Articles | Volume 16, issue 5
Atmos. Chem. Phys., 16, 2843–2862, 2016
https://doi.org/10.5194/acp-16-2843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: The Geoengineering Model Intercomparison Project (GeoMIP):...
Research article 04 Mar 2016
Research article | 04 Mar 2016
Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
Anthony C. Jones et al.
Related authors
No articles found.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-133, https://doi.org/10.5194/acp-2021-133, 2021
Preprint under review for ACP
Short summary
Short summary
A new set of simulations from various climate models is used here to investigate sources of uncertainty and model differences when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (geoengineering). The way in which different models simulate the aerosols and their spread around the stratosphere is a large factor in determining this. Overall, models agree that aerosols have the potential to mitigate the warming produced by greenhouse gases.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Zixia Liu, Martin Osborne, Jim Haywood, Karen Anderson, Jamie D. Shulter, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, and Jack C. H. Cheng
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-495, https://doi.org/10.5194/amt-2020-495, 2021
Preprint under review for AMT
Short summary
Short summary
This paper shows the performance of an advanced aerosol observation instrument (POPS) on a quadcopter drone. The results suggest that the impact of the UAV rotors on the POPS does not unduly affect the performance of the POPS for wind speed less than 2.6 m/s, but when operating under higher wind speed of up to 7.6 m/s, larger discrepancies are noted. Plus, it appears that the POPS measures sub-micron aerosol particles more accurately than super-micron aerosol particles on the drone.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Gunnar Myhre, Bjørn H. Samset, Christian W. Mohr, Kari Alterskjær, Yves Balkanski, Nicolas Bellouin, Mian Chin, James Haywood, Øivind Hodnebrog, Stefan Kinne, Guangxing Lin, Marianne T. Lund, Joyce E. Penner, Michael Schulz, Nick Schutgens, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, and Kai Zhang
Atmos. Chem. Phys., 20, 8855–8865, https://doi.org/10.5194/acp-20-8855-2020, https://doi.org/10.5194/acp-20-8855-2020, 2020
Short summary
Short summary
The radiative forcing of the direct aerosol effects can be decomposed into clear-sky and cloudy-sky portions. In this study we use observational methods and two sets of multi-model global aerosol simulations over the industrial era to show that the contribution from cloudy-sky regions is likely weak.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
James Brooks, Dantong Liu, James D. Allan, Paul I. Williams, Jim Haywood, Ellie J. Highwood, Sobhan K. Kompalli, S. Suresh Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 13079–13096, https://doi.org/10.5194/acp-19-13079-2019, https://doi.org/10.5194/acp-19-13079-2019, 2019
Short summary
Short summary
Our study presents an analysis of the vertical and horizontal black carbon properties across northern India using aircraft measurements. The Indo-Gangetic Plain saw the greatest black carbon mass concentrations during the pre-monsoon season. Two black carbon modes were recorded: a small black carbon mode (traffic emissions) in the north-west and a moderately coated mode (solid-fuel emissions) in the Indo-Gangetic Plain. In the vertical profile, absorption properties increase with height.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Nicholas W. Davies, Cathryn Fox, Kate Szpek, Michael I. Cotterell, Jonathan W. Taylor, James D. Allan, Paul I. Williams, Jamie Trembath, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 3417–3434, https://doi.org/10.5194/amt-12-3417-2019, https://doi.org/10.5194/amt-12-3417-2019, 2019
Short summary
Short summary
This research project assesses biases in traditional, filter-based, aerosol absorption measurements by comparison to state-of-the-art, non-filter-based, or in situ, measurements. We assess biases in traditional absorption measurements for three main aerosol types, including dust and fresh and aged biomass burning aerosols. The main results of this study are that the traditional and state-of-the-art absorption measurements are well correlated and that biases in the former are up to 45 %.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary
Short summary
Our study, for the first time, presents measurements of aerosol chemical composition and physical characteristics across northern India in the pre-monsoon and monsoon seasons of 2016 using the FAAM BAe-146 UK research aircraft. Across northern India, an elevated aerosol layer dominated by sulfate aerosol exists that diminishes with monsoon arrival. The Indo-Gangetic Plain (IGP) boundary layer is dominated by organics, whereas outside the IGP sulfate dominates with increased scattering aerosol.
Michael I. Cotterell, Andrew J. Orr-Ewing, Kate Szpek, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 2371–2385, https://doi.org/10.5194/amt-12-2371-2019, https://doi.org/10.5194/amt-12-2371-2019, 2019
Short summary
Short summary
Photoacoustic spectroscopy provides measurements of absorption coefficient for aerosol and gas samples but requires careful calibration, and researchers often use concentrations of ozone. Recent work has shown that the bath gas composition impacts the accuracy of this calibration at visible wavelengths. We explore further the role of bath gas, demonstrating that the calibration accuracy is optimal for a bath gas composed of 20 % oxygen and 80 % nitrogen at wavelengths of 405, 514 and 658 nm.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Lars Ahlm, Andy Jones, Camilla W. Stjern, Helene Muri, Ben Kravitz, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, https://doi.org/10.5194/acp-17-13071-2017, 2017
Short summary
Short summary
We present results from coordinated simulations with three Earth system models focusing on the response of Earth’s radiation balance to the injection of sea salt particles. We find that in most regions the effective radiative forcing by the injected particles is equally large in cloudy and clear-sky conditions, suggesting a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
R. E. L. West, P. Stier, A. Jones, C. E. Johnson, G. W. Mann, N. Bellouin, D. G. Partridge, and Z. Kipling
Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, https://doi.org/10.5194/acp-14-6369-2014, 2014
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble
North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management
Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883
Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models
Revisiting the Agung 1963 volcanic forcing – impact of one or two eruptions
Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations
Upper tropospheric ice sensitivity to sulfate geoengineering
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols
Global radiative effects of solid fuel cookstove aerosol emissions
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations
Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model
Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009
Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)
Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles
Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas
Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation
Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide
Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering
What is the limit of climate engineering by stratospheric injection of SO2?
Quasi-biennial oscillation of the tropical stratospheric aerosol layer
The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure
Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions
Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation
Could aerosol emissions be used for regional heat wave mitigation?
The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions
Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere
Initial fate of fine ash and sulfur from large volcanic eruptions
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Lorenzo M. Polvani and Suzana J. Camargo
Atmos. Chem. Phys., 20, 13687–13700, https://doi.org/10.5194/acp-20-13687-2020, https://doi.org/10.5194/acp-20-13687-2020, 2020
Short summary
Short summary
On the basis of questionable early studies, it is widely believed that low-latitude volcanic eruptions cause winter warming over Eurasia. However, we here demonstrate that the winter warming over Eurasia following the 1883 Krakatau eruption was unremarkable and, in all likelihood, unrelated to that eruption. Confirming similar findings for the 1991 Pinatubo eruption, the new research demonstrates that no detectable Eurasian winter warming is to be expected after eruptions of similar magnitude.
Ulrike Niemeier, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, https://doi.org/10.5194/acp-20-8975-2020, 2020
Short summary
Short summary
Artificial injections of SO2 into the tropical stratosphere show an impact on the quasi-biennial oscillation (QBO). Different numerical models show only qualitatively but not quantitatively consistent impacts. We show for two models that the response of the QBO is similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason is very different vertical advection in the two models resulting in different aerosol burden and heating of the aerosols.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Daniele Visioni, Giovanni Pitari, Glauco di Genova, Simone Tilmes, and Irene Cionni
Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, https://doi.org/10.5194/acp-18-14867-2018, 2018
Short summary
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Short summary
Use of multi-instrument satellite data is important to get consistent simulations of aerosol radiative forcing by a complex chemistry climate model, here with a main focus on the lower stratosphere. The satellite data at different wavelengths together with the patterns in the simulated size distribution point to a significant contribution from moist mineral dust lifted to the tropopause region by the Asian summer monsoon.
Tao Tang, Drew Shindell, Bjørn H. Samset, Oliviér Boucher, Piers M. Forster, Øivind Hodnebrog, Gunnar Myhre, Jana Sillmann, Apostolos Voulgarakis, Timothy Andrews, Gregory Faluvegi, Dagmar Fläschner, Trond Iversen, Matthew Kasoar, Viatcheslav Kharin, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas Richardson, Camilla W. Stjern, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, https://doi.org/10.5194/acp-18-8439-2018, 2018
Yaoxian Huang, Nadine Unger, Trude Storelvmo, Kandice Harper, Yiqi Zheng, and Chris Heyes
Atmos. Chem. Phys., 18, 5219–5233, https://doi.org/10.5194/acp-18-5219-2018, https://doi.org/10.5194/acp-18-5219-2018, 2018
Short summary
Short summary
We apply a global 3-D climate model to quantify the climate impacts of carbonaceous aerosols from solid fuel cookstove emissions. Without black carbon (BC) serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling impacts. However, when BC acts as IN, the net sign of radiative impacts of carbonaceous aerosols from solid fuel cookstove emissions varies with the choice of maximum freezing efficiency of BC during ice cloud formation.
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, https://doi.org/10.5194/acp-18-3223-2018, 2018
Short summary
Short summary
We quantify the chemical and microphysical effects of volcanic SO2 and HCl from the June 2009 Sarychev Peak eruption using a comprehensive aerosol–chemistry model combined with in situ measurements and satellite retrievals. Our results suggest that previous studies underestimated the eruption's atmospheric and climatic impact, mainly because previous model-to-satellite comparisons had to make assumptions about the aerosol size distribution and were based on biased satellite retrievals of AOD.
Christoph Kleinschmitt, Olivier Boucher, and Ulrich Platt
Atmos. Chem. Phys., 18, 2769–2786, https://doi.org/10.5194/acp-18-2769-2018, https://doi.org/10.5194/acp-18-2769-2018, 2018
Short summary
Short summary
We use a state-of-the-art stratospheric aerosol model to study geoengineering through stratospheric sulfur injections. We find that the efficiency may decrease more drastically for larger injections than previously estimated and that injections at higher altitude are not more effective. This study may provide additional evidence that this proposed geoengineering technique is still more complicated, probably less effective, and may implicate stronger side effects than initially thought.
Daniele Visioni, Giovanni Pitari, Paolo Tuccella, and Gabriele Curci
Atmos. Chem. Phys., 18, 2787–2808, https://doi.org/10.5194/acp-18-2787-2018, https://doi.org/10.5194/acp-18-2787-2018, 2018
Short summary
Short summary
Sulfate geoengineering is a proposed technique that would mimic explosive volcanic eruptions by injecting sulfur dioxide (SO2) into the stratosphere to counteract global warming produced by greenhouse gases by reflecting part of the incoming solar radiation. In this study we use two models to simulate how the injected aerosols would react to dynamical changes in the stratosphere (due to the quasi-biennial oscillation - QBO) and how this would affect the deposition of sulfate at the surface.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, https://doi.org/10.5194/acp-17-13439-2017, 2017
Short summary
Short summary
This study is focused on the Sarychev eruption in 2009. Based on Lagrangian model simulations and satellite data, the equatorward transport of the plume and aerosol from the Sarychev eruption is confirmed, and the transport is facilitated by the Asian summer monsoon anticyclonic circulations. The aerosol transported to the tropics remained for months and dispersed upward, which could make the Sarychev eruption have a similar global climate impact as a tropical volcanic eruption.
Daniele Visioni, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini
Atmos. Chem. Phys., 17, 11209–11226, https://doi.org/10.5194/acp-17-11209-2017, https://doi.org/10.5194/acp-17-11209-2017, 2017
Short summary
Short summary
Sulfate geoengineering (SG), the sustained injection of SO2 in the lower stratosphere, is being discussed as a way to counterbalance surface warming, mimicking volcanic eruptions. In this paper, we analyse results from two models part of the GeoMIP project in order to understand the effect SG might have on the concentration and lifetime of methane, which acts in the atmosphere as a greenhouse gas. Understanding possible side effects of SG is a crucial step if its viability is to be assessed.
Steffen Münch and Joachim Curtius
Atmos. Chem. Phys., 17, 7581–7591, https://doi.org/10.5194/acp-17-7581-2017, https://doi.org/10.5194/acp-17-7581-2017, 2017
Short summary
Short summary
Recent research has analyzed the formation of a particle (CN) layer in the stratosphere above Antarctica after sunrise. We investigate the CN layer formation processes with our particle formation model and derive sulfuric acid profiles (no measurements exist). Our study confirms existing explanations and gives more insights into the formation process, leading to higher derived concentrations. Therefore, this paper improves our understanding of the processes in the high atmosphere.
Anton Laakso, Hannele Korhonen, Sami Romakkaniemi, and Harri Kokkola
Atmos. Chem. Phys., 17, 6957–6974, https://doi.org/10.5194/acp-17-6957-2017, https://doi.org/10.5194/acp-17-6957-2017, 2017
Short summary
Short summary
Based on simulations, equatorial stratospheric sulfur injections have shown to be an efficient strategy to counteract ongoing global warming. However, equatorial injections would result in relatively larger cooling in low latitudes than in high latitudes. This together with greenhouse-gas-induced warming would lead to cooling in the Equator and warming in the high latitudes. Results of this study show that a more optimal cooling effect is achieved by varying the injection area seasonally.
Alejandro Marti, Arnau Folch, Oriol Jorba, and Zavisa Janjic
Atmos. Chem. Phys., 17, 4005–4030, https://doi.org/10.5194/acp-17-4005-2017, https://doi.org/10.5194/acp-17-4005-2017, 2017
Short summary
Short summary
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and transport model developed at the BSC-CNS capable of forecasting the dispersal and deposition of volcanic ash. The forecast skills of the model have been validated and they improve on those from traditional operational offline (decoupled) models. The results support the use of online coupled models to aid civil aviation and emergency management during a crisis such as the 2010 eruption of Eyjafjallajökull.
Daniele Visioni, Giovanni Pitari, and Valentina Aquila
Atmos. Chem. Phys., 17, 3879–3889, https://doi.org/10.5194/acp-17-3879-2017, https://doi.org/10.5194/acp-17-3879-2017, 2017
Short summary
Short summary
This review paper summarizes the state-of-the-art knowledge of the direct and indirect side effects of sulfate geoengineering, that is, the injection of sulfur dioxide into the stratosphere in order to offset the warming caused by the anthropic increase in greenhouse gasses. An overview of the various effects and their uncertainties, using results from published scientific articles, may help fine-tune the best amount of sulfate to be injected in an eventual realization of the experiment.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
D. N. Bernstein, J. D. Neelin, Q. B. Li, and D. Chen
Atmos. Chem. Phys., 13, 6373–6390, https://doi.org/10.5194/acp-13-6373-2013, https://doi.org/10.5194/acp-13-6373-2013, 2013
M. Toohey, K. Krüger, U. Niemeier, and C. Timmreck
Atmos. Chem. Phys., 11, 12351–12367, https://doi.org/10.5194/acp-11-12351-2011, https://doi.org/10.5194/acp-11-12351-2011, 2011
J. M. English, O. B. Toon, M. J. Mills, and F. Yu
Atmos. Chem. Phys., 11, 9303–9322, https://doi.org/10.5194/acp-11-9303-2011, https://doi.org/10.5194/acp-11-9303-2011, 2011
U. Niemeier, C. Timmreck, H.-F. Graf, S. Kinne, S. Rast, and S. Self
Atmos. Chem. Phys., 9, 9043–9057, https://doi.org/10.5194/acp-9-9043-2009, https://doi.org/10.5194/acp-9-9043-2009, 2009
Cited articles
Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes
on the global hydrological cycle, P. Natl. Acad. Sci. USA, 105, 7664–7669,
2008.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
2001.
Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., and
Woodward, S.: Improved representation of aerosols for HadGEM2, Hadley Centre
technical note 73, Hadley Centre, Met Office, Exeter, UK, available at:
http://www.metoffice.gov.uk/media/pdf/8/f/HCTN_73.pdf, 42 pp., 2007.
Berdahl, M., Robock, A., Ji, D., Moore, J. C., Jones, A., Kravitz, B., and
Watanabe, S.: Arctic cryosphere response in the Geoengineering Model
Intercomparison Project G3 and G4 scenarios, J. Geophys. Res.-Atmos., 119,
1308–1321, 2014.
Carslaw, K. C. and Kärcher, B.: Stratospheric aerosol processes, in:
Assessment of Stratospheric Aerosol Properties, edited by: Thomason, L. and
Peter, T., WCRP 124, WMO/TD 1295, SPARC Rep. 4, World. Meteorol. Organ.,
Geneva, Switzerland, 2006.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Crutzen, P.: Albedo Enhancement by Stratospheric Sulfur Injections: A
Contribution to Resolve a Policy Dilemma?, Climate Change, 77, 211–220,
2006.
d'Almeida, G. A., Koepke, P., and Shettle, E. P.: Atmospheric aerosols:
global climatology and radiative characteristics, A. Deepak Publishing,
Hampton, USA, 1991.
Dankovic, D., Kuempel, E., Geraci, C., Gilbert, S., Rice, F., Schulte, P.,
Smith, R., Sofge, C., Wheeler, M., Lentz, T. J., Zumwalde, R., Maynard, A.,
Attfield, M., Pinheiro, G., Ruder, A., Hubbs, A., Ahlers, H., Lynch, D.,
Toraason, M., and Vallyathan, V.: Current intelligence bulletin 63:
occupational exposure to titanium dioxide, Cincinnati, OH: US Department of
Health and Human Services, Public Health Service, Centers for Disease Control
and Prevention, National Institute for Occupational Safety and Health, DHHS
(NIOSH) Publication No. 2011-160, 1–119, 2011.
Deepak, A. and Gerber, H. E. (Eds.): Report of the experts meeting on
aerosols and their climatic effects (Williamsburg, Virginia, March 1983),
Rep. WCP-55, World Clim. Programme, World Meteorol. Organ., Geneva, 1983.
Deshler, T. and Anderson-Sprecher, R.: Non-volcanic stratospheric aerosol
trends: 1971–2004, in: Assessment of Stratospheric Aerosol Properties,
edited by: Thomason, L. and Peter, T., WCRP 124, WMO/TD 1295, SPARC Rep. 4,
World Meteorolo. Organ., Geneva, Switzerland, 2006.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K.
H.: Stratospheric water vapor feedback, Proc. Natl. Acad. Sci. USA, 110,
18087–18091, 2013.
Dhomse, S. S., Emmerson, K. M., Mann, G. W., Bellouin, N., Carslaw, K. S.,
Chipperfield, M. P., Hommel, R., Abraham, N. L., Telford, P., Braesicke, P.,
Dalvi, M., Johnson, C. E., O'Connor, F., Morgenstern, O., Pyle, J. A.,
Deshler, T., Zawodny, J. M., and Thomason, L. W.: Aerosol microphysics
simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate
model, Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014,
2014.
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled
Model Intercomparison Project 5 (CMIP5) simulations of climate following
volcanic eruptions, J. Geophys. Res.-Atmos., 117, D17105,
https://doi.org/10.1029/2012JD017607, 2012.
English, J. M., Toon, O. B., and Mills, M. J.: Microphysical simulations of
sulfur burdens from stratospheric sulfur geoengineering, Atmos. Chem. Phys.,
12, 4775–4793, https://doi.org/10.5194/acp-12-4775-2012, 2012.
Ferraro, A. J., Highwood, E. J., and Charlton-Perez, A. J.: Stratospheric
heating by potential geoengineering aerosols, Geophys. Res. Lett., 38,
L24706, https://doi.org/10.1029/2011GL049761, 2011.
Ferraro, A. J., Highwood, E. J., and Charlton-Perez, A. J.: Weakened tropical
circulation and reduced precipitation in response to geoengineering, Environ.
Res. Lett., 9, 014001, https://doi.org/10.1088/1748-9326/9/1/014001, 2014.
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner,
T.,Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki,
S., Braesike, P.,Brühl, C., Butchart, N., Chipperfield, M., Dameris, M.,
Dhomse, S., Garny, H.,Hardiman, S. C., Jöckel, P., Kinnison, D. E.,
Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O.,
Pawson, S., Pitari, G., Plummer, D.,Pyle, J. A., Rozanov, E., Scinocca, J.,
Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.:
Multimodel assessment of the upper troposphere and lower stratosphere:
Tropics and global trends, J. Geophys. Res., 115, D00M08,
https://doi.org/10.1029/2009JD013638, 2010.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res., 102, 6831–6864, 1997.
Haywood, J. M., Jones, A., Clarisse, L., Bourassa, A., Barnes, J., Telford,
P., Bellouin N., Boucher, O., Agnew, P., Clerbaux, C., Coheur, P.,
Degenstein, D., and Braesicke, P.: Observations of the eruption of the
Sarychev volcano and simulations using the HadGEM2 climate model, J. Geophys.
Res., 115, D21212, https://doi.org/10.1029/2010JD014447, 2010.
Haywood, J. M., Bellouin, N., Jones, A., Boucher, O., Wild, M., and Shine, K.
P.: The roles of aerosol, water vapor and cloud in future global
dimming/brightening, J. Geophys. Res., 116, D20203, https://doi.org/10.1029/2011JD016000,
2011.
Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric
forcing from stratospheric aerosols impacts Sahelian rainfall, Nature Climate
Change, 3, 660–665, 2013.
Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B. P., Rozanov, E.,
Schraner, M., Thomason, L. W., and Peter, T.: The impact of geoengineering
aerosols on stratospheric temperature and ozone, Environ. Res. Lett., 4,
045108, https://doi.org/10.1088/1748-9326/4/4/045108, 2009.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki,
R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A.,
Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite:
The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, Bull. Amer. Meteor. Soc., 96, 1311–1332. 2015.
International Civil Aviation Organisation (ICAO): Manual of the ICAO Standard
Atmosphere: extended to 80 kilometres (262 200 feet), Doc 7488/3, 3rd Edn.,
1993.
Jiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T. K., Bian, H., Carslaw, K. S., Chin, M., De Luca, N., Diehl, T.,
Ghan, S. J., Iversen, T., Kirkevåg, A., Koch, D., Liu, X., Mann, G. W.,
Penner, J. E., Pitari, G., Schulz, M., Seland, Ø., Skeie, R. B.,
Steenrod, S. D., Stier, P., Takemura, T., Tsigaridis, K., van Noije, T.,
Yun, Y., and Zhang, K.: An AeroCom assessment of black carbon in Arctic snow
and sea ice, Atmos. Chem. Phys., 14, 2399–2417,
https://doi.org/10.5194/acp-14-2399-2014, 2014.
Kawatani, Y. and Hamilton, K.: Weakened stratospheric quasibiennial
oscillation driven by increased tropical mean upwelling, Nature, 497,
478–481, 2013.
Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M.: Changes in
temperature and precipitation extremes in the CMIP5 ensemble, Climate Change,
119, 345–357, 2013.
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A.
J., and Carrico, C. M.: Hygroscopicity and cloud droplet activation of
mineral dust aerosol, Geophys. Res. Lett., 36, L08805,
https://doi.org/10.1029/2009GL037348, 2009.
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov,
G., and Schulz, M.: The Geoengineering Model Intercomparison Project
(GeoMIP), Atmosph. Sci. Lett., 12, 162–167, 2011.
Kravitz, B., Robock, A., Shindell, D. T., and Miller, M. A.: Sensitivity of
stratospheric geoengineering with black carbon to aerosol size and altitude
of injection, J. Geophys. Res., 117, D09203, https://doi.org/10.1029/2011JD017341,
2012.
Kravitz, B., Robock, A., Forster, P. M., Haywood, J. M., Lawrence, M. G., and
Schmidt, H.: An overview of the Geoengineering Model Intercomparison Project
(GeoMIP), J. Geophys. Res.-Atmos., 118, 13103–13107,
2013.
Kravitz, B., Douglas G MacMartin, D. G., Leedal, D. T., Rasch, P. J., and
Jarvis, A. J.: Explicit feedback and the management of uncertainty in meeting
climate objectives with solar geoengineering, Environ. Res. Lett., 9, 044006,
https://doi.org/10.1088/1748-9326/9/4/044006, 2014.
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P.
J., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C.,
Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., and
Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6
(GeoMIP6): simulation design and preliminary results, Geosci. Model Dev., 8,
3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015.
L'Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin, B., Kato, S.,
Clayson, C. A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich,
M., Gu, G., Robertson, F., Houser, P. R., Chambers, D., Famiglietti, J. S.,
Fetzer, E., Liu, W. T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier, D.
P., and Hilburn, K.: The Observed State of the Energy Budget in the Early
Twenty-First Century, J. Climate, 28, 8319–8346.,
2015.
Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans,
G., Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic
properties controlled by mixing state and composition, Atmos. Chem. Phys.,
13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, 2013.
Lombardo, K., Colle, B. A., and Zhang, Z.: Evaluation of Historical and
Future Cool Season Precipitation over the Eastern United States and Western
Atlantic Storm Track Using CMIP5 Models, J. Climate, 28, 451–467, 2015.
MacMartin, D. G., Keith, D. W., Kravitz, B., and Caldeira, K.: Management of
trade-offs in geoengineering through optimal choice of non-uniform radiative
forcing, Nature Climate Change, 3, 365–368, 2013.
MacMartin, D. G., Kravitz, B., Keith, D. W., and Jarvis, A.: Dynamics of the
coupled human–climate system resulting from closed-loop control of solar
geoengineering, Clim. Dynam., 43, 243–258, 2014.
Marks, A. A. and King, M. D.: The effect of snow/sea ice type on the response
of albedo and light penetration depth (e-folding depth) to increasing black
carbon, The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014, 2014.
McCusker, K. E., Battisti, D. S., and Bitz, C. M.: Inability of stratospheric
sulfate aerosol injections to preserve the West Antarctic Ice Sheet, Geophys.
Res. Lett., 42, 4989–4997,
https://doi.org/10.1002/2015GL064314, 2015.
Meinshausen, M., Smith, S. J., Calvin, K. V., Daniel, J. S., Kainuma, M. L.
T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi,
K., Thomson, A. M., Velders, G. J. M., and Van Vuuren, D.: The RCP Greenhouse
Gas Concentrations and their Extension from 1765 to 2300, Climate Change
(Special Issue), https://doi.org/10.1007/s10584-011-0156-z, 2011.
Muller, C. J. and O'Gorman, P. A.: An energetic perspective on the regional
response of precipitation to climate change, Nature Climate Change, 1,
266–271, 2011.
Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffmann, J.,
Stemmler, K., and Ammann, M.: Photoenhanced uptake of NO2 on mineral
dust: Laboratory experiments and model simulations, Geophys. Res. Lett., 35,
L05812, https://doi.org/10.1029/2007GL032006, 2008.
Niemeier, U., Schmidt, H., and Timmreck, C.: The dependency of geoengineered
sulfate aerosol on the emission strategy, Atmos. Sci. Lett., 12, 189–194,
2011.
Niemeier, U., Schmidt, H., Alterskjær, K., and Kristjánsson, J. E.:
Solar irradiance reduction via climate engineering: Impact of different
techniques on the energy balance and the hydrological cycle, J. Geophys.
Res.-Atmos., 118, 11905–11917, 2013.
Oman, L., Robock, A., Stenchikov, G. L., and Thordarson, T.: High-latitude
eruptions cast shadow over the African monsoon and the flow of the Nile,
Geophys. Res. Lett., 33, L18711, https://doi.org/10.1029/2006GL027665, 2006.
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le
Quéré, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge
to keep global warming below 2 °C, Nature Climate Change, 3, 4–6,
2013.
Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T., and Keith, D.
W.: Efficient formation of stratospheric aerosol for climate engineering by
emission of condensible vapor from aircraft, Geophys. Res. Lett., 37, L18805,
https://doi.org/10.1029/2010GL043975, 2010.
Pitari, G., Aquila, V., Kravitz, B., Robock, A., Watanabe, S., Cionni, I., De
Luca, N., Di Genova, G., Mancini, E., and Tilmes, S.: Stratospheric ozone
response to sulfate geoengineering: Results from the Geoengineering Model
Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 119, 2629–2653,
2014.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
2014.
Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M.,
Davidson, P. J., and Cox, R. A.: Stratospheric aerosol particles and
solar-radiation management, Nature Climate Change, 2, 713–719,
2012.
Priestley, K. J., Smith, G. L., Thomas, S., Cooper, D., Lee III, R. B.,
Walikainen, D., Hess, P., Szewczyk, Z. P., and Wilson, R.: Radiometric
Performance of the CERES Earth Radiation Budget Climate Record Sensors on the
EOS Aqua and Terra Spacecraft through April 2007, J. Atmos. Oc. Technol., 28,
3–21, 2011.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation,
D. Reidel Publishing Company, Dordretch, ISBN: 978-90-277-1106-9, Holland,
1980.
Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C.-C.,
Stenchikov, G. L., and Garcia, R. R.: An overview of geoengineering of
climate using stratospheric sulphate aerosols, Phil. Trans. R. Soc. A, 366,
4007–4037, 2008.
Ribarsky, M. W.: Titanium dioxide, in: Handbook of Optical Constants of
Solids, edited by: E. Palik, Academic, Orlando, Fla, 795–804, 1985.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to
geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res.,
113, D16101, https://doi.org/10.1029/2008JD010050, 2008.
Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne, S.,
Krismer, T., Stenchikov, G., Timmreck, S., Tomassini, L., and Walz, M.:
Response of the middle atmosphere to anthropogenic and natural forcings in
the CMIP5 simulations with the Max Planck Institute Earth system model, J.
Adv. Model. Earth Syst., 5, 98–116, 2013.
Schoeberl, M. R., Douglass, A. R., Stolarski, R. S., Pawson, S., Strahan, S.
E., and Read, W.: Comparison of lower stratospheric tropical mean vertical
velocities, J. Geophys. Res., 113, D24109, https://doi.org/10.1029/2008JD010221, 2008.
Shepherd, J.: Geoengineering
the climate: Science, governance, and uncertainty, Royal Society Policy
document 10/09, ISBN: 978-0-85403-773-5, 82 pp., 2009.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res.,
107, 4803, https://doi.org/10.1029/2002JD002090, 2002.
Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L.,
Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M.,
Cox, R. A., and Kalberer, M.: Heterogeneous reaction of N2O5 with
airborne TiO2 particles and its implication for stratospheric particle
injection, Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014,
2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, Bull. Amer. Meteor. Soc., 93, 485–498, 2012.
Teller, E., Wood, L., and Hyde, R.: Global Warming and Ice Ages: I. Prospects
for Physics-Based Modulation of Global Change, Lawrence Livermore National
Laboratory Publication UCRL-JC-128715, 18 pp., 1997.
The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J.,
Culverwell, I. D., Halloran, P.R., Hardiman, S. C., Hinton, T. J., Jones, C.
D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J.,
Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R.,
Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher,
M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T.,
Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James,
P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M.,
Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C.,
Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A.,
Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2
family of Met Office Unified Model climate configurations, Geosci. Model
Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Tilmes, S., Kinnison, D. E., Garcia, R. R., Salawitch, R., Canty, T.,
Lee-Taylor, J., Madronich, S., and Chance, K.: Impact of very short-lived
halogens on stratospheric ozone abundance and UV radiation in a
geo-engineered atmosphere, Atmos. Chem. Phys., 12, 10945–10955,
https://doi.org/10.5194/acp-12-10945-2012, 2012.
Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D. R., Mills, M.,
Alterskjær, K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz,
M., Cole, J. N. S., Curry, C. L., Jones, A., Haywood, J., Irvine, P. J., Ji,
D., Moore, J. C., Karam, D. B., Kravitz, B., Rasch, P. J., Singh, C., Yoon,
J.-H., Niemeier, U., Schmidt, H., Robock, A., Yang, S., and Watanabe, S.: The
hydrological impact of geoengineering in the Geoengineering Model
Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 11036–11058,
2013.
von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers,
D., Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, P.-P.,
Meyssignac, B., and Wild, M.: An imperative to monitor Earth's energy
imbalance, Nature Climate Change, 6, 138–144, 2016.
Weisenstein, D. K., Keith, D. W., and Dykema, J. A.: Solar geoengineering
using solid aerosol in the stratosphere, Atmos. Chem. Phys., 15,
11835–11859, https://doi.org/10.5194/acp-15-11835-2015, 2015.
Yang, H., Zhu, S., and Pan, N.: Studying the Mechanisms of Titanium Dioxide
as Ultraviolet-Blocking Additive for Films and Fabrics by an Improved Scheme,
J. Appl. Polym. Sci., 92, 3201–3210, 2004.
Yu, X., Moore, J. C., Cui, X., Rinke, A., Ji, D., Kravitz, B., and Yoon,
J.-H.: Impacts, effectiveness and regional inequalities of the GeoMIP G1 to
G4 solar radiation management scenarios, Glob. Planet. Change, 129, 10–22,
2015.
Short summary
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black carbon and titania injection strategies. We find that black carbon injection results in severe stratospheric warming and precipitation impacts, and therefore black carbon is unsuitable for geoengineering purposes. As the injection rates and climatic impacts for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide.
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black...
Altmetrics
Final-revised paper
Preprint