Articles | Volume 17, issue 17
https://doi.org/10.5194/acp-17-10515-2017
https://doi.org/10.5194/acp-17-10515-2017
Research article
 | 
08 Sep 2017
Research article |  | 08 Sep 2017

Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, and budget

Kohei Ikeda, Hiroshi Tanimoto, Takafumi Sugita, Hideharu Akiyoshi, Yugo Kanaya, Chunmao Zhu, and Fumikazu Taketani

Related authors

Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024,https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan
Yugo Kanaya, Kazuyo Yamaji, Takuma Miyakawa, Fumikazu Taketani, Chunmao Zhu, Yongjoo Choi, Yuichi Komazaki, Kohei Ikeda, Yutaka Kondo, and Zbigniew Klimont
Atmos. Chem. Phys., 20, 6339–6356, https://doi.org/10.5194/acp-20-6339-2020,https://doi.org/10.5194/acp-20-6339-2020, 2020
Short summary
FLEXPART v10.1 simulation of source contributions to Arctic black carbon
Chunmao Zhu, Yugo Kanaya, Masayuki Takigawa, Kohei Ikeda, Hiroshi Tanimoto, Fumikazu Taketani, Takuma Miyakawa, Hideki Kobayashi, and Ignacio Pisso
Atmos. Chem. Phys., 20, 1641–1656, https://doi.org/10.5194/acp-20-1641-2020,https://doi.org/10.5194/acp-20-1641-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025,https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025,https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025,https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025,https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025,https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary

Cited articles

AMAP: AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers, vii, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 116 pp., 2015.
Barrie, L. A.: Arctic air pollution: an overview of current knowledge, Atmos. Environ., 20, 643–663, https://doi.org/10.1016/0004-6981(86)90180-0, 1986.
Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M.: Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets, J. Geophys. Res.-Atmos., 106, 23097–23113, 2001.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: an investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Download
Short summary
Black carbon (BC), also known as soot particles, plays a key role in Arctic warming; hence, an understanding of the major source regions and types is important for its mitigation. We found that Russia was the dominant contributor to Arctic BC at the surface level, while the East Asian contribution was the largest in the middle troposphere and the burden over the Arctic, suggesting that BC emission reduction from Russia and East Asia can help mitigate warming in the Arctic.
Share
Altmetrics
Final-revised paper
Preprint