S. (Eds.): Atmospheric Chemistry and Global Change, Oxford University Press, New York, Oxford, 1999.
Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Ultraviolet absorption cross sections of chlorine oxide (Cl2O2) between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.
Download
Short summary
We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere, and of the relevant reaction pathways and cycles. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.
Share
Altmetrics
Final-revised paper
Preprint