Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-2843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-2843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
Anthony C. Jones
CORRESPONDING AUTHOR
College of Engineering Maths and Physical Sciences,
University of Exeter, Exeter, UK
James M. Haywood
College of Engineering Maths and Physical Sciences,
University of Exeter, Exeter, UK
Met Office Hadley Centre, Exeter, UK
Andy Jones
Met Office Hadley Centre, Exeter, UK
Related authors
No articles found.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Matthew Henry, Ewa M. Bednarz, and Jim Haywood
EGUsphere, https://doi.org/10.5194/egusphere-2024-1565, https://doi.org/10.5194/egusphere-2024-1565, 2024
Short summary
Short summary
Stratospheric Aerosol Injection (SAI) refers to a climate intervention method by which aerosols are intentionally added to the stratosphere (~21 km) to increase the amount of reflected sunlight and reduce the Earth’s temperature. The climate outcomes of SAI depend on the location, amount, and timing of injection. Here, we analyse the role of the latitude of injection in different climate simulations which reduce Earth’s temperature by the same amount but have a different latitude of injection.
Philip Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1031, https://doi.org/10.5194/egusphere-2024-1031, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming & climate impacts from greenhouse gas increases. The strategy slightly changes clouds in 6 ocean regions to reflect more sunlight & cool Earth. Example changes in clouds & climate are shown for 3 climate models. Clouds change differently between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Ou Wang, Ju Liang, Yuchen Gu, Jim M. Haywood, Ying Chen, Chenwei Fang, and Qingeng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2904, https://doi.org/10.5194/egusphere-2023-2904, 2024
Short summary
Short summary
This study investigates the impact of stratospheric aerosol injection (SAI) on extreme precipitation in China by the late 21st century. The effects of SAI (G6sulfur) are compared with simulations from SSP5-8.5, SSP2-4.5, and G6solar. The results indicate that both G6sulfur and G6solar reduce extreme rainfall in eastern China. However, caution is advised due to potential side effects at high latitudes. Further optimization is deemed crucial for the future deployment of SAI.
Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch
Atmos. Chem. Phys., 23, 15305–15324, https://doi.org/10.5194/acp-23-15305-2023, https://doi.org/10.5194/acp-23-15305-2023, 2023
Short summary
Short summary
The difficulties in ameliorating global warming and the associated climate change via conventional mitigation are well documented, with all climate model scenarios exceeding 1.5 °C above the preindustrial level in the near future. There is therefore a growing interest in geoengineering to reflect a greater proportion of sunlight back to space and offset some of the global warming. We use a state-of-the-art Earth-system model to investigate two of the most prominent geoengineering strategies.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Matthew Henry, Jim Haywood, Andy Jones, Mohit Dalvi, Alice Wells, Daniele Visioni, Ewa M. Bednarz, Douglas G. MacMartin, Walker Lee, and Mari R. Tye
Atmos. Chem. Phys., 23, 13369–13385, https://doi.org/10.5194/acp-23-13369-2023, https://doi.org/10.5194/acp-23-13369-2023, 2023
Short summary
Short summary
Solar climate interventions, such as injecting sulfur in the stratosphere, may be used to offset some of the adverse impacts of global warming. We use two independently developed Earth system models to assess the uncertainties around stratospheric sulfur injections. The injection locations and amounts are optimized to maintain the same pattern of surface temperature. While both models show reduced warming, the change in rainfall patterns (even without sulfur injections) is uncertain.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Alice F. Wells, Andy Jones, Martin Osborne, Lilly Damany-Pearce, Daniel G. Partridge, and James M. Haywood
Atmos. Chem. Phys., 23, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023, https://doi.org/10.5194/acp-23-3985-2023, 2023
Short summary
Short summary
In 2019 the Raikoke volcano erupted explosively, emitting the largest injection of SO2 into the stratosphere since 2011. Observations indicated that a large amount of volcanic ash was also injected. Previous studies have identified that volcanic ash can prolong the lifetime of stratospheric aerosol optical depth, which we explore in UKESM1. Comparisons to observations suggest that including ash in model emission schemes can improve the representation of volcanic plumes in global climate models.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Daniele Visioni, Ewa M. Bednarz, Walker R. Lee, Ben Kravitz, Andy Jones, Jim M. Haywood, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 663–685, https://doi.org/10.5194/acp-23-663-2023, https://doi.org/10.5194/acp-23-663-2023, 2023
Short summary
Short summary
The paper constitutes Part 1 of a study performing a first systematic inter-model comparison of the atmospheric responses to stratospheric sulfate aerosol injections (SAIs) at various latitudes as simulated by three state-of-the-art Earth system models. We identify similarities and differences in the modeled aerosol burden, investigate the differences in the aerosol approaches between the models, and ultimately show the differences produced in surface climate, temperature and precipitation.
Ewa M. Bednarz, Daniele Visioni, Ben Kravitz, Andy Jones, James M. Haywood, Jadwiga Richter, Douglas G. MacMartin, and Peter Braesicke
Atmos. Chem. Phys., 23, 687–709, https://doi.org/10.5194/acp-23-687-2023, https://doi.org/10.5194/acp-23-687-2023, 2023
Short summary
Short summary
Building on Part 1 of this two-part study, we demonstrate the role of biases in climatological circulation and specific aspects of model microphysics in driving the differences in simulated sulfate distributions amongst three Earth system models. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface responses discussed in Part 1.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, https://doi.org/10.5194/acp-22-4557-2022, 2022
Short summary
Short summary
This study assesses the impacts of climate interventions, using stratospheric sulfate aerosol and solar dimming on stratospheric ozone, based on three Earth system models with interactive stratospheric chemistry. The climate interventions have been applied to a high emission (baseline) scenario in order to reach global surface temperatures of a medium emission scenario. We find significant increases and decreases in total column ozone, depending on regions and seasons.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Gunnar Myhre, Bjørn H. Samset, Christian W. Mohr, Kari Alterskjær, Yves Balkanski, Nicolas Bellouin, Mian Chin, James Haywood, Øivind Hodnebrog, Stefan Kinne, Guangxing Lin, Marianne T. Lund, Joyce E. Penner, Michael Schulz, Nick Schutgens, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, and Kai Zhang
Atmos. Chem. Phys., 20, 8855–8865, https://doi.org/10.5194/acp-20-8855-2020, https://doi.org/10.5194/acp-20-8855-2020, 2020
Short summary
Short summary
The radiative forcing of the direct aerosol effects can be decomposed into clear-sky and cloudy-sky portions. In this study we use observational methods and two sets of multi-model global aerosol simulations over the industrial era to show that the contribution from cloudy-sky regions is likely weak.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
James Brooks, Dantong Liu, James D. Allan, Paul I. Williams, Jim Haywood, Ellie J. Highwood, Sobhan K. Kompalli, S. Suresh Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 13079–13096, https://doi.org/10.5194/acp-19-13079-2019, https://doi.org/10.5194/acp-19-13079-2019, 2019
Short summary
Short summary
Our study presents an analysis of the vertical and horizontal black carbon properties across northern India using aircraft measurements. The Indo-Gangetic Plain saw the greatest black carbon mass concentrations during the pre-monsoon season. Two black carbon modes were recorded: a small black carbon mode (traffic emissions) in the north-west and a moderately coated mode (solid-fuel emissions) in the Indo-Gangetic Plain. In the vertical profile, absorption properties increase with height.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Nicholas W. Davies, Cathryn Fox, Kate Szpek, Michael I. Cotterell, Jonathan W. Taylor, James D. Allan, Paul I. Williams, Jamie Trembath, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 3417–3434, https://doi.org/10.5194/amt-12-3417-2019, https://doi.org/10.5194/amt-12-3417-2019, 2019
Short summary
Short summary
This research project assesses biases in traditional, filter-based, aerosol absorption measurements by comparison to state-of-the-art, non-filter-based, or in situ, measurements. We assess biases in traditional absorption measurements for three main aerosol types, including dust and fresh and aged biomass burning aerosols. The main results of this study are that the traditional and state-of-the-art absorption measurements are well correlated and that biases in the former are up to 45 %.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary
Short summary
Our study, for the first time, presents measurements of aerosol chemical composition and physical characteristics across northern India in the pre-monsoon and monsoon seasons of 2016 using the FAAM BAe-146 UK research aircraft. Across northern India, an elevated aerosol layer dominated by sulfate aerosol exists that diminishes with monsoon arrival. The Indo-Gangetic Plain (IGP) boundary layer is dominated by organics, whereas outside the IGP sulfate dominates with increased scattering aerosol.
Michael I. Cotterell, Andrew J. Orr-Ewing, Kate Szpek, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 2371–2385, https://doi.org/10.5194/amt-12-2371-2019, https://doi.org/10.5194/amt-12-2371-2019, 2019
Short summary
Short summary
Photoacoustic spectroscopy provides measurements of absorption coefficient for aerosol and gas samples but requires careful calibration, and researchers often use concentrations of ozone. Recent work has shown that the bath gas composition impacts the accuracy of this calibration at visible wavelengths. We explore further the role of bath gas, demonstrating that the calibration accuracy is optimal for a bath gas composed of 20 % oxygen and 80 % nitrogen at wavelengths of 405, 514 and 658 nm.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Lars Ahlm, Andy Jones, Camilla W. Stjern, Helene Muri, Ben Kravitz, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, https://doi.org/10.5194/acp-17-13071-2017, 2017
Short summary
Short summary
We present results from coordinated simulations with three Earth system models focusing on the response of Earth’s radiation balance to the injection of sea salt particles. We find that in most regions the effective radiative forcing by the injected particles is equally large in cloudy and clear-sky conditions, suggesting a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
R. E. L. West, P. Stier, A. Jones, C. E. Johnson, G. W. Mann, N. Bellouin, D. G. Partridge, and Z. Kipling
Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, https://doi.org/10.5194/acp-14-6369-2014, 2014
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Explaining the green volcanic sunsets after the 1883 eruption of Krakatoa
A multi-scenario Lagrangian trajectory analysis to identify source regions of the Asian tropopause aerosol layer on the Indian subcontinent in August 2016
Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios
How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments
Opinion: How fear of nuclear winter has helped save the world, so far
Including ash in UKESM1 model simulations of the Raikoke volcanic eruption reveals improved agreement with observations
Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics
Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption
Climate response to off-equatorial stratospheric sulfur injections in three Earth system models – Part 2: Stratospheric and free-tropospheric response
The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud
Dynamical perturbation of the stratosphere by a pyrocumulonimbus injection of carbonaceous aerosols
Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires
Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability
Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies
An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
Online treatment of eruption dynamics improves the volcanic ash and SO2 dispersion forecast: case of the 2019 Raikoke eruption
The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment
An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols
Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations
Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – Part 1: Intercomparison of modal and sectional aerosol modules
The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere
Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations
Harnessing stratospheric diffusion barriers for enhanced climate geoengineering
Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble
North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management
Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883
Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models
Revisiting the Agung 1963 volcanic forcing – impact of one or two eruptions
Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations
Upper tropospheric ice sensitivity to sulfate geoengineering
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols
Global radiative effects of solid fuel cookstove aerosol emissions
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations
Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model
Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009
Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)
Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles
Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas
Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation
Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide
Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering
What is the limit of climate engineering by stratospheric injection of SO2?
Quasi-biennial oscillation of the tropical stratospheric aerosol layer
The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure
Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions
Christian von Savigny, Anna Lange, Christoph G. Hoffmann, and Alexei Rozanov
Atmos. Chem. Phys., 24, 2415–2422, https://doi.org/10.5194/acp-24-2415-2024, https://doi.org/10.5194/acp-24-2415-2024, 2024
Short summary
Short summary
It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Fabian Senf, Bernd Heinold, Anne Kubin, Jason Müller, Roland Schrödner, and Ina Tegen
Atmos. Chem. Phys., 23, 8939–8958, https://doi.org/10.5194/acp-23-8939-2023, https://doi.org/10.5194/acp-23-8939-2023, 2023
Short summary
Short summary
Wildfire smoke is a significant source of airborne atmospheric particles that can absorb sunlight. Extreme fires in particular, such as those during the 2019–2020 Australian wildfire season (Black Summer fires), can considerably affect our climate system. In the present study, we investigate the various effects of Australian smoke using a global climate model to clarify how the Earth's atmosphere, including its circulation systems, adjusted to the extraordinary amount of Australian smoke.
Alan Robock, Lili Xia, Cheryl S. Harrison, Joshua Coupe, Owen B. Toon, and Charles G. Bardeen
Atmos. Chem. Phys., 23, 6691–6701, https://doi.org/10.5194/acp-23-6691-2023, https://doi.org/10.5194/acp-23-6691-2023, 2023
Short summary
Short summary
A nuclear war could produce a nuclear winter, with catastrophic consequences for global food supplies. Nuclear winter theory helped to end the nuclear arms race in the 1980s, but more than 10 000 nuclear weapons still exist. This means they can be used, by unstable leaders, accidently from technical malfunctions or human error, or by terrorists. Therefore, it is urgent for scientists to study these issues, broadly communicate their results, and work for the elimination of nuclear weapons.
Alice F. Wells, Andy Jones, Martin Osborne, Lilly Damany-Pearce, Daniel G. Partridge, and James M. Haywood
Atmos. Chem. Phys., 23, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023, https://doi.org/10.5194/acp-23-3985-2023, 2023
Short summary
Short summary
In 2019 the Raikoke volcano erupted explosively, emitting the largest injection of SO2 into the stratosphere since 2011. Observations indicated that a large amount of volcanic ash was also injected. Previous studies have identified that volcanic ash can prolong the lifetime of stratospheric aerosol optical depth, which we explore in UKESM1. Comparisons to observations suggest that including ash in model emission schemes can improve the representation of volcanic plumes in global climate models.
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Ewa M. Bednarz, Daniele Visioni, Ben Kravitz, Andy Jones, James M. Haywood, Jadwiga Richter, Douglas G. MacMartin, and Peter Braesicke
Atmos. Chem. Phys., 23, 687–709, https://doi.org/10.5194/acp-23-687-2023, https://doi.org/10.5194/acp-23-687-2023, 2023
Short summary
Short summary
Building on Part 1 of this two-part study, we demonstrate the role of biases in climatological circulation and specific aspects of model microphysics in driving the differences in simulated sulfate distributions amongst three Earth system models. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface responses discussed in Part 1.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Giorgio Doglioni, Valentina Aquila, Sampa Das, Peter R. Colarco, and Dino Zardi
Atmos. Chem. Phys., 22, 11049–11064, https://doi.org/10.5194/acp-22-11049-2022, https://doi.org/10.5194/acp-22-11049-2022, 2022
Short summary
Short summary
We use a global chemistry climate model to analyze the perturbations to the stratospheric dynamics caused by an injection of carbonaceous aerosol comparable to the one caused by a series of pyrocumulonimbi that formed over British Columbia, Canada on 13 August 2017. The injection of light-absorbing aerosol in an otherwise clean lower stratosphere causes the formation of long-lasting stratospheric anticyclones at the synoptic scale.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Kevin DallaSanta and Lorenzo M. Polvani
Atmos. Chem. Phys., 22, 8843–8862, https://doi.org/10.5194/acp-22-8843-2022, https://doi.org/10.5194/acp-22-8843-2022, 2022
Short summary
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Ilaria Quaglia, Daniele Visioni, Giovanni Pitari, and Ben Kravitz
Atmos. Chem. Phys., 22, 5757–5773, https://doi.org/10.5194/acp-22-5757-2022, https://doi.org/10.5194/acp-22-5757-2022, 2022
Short summary
Short summary
Carbonyl sulfide is a gas that mixes very well in the atmosphere and can reach the stratosphere, where it reacts with sunlight and produces aerosol. Here we propose that, by increasing surface fluxes by an order of magnitude, the number of stratospheric aerosols produced may be enough to partially offset the warming produced by greenhouse gases. We explore what effect this would have on the atmospheric composition.
Julia Bruckert, Gholam Ali Hoshyaripour, Ákos Horváth, Lukas O. Muser, Fred J. Prata, Corinna Hoose, and Bernhard Vogel
Atmos. Chem. Phys., 22, 3535–3552, https://doi.org/10.5194/acp-22-3535-2022, https://doi.org/10.5194/acp-22-3535-2022, 2022
Short summary
Short summary
Volcanic emissions endanger aviation and public health and also influence weather and climate. Forecasting the volcanic-plume dispersion is therefore a critical yet sophisticated task. Here, we show that explicit treatment of volcanic-plume dynamics and eruption source parameters significantly improves volcanic-plume dispersion forecasts. We further demonstrate the lofting of the SO2 due to a heating of volcanic particles by sunlight with major implications for volcanic aerosol research.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Debra K. Weisenstein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Gabriel Chiodo, Thomas Peter, and David W. Keith
Atmos. Chem. Phys., 22, 2955–2973, https://doi.org/10.5194/acp-22-2955-2022, https://doi.org/10.5194/acp-22-2955-2022, 2022
Short summary
Short summary
This paper explores a potential method of geoengineering that could be used to slow the rate of change of climate over decadal scales. We use three climate models to explore how injections of accumulation-mode sulfuric acid aerosol change the large-scale stratospheric particle size distribution and radiative forcing response for the chosen scenarios. Radiative forcing per unit sulfur injected and relative to the change in aerosol burden is larger with particulate than with SO2 injections.
Daniele Visioni, Simone Tilmes, Charles Bardeen, Michael Mills, Douglas G. MacMartin, Ben Kravitz, and Jadwiga H. Richter
Atmos. Chem. Phys., 22, 1739–1756, https://doi.org/10.5194/acp-22-1739-2022, https://doi.org/10.5194/acp-22-1739-2022, 2022
Short summary
Short summary
Aerosols are simulated in a simplified way in climate models: in the model analyzed here, they are represented in every grid as described by three simple logarithmic distributions, mixing all different species together. The size can evolve when new particles are formed, particles merge together to create a larger one or particles are deposited to the surface. This approximation normally works fairly well. Here we show however that when large amounts of sulfate are simulated, there are problems.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Sampa Das, Peter R. Colarco, Luke D. Oman, Ghassan Taha, and Omar Torres
Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, https://doi.org/10.5194/acp-21-12069-2021, 2021
Short summary
Short summary
Interactions of extreme fires with weather systems can produce towering smoke plumes that inject aerosols at very high altitudes (> 10 km). Three such major injections, largest at the time in terms of emitted aerosol mass, took place over British Columbia, Canada, in August 2017. We model the transport and impacts of injected aerosols on the radiation balance of the atmosphere. Our model results match the satellite-observed plume transport and residence time at these high altitudes very closely.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller
Atmos. Chem. Phys., 21, 8845–8861, https://doi.org/10.5194/acp-21-8845-2021, https://doi.org/10.5194/acp-21-8845-2021, 2021
Short summary
Short summary
There exist robust and influential material features evolving within turbulent fluids that behave as the skeleton for fluid transport pathways. Recent developments in applied mathematics have made the identification of these time-varying structures more rigorous and insightful than ever. Using short-range wind forecasts, we detail how and why these material features can be exploited in an effort to optimize the spread of aerosols in the stratosphere for climate geoengineering.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Lorenzo M. Polvani and Suzana J. Camargo
Atmos. Chem. Phys., 20, 13687–13700, https://doi.org/10.5194/acp-20-13687-2020, https://doi.org/10.5194/acp-20-13687-2020, 2020
Short summary
Short summary
On the basis of questionable early studies, it is widely believed that low-latitude volcanic eruptions cause winter warming over Eurasia. However, we here demonstrate that the winter warming over Eurasia following the 1883 Krakatau eruption was unremarkable and, in all likelihood, unrelated to that eruption. Confirming similar findings for the 1991 Pinatubo eruption, the new research demonstrates that no detectable Eurasian winter warming is to be expected after eruptions of similar magnitude.
Ulrike Niemeier, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, https://doi.org/10.5194/acp-20-8975-2020, 2020
Short summary
Short summary
Artificial injections of SO2 into the tropical stratosphere show an impact on the quasi-biennial oscillation (QBO). Different numerical models show only qualitatively but not quantitatively consistent impacts. We show for two models that the response of the QBO is similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason is very different vertical advection in the two models resulting in different aerosol burden and heating of the aerosols.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Daniele Visioni, Giovanni Pitari, Glauco di Genova, Simone Tilmes, and Irene Cionni
Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, https://doi.org/10.5194/acp-18-14867-2018, 2018
Short summary
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Short summary
Use of multi-instrument satellite data is important to get consistent simulations of aerosol radiative forcing by a complex chemistry climate model, here with a main focus on the lower stratosphere. The satellite data at different wavelengths together with the patterns in the simulated size distribution point to a significant contribution from moist mineral dust lifted to the tropopause region by the Asian summer monsoon.
Tao Tang, Drew Shindell, Bjørn H. Samset, Oliviér Boucher, Piers M. Forster, Øivind Hodnebrog, Gunnar Myhre, Jana Sillmann, Apostolos Voulgarakis, Timothy Andrews, Gregory Faluvegi, Dagmar Fläschner, Trond Iversen, Matthew Kasoar, Viatcheslav Kharin, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas Richardson, Camilla W. Stjern, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, https://doi.org/10.5194/acp-18-8439-2018, 2018
Yaoxian Huang, Nadine Unger, Trude Storelvmo, Kandice Harper, Yiqi Zheng, and Chris Heyes
Atmos. Chem. Phys., 18, 5219–5233, https://doi.org/10.5194/acp-18-5219-2018, https://doi.org/10.5194/acp-18-5219-2018, 2018
Short summary
Short summary
We apply a global 3-D climate model to quantify the climate impacts of carbonaceous aerosols from solid fuel cookstove emissions. Without black carbon (BC) serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling impacts. However, when BC acts as IN, the net sign of radiative impacts of carbonaceous aerosols from solid fuel cookstove emissions varies with the choice of maximum freezing efficiency of BC during ice cloud formation.
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, https://doi.org/10.5194/acp-18-3223-2018, 2018
Short summary
Short summary
We quantify the chemical and microphysical effects of volcanic SO2 and HCl from the June 2009 Sarychev Peak eruption using a comprehensive aerosol–chemistry model combined with in situ measurements and satellite retrievals. Our results suggest that previous studies underestimated the eruption's atmospheric and climatic impact, mainly because previous model-to-satellite comparisons had to make assumptions about the aerosol size distribution and were based on biased satellite retrievals of AOD.
Christoph Kleinschmitt, Olivier Boucher, and Ulrich Platt
Atmos. Chem. Phys., 18, 2769–2786, https://doi.org/10.5194/acp-18-2769-2018, https://doi.org/10.5194/acp-18-2769-2018, 2018
Short summary
Short summary
We use a state-of-the-art stratospheric aerosol model to study geoengineering through stratospheric sulfur injections. We find that the efficiency may decrease more drastically for larger injections than previously estimated and that injections at higher altitude are not more effective. This study may provide additional evidence that this proposed geoengineering technique is still more complicated, probably less effective, and may implicate stronger side effects than initially thought.
Daniele Visioni, Giovanni Pitari, Paolo Tuccella, and Gabriele Curci
Atmos. Chem. Phys., 18, 2787–2808, https://doi.org/10.5194/acp-18-2787-2018, https://doi.org/10.5194/acp-18-2787-2018, 2018
Short summary
Short summary
Sulfate geoengineering is a proposed technique that would mimic explosive volcanic eruptions by injecting sulfur dioxide (SO2) into the stratosphere to counteract global warming produced by greenhouse gases by reflecting part of the incoming solar radiation. In this study we use two models to simulate how the injected aerosols would react to dynamical changes in the stratosphere (due to the quasi-biennial oscillation - QBO) and how this would affect the deposition of sulfate at the surface.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, https://doi.org/10.5194/acp-17-13439-2017, 2017
Short summary
Short summary
This study is focused on the Sarychev eruption in 2009. Based on Lagrangian model simulations and satellite data, the equatorward transport of the plume and aerosol from the Sarychev eruption is confirmed, and the transport is facilitated by the Asian summer monsoon anticyclonic circulations. The aerosol transported to the tropics remained for months and dispersed upward, which could make the Sarychev eruption have a similar global climate impact as a tropical volcanic eruption.
Daniele Visioni, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini
Atmos. Chem. Phys., 17, 11209–11226, https://doi.org/10.5194/acp-17-11209-2017, https://doi.org/10.5194/acp-17-11209-2017, 2017
Short summary
Short summary
Sulfate geoengineering (SG), the sustained injection of SO2 in the lower stratosphere, is being discussed as a way to counterbalance surface warming, mimicking volcanic eruptions. In this paper, we analyse results from two models part of the GeoMIP project in order to understand the effect SG might have on the concentration and lifetime of methane, which acts in the atmosphere as a greenhouse gas. Understanding possible side effects of SG is a crucial step if its viability is to be assessed.
Steffen Münch and Joachim Curtius
Atmos. Chem. Phys., 17, 7581–7591, https://doi.org/10.5194/acp-17-7581-2017, https://doi.org/10.5194/acp-17-7581-2017, 2017
Short summary
Short summary
Recent research has analyzed the formation of a particle (CN) layer in the stratosphere above Antarctica after sunrise. We investigate the CN layer formation processes with our particle formation model and derive sulfuric acid profiles (no measurements exist). Our study confirms existing explanations and gives more insights into the formation process, leading to higher derived concentrations. Therefore, this paper improves our understanding of the processes in the high atmosphere.
Anton Laakso, Hannele Korhonen, Sami Romakkaniemi, and Harri Kokkola
Atmos. Chem. Phys., 17, 6957–6974, https://doi.org/10.5194/acp-17-6957-2017, https://doi.org/10.5194/acp-17-6957-2017, 2017
Short summary
Short summary
Based on simulations, equatorial stratospheric sulfur injections have shown to be an efficient strategy to counteract ongoing global warming. However, equatorial injections would result in relatively larger cooling in low latitudes than in high latitudes. This together with greenhouse-gas-induced warming would lead to cooling in the Equator and warming in the high latitudes. Results of this study show that a more optimal cooling effect is achieved by varying the injection area seasonally.
Alejandro Marti, Arnau Folch, Oriol Jorba, and Zavisa Janjic
Atmos. Chem. Phys., 17, 4005–4030, https://doi.org/10.5194/acp-17-4005-2017, https://doi.org/10.5194/acp-17-4005-2017, 2017
Short summary
Short summary
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and transport model developed at the BSC-CNS capable of forecasting the dispersal and deposition of volcanic ash. The forecast skills of the model have been validated and they improve on those from traditional operational offline (decoupled) models. The results support the use of online coupled models to aid civil aviation and emergency management during a crisis such as the 2010 eruption of Eyjafjallajökull.
Daniele Visioni, Giovanni Pitari, and Valentina Aquila
Atmos. Chem. Phys., 17, 3879–3889, https://doi.org/10.5194/acp-17-3879-2017, https://doi.org/10.5194/acp-17-3879-2017, 2017
Short summary
Short summary
This review paper summarizes the state-of-the-art knowledge of the direct and indirect side effects of sulfate geoengineering, that is, the injection of sulfur dioxide into the stratosphere in order to offset the warming caused by the anthropic increase in greenhouse gasses. An overview of the various effects and their uncertainties, using results from published scientific articles, may help fine-tune the best amount of sulfate to be injected in an eventual realization of the experiment.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
Cited articles
Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R., and Newman, P. A.:
Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like
eruption, J. Geophys. Res., 117, D06216, https://doi.org/10.1029/2011JD016968, 2012.
Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D., and Waugh, D. W.:
Modifications of the quasi-biennial oscillation by a geoengineering
perturbation of the stratospheric aerosol layer, Geophys. Res. Lett., 41,
1738–1744, 2014.
Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes
on the global hydrological cycle, P. Natl. Acad. Sci. USA, 105, 7664–7669,
2008.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
2001.
Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., and
Woodward, S.: Improved representation of aerosols for HadGEM2, Hadley Centre
technical note 73, Hadley Centre, Met Office, Exeter, UK, available at:
http://www.metoffice.gov.uk/media/pdf/8/f/HCTN_73.pdf, 42 pp., 2007.
Bellouin, N., Rae, J., Johnson, C., Haywood, J., Jones, A., and Boucher, O.:
Aerosol forcing in the Hadley Centre CMIP5 simulations by HadGEM2-ES and the
role of ammonium nitrate, J. Geophys. Res., 116, D20206,
https://doi.org/10.1029/2011JD016074, 2011.
Berdahl, M., Robock, A., Ji, D., Moore, J. C., Jones, A., Kravitz, B., and
Watanabe, S.: Arctic cryosphere response in the Geoengineering Model
Intercomparison Project G3 and G4 scenarios, J. Geophys. Res.-Atmos., 119,
1308–1321, 2014.
Carslaw, K. C. and Kärcher, B.: Stratospheric aerosol processes, in:
Assessment of Stratospheric Aerosol Properties, edited by: Thomason, L. and
Peter, T., WCRP 124, WMO/TD 1295, SPARC Rep. 4, World. Meteorol. Organ.,
Geneva, Switzerland, 2006.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Crutzen, P.: Albedo Enhancement by Stratospheric Sulfur Injections: A
Contribution to Resolve a Policy Dilemma?, Climate Change, 77, 211–220,
2006.
d'Almeida, G. A., Koepke, P., and Shettle, E. P.: Atmospheric aerosols:
global climatology and radiative characteristics, A. Deepak Publishing,
Hampton, USA, 1991.
Dankovic, D., Kuempel, E., Geraci, C., Gilbert, S., Rice, F., Schulte, P.,
Smith, R., Sofge, C., Wheeler, M., Lentz, T. J., Zumwalde, R., Maynard, A.,
Attfield, M., Pinheiro, G., Ruder, A., Hubbs, A., Ahlers, H., Lynch, D.,
Toraason, M., and Vallyathan, V.: Current intelligence bulletin 63:
occupational exposure to titanium dioxide, Cincinnati, OH: US Department of
Health and Human Services, Public Health Service, Centers for Disease Control
and Prevention, National Institute for Occupational Safety and Health, DHHS
(NIOSH) Publication No. 2011-160, 1–119, 2011.
Deepak, A. and Gerber, H. E. (Eds.): Report of the experts meeting on
aerosols and their climatic effects (Williamsburg, Virginia, March 1983),
Rep. WCP-55, World Clim. Programme, World Meteorol. Organ., Geneva, 1983.
Deshler, T. and Anderson-Sprecher, R.: Non-volcanic stratospheric aerosol
trends: 1971–2004, in: Assessment of Stratospheric Aerosol Properties,
edited by: Thomason, L. and Peter, T., WCRP 124, WMO/TD 1295, SPARC Rep. 4,
World Meteorolo. Organ., Geneva, Switzerland, 2006.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K.
H.: Stratospheric water vapor feedback, Proc. Natl. Acad. Sci. USA, 110,
18087–18091, 2013.
Dhomse, S. S., Emmerson, K. M., Mann, G. W., Bellouin, N., Carslaw, K. S.,
Chipperfield, M. P., Hommel, R., Abraham, N. L., Telford, P., Braesicke, P.,
Dalvi, M., Johnson, C. E., O'Connor, F., Morgenstern, O., Pyle, J. A.,
Deshler, T., Zawodny, J. M., and Thomason, L. W.: Aerosol microphysics
simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate
model, Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014,
2014.
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled
Model Intercomparison Project 5 (CMIP5) simulations of climate following
volcanic eruptions, J. Geophys. Res.-Atmos., 117, D17105,
https://doi.org/10.1029/2012JD017607, 2012.
English, J. M., Toon, O. B., and Mills, M. J.: Microphysical simulations of
sulfur burdens from stratospheric sulfur geoengineering, Atmos. Chem. Phys.,
12, 4775–4793, https://doi.org/10.5194/acp-12-4775-2012, 2012.
Ferraro, A. J., Highwood, E. J., and Charlton-Perez, A. J.: Stratospheric
heating by potential geoengineering aerosols, Geophys. Res. Lett., 38,
L24706, https://doi.org/10.1029/2011GL049761, 2011.
Ferraro, A. J., Highwood, E. J., and Charlton-Perez, A. J.: Weakened tropical
circulation and reduced precipitation in response to geoengineering, Environ.
Res. Lett., 9, 014001, https://doi.org/10.1088/1748-9326/9/1/014001, 2014.
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner,
T.,Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki,
S., Braesike, P.,Brühl, C., Butchart, N., Chipperfield, M., Dameris, M.,
Dhomse, S., Garny, H.,Hardiman, S. C., Jöckel, P., Kinnison, D. E.,
Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O.,
Pawson, S., Pitari, G., Plummer, D.,Pyle, J. A., Rozanov, E., Scinocca, J.,
Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.:
Multimodel assessment of the upper troposphere and lower stratosphere:
Tropics and global trends, J. Geophys. Res., 115, D00M08,
https://doi.org/10.1029/2009JD013638, 2010.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res., 102, 6831–6864, 1997.
Haywood, J. M., Jones, A., Clarisse, L., Bourassa, A., Barnes, J., Telford,
P., Bellouin N., Boucher, O., Agnew, P., Clerbaux, C., Coheur, P.,
Degenstein, D., and Braesicke, P.: Observations of the eruption of the
Sarychev volcano and simulations using the HadGEM2 climate model, J. Geophys.
Res., 115, D21212, https://doi.org/10.1029/2010JD014447, 2010.
Haywood, J. M., Bellouin, N., Jones, A., Boucher, O., Wild, M., and Shine, K.
P.: The roles of aerosol, water vapor and cloud in future global
dimming/brightening, J. Geophys. Res., 116, D20203, https://doi.org/10.1029/2011JD016000,
2011.
Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric
forcing from stratospheric aerosols impacts Sahelian rainfall, Nature Climate
Change, 3, 660–665, 2013.
Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B. P., Rozanov, E.,
Schraner, M., Thomason, L. W., and Peter, T.: The impact of geoengineering
aerosols on stratospheric temperature and ozone, Environ. Res. Lett., 4,
045108, https://doi.org/10.1088/1748-9326/4/4/045108, 2009.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki,
R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A.,
Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite:
The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, Bull. Amer. Meteor. Soc., 96, 1311–1332. 2015.
International Civil Aviation Organisation (ICAO): Manual of the ICAO Standard
Atmosphere: extended to 80 kilometres (262 200 feet), Doc 7488/3, 3rd Edn.,
1993.
Jiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T. K., Bian, H., Carslaw, K. S., Chin, M., De Luca, N., Diehl, T.,
Ghan, S. J., Iversen, T., Kirkevåg, A., Koch, D., Liu, X., Mann, G. W.,
Penner, J. E., Pitari, G., Schulz, M., Seland, Ø., Skeie, R. B.,
Steenrod, S. D., Stier, P., Takemura, T., Tsigaridis, K., van Noije, T.,
Yun, Y., and Zhang, K.: An AeroCom assessment of black carbon in Arctic snow
and sea ice, Atmos. Chem. Phys., 14, 2399–2417,
https://doi.org/10.5194/acp-14-2399-2014, 2014.
Kawatani, Y. and Hamilton, K.: Weakened stratospheric quasibiennial
oscillation driven by increased tropical mean upwelling, Nature, 497,
478–481, 2013.
Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M.: Changes in
temperature and precipitation extremes in the CMIP5 ensemble, Climate Change,
119, 345–357, 2013.
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A.
J., and Carrico, C. M.: Hygroscopicity and cloud droplet activation of
mineral dust aerosol, Geophys. Res. Lett., 36, L08805,
https://doi.org/10.1029/2009GL037348, 2009.
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov,
G., and Schulz, M.: The Geoengineering Model Intercomparison Project
(GeoMIP), Atmosph. Sci. Lett., 12, 162–167, 2011.
Kravitz, B., Robock, A., Shindell, D. T., and Miller, M. A.: Sensitivity of
stratospheric geoengineering with black carbon to aerosol size and altitude
of injection, J. Geophys. Res., 117, D09203, https://doi.org/10.1029/2011JD017341,
2012.
Kravitz, B., Robock, A., Forster, P. M., Haywood, J. M., Lawrence, M. G., and
Schmidt, H.: An overview of the Geoengineering Model Intercomparison Project
(GeoMIP), J. Geophys. Res.-Atmos., 118, 13103–13107,
2013.
Kravitz, B., Douglas G MacMartin, D. G., Leedal, D. T., Rasch, P. J., and
Jarvis, A. J.: Explicit feedback and the management of uncertainty in meeting
climate objectives with solar geoengineering, Environ. Res. Lett., 9, 044006,
https://doi.org/10.1088/1748-9326/9/4/044006, 2014.
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P.
J., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C.,
Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., and
Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6
(GeoMIP6): simulation design and preliminary results, Geosci. Model Dev., 8,
3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015.
L'Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin, B., Kato, S.,
Clayson, C. A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich,
M., Gu, G., Robertson, F., Houser, P. R., Chambers, D., Famiglietti, J. S.,
Fetzer, E., Liu, W. T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier, D.
P., and Hilburn, K.: The Observed State of the Energy Budget in the Early
Twenty-First Century, J. Climate, 28, 8319–8346.,
2015.
Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans,
G., Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic
properties controlled by mixing state and composition, Atmos. Chem. Phys.,
13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, 2013.
Lombardo, K., Colle, B. A., and Zhang, Z.: Evaluation of Historical and
Future Cool Season Precipitation over the Eastern United States and Western
Atlantic Storm Track Using CMIP5 Models, J. Climate, 28, 451–467, 2015.
MacMartin, D. G., Keith, D. W., Kravitz, B., and Caldeira, K.: Management of
trade-offs in geoengineering through optimal choice of non-uniform radiative
forcing, Nature Climate Change, 3, 365–368, 2013.
MacMartin, D. G., Kravitz, B., Keith, D. W., and Jarvis, A.: Dynamics of the
coupled human–climate system resulting from closed-loop control of solar
geoengineering, Clim. Dynam., 43, 243–258, 2014.
Marks, A. A. and King, M. D.: The effect of snow/sea ice type on the response
of albedo and light penetration depth (e-folding depth) to increasing black
carbon, The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014, 2014.
McCusker, K. E., Battisti, D. S., and Bitz, C. M.: Inability of stratospheric
sulfate aerosol injections to preserve the West Antarctic Ice Sheet, Geophys.
Res. Lett., 42, 4989–4997,
https://doi.org/10.1002/2015GL064314, 2015.
Meinshausen, M., Smith, S. J., Calvin, K. V., Daniel, J. S., Kainuma, M. L.
T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi,
K., Thomson, A. M., Velders, G. J. M., and Van Vuuren, D.: The RCP Greenhouse
Gas Concentrations and their Extension from 1765 to 2300, Climate Change
(Special Issue), https://doi.org/10.1007/s10584-011-0156-z, 2011.
Muller, C. J. and O'Gorman, P. A.: An energetic perspective on the regional
response of precipitation to climate change, Nature Climate Change, 1,
266–271, 2011.
Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffmann, J.,
Stemmler, K., and Ammann, M.: Photoenhanced uptake of NO2 on mineral
dust: Laboratory experiments and model simulations, Geophys. Res. Lett., 35,
L05812, https://doi.org/10.1029/2007GL032006, 2008.
Niemeier, U., Schmidt, H., and Timmreck, C.: The dependency of geoengineered
sulfate aerosol on the emission strategy, Atmos. Sci. Lett., 12, 189–194,
2011.
Niemeier, U., Schmidt, H., Alterskjær, K., and Kristjánsson, J. E.:
Solar irradiance reduction via climate engineering: Impact of different
techniques on the energy balance and the hydrological cycle, J. Geophys.
Res.-Atmos., 118, 11905–11917, 2013.
Oman, L., Robock, A., Stenchikov, G. L., and Thordarson, T.: High-latitude
eruptions cast shadow over the African monsoon and the flow of the Nile,
Geophys. Res. Lett., 33, L18711, https://doi.org/10.1029/2006GL027665, 2006.
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le
Quéré, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge
to keep global warming below 2 °C, Nature Climate Change, 3, 4–6,
2013.
Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T., and Keith, D.
W.: Efficient formation of stratospheric aerosol for climate engineering by
emission of condensible vapor from aircraft, Geophys. Res. Lett., 37, L18805,
https://doi.org/10.1029/2010GL043975, 2010.
Pitari, G., Aquila, V., Kravitz, B., Robock, A., Watanabe, S., Cionni, I., De
Luca, N., Di Genova, G., Mancini, E., and Tilmes, S.: Stratospheric ozone
response to sulfate geoengineering: Results from the Geoengineering Model
Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 119, 2629–2653,
2014.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
2014.
Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M.,
Davidson, P. J., and Cox, R. A.: Stratospheric aerosol particles and
solar-radiation management, Nature Climate Change, 2, 713–719,
2012.
Priestley, K. J., Smith, G. L., Thomas, S., Cooper, D., Lee III, R. B.,
Walikainen, D., Hess, P., Szewczyk, Z. P., and Wilson, R.: Radiometric
Performance of the CERES Earth Radiation Budget Climate Record Sensors on the
EOS Aqua and Terra Spacecraft through April 2007, J. Atmos. Oc. Technol., 28,
3–21, 2011.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation,
D. Reidel Publishing Company, Dordretch, ISBN: 978-90-277-1106-9, Holland,
1980.
Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C.-C.,
Stenchikov, G. L., and Garcia, R. R.: An overview of geoengineering of
climate using stratospheric sulphate aerosols, Phil. Trans. R. Soc. A, 366,
4007–4037, 2008.
Ribarsky, M. W.: Titanium dioxide, in: Handbook of Optical Constants of
Solids, edited by: E. Palik, Academic, Orlando, Fla, 795–804, 1985.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to
geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res.,
113, D16101, https://doi.org/10.1029/2008JD010050, 2008.
Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne, S.,
Krismer, T., Stenchikov, G., Timmreck, S., Tomassini, L., and Walz, M.:
Response of the middle atmosphere to anthropogenic and natural forcings in
the CMIP5 simulations with the Max Planck Institute Earth system model, J.
Adv. Model. Earth Syst., 5, 98–116, 2013.
Schoeberl, M. R., Douglass, A. R., Stolarski, R. S., Pawson, S., Strahan, S.
E., and Read, W.: Comparison of lower stratospheric tropical mean vertical
velocities, J. Geophys. Res., 113, D24109, https://doi.org/10.1029/2008JD010221, 2008.
Shepherd, J.: Geoengineering
the climate: Science, governance, and uncertainty, Royal Society Policy
document 10/09, ISBN: 978-0-85403-773-5, 82 pp., 2009.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,
and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res.,
107, 4803, https://doi.org/10.1029/2002JD002090, 2002.
Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L.,
Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M.,
Cox, R. A., and Kalberer, M.: Heterogeneous reaction of N2O5 with
airborne TiO2 particles and its implication for stratospheric particle
injection, Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014,
2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, Bull. Amer. Meteor. Soc., 93, 485–498, 2012.
Tegtmeier, S., Kruger, K., Wohltmann, I., Schoellhammer, K., and Rex, M.:
Variations of the residual circulation in the Northern Hemispheric winter, J.
Geophys. Res., 113, D16109, https://doi.org/10.1029/2007JD009518, 2008.
Teller, E., Wood, L., and Hyde, R.: Global Warming and Ice Ages: I. Prospects
for Physics-Based Modulation of Global Change, Lawrence Livermore National
Laboratory Publication UCRL-JC-128715, 18 pp., 1997.
The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J.,
Culverwell, I. D., Halloran, P.R., Hardiman, S. C., Hinton, T. J., Jones, C.
D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J.,
Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R.,
Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher,
M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T.,
Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James,
P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M.,
Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C.,
Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A.,
Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2
family of Met Office Unified Model climate configurations, Geosci. Model
Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A., and Rasch, P. J.:
Impact of geoengineered aerosols on the troposphere and stratosphere, J.
Geophys. Res., 114, D12305, https://doi.org/10.1029/2008JD011420, 2009.
Tilmes, S., Kinnison, D. E., Garcia, R. R., Salawitch, R., Canty, T.,
Lee-Taylor, J., Madronich, S., and Chance, K.: Impact of very short-lived
halogens on stratospheric ozone abundance and UV radiation in a
geo-engineered atmosphere, Atmos. Chem. Phys., 12, 10945–10955,
https://doi.org/10.5194/acp-12-10945-2012, 2012.
Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D. R., Mills, M.,
Alterskjær, K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz,
M., Cole, J. N. S., Curry, C. L., Jones, A., Haywood, J., Irvine, P. J., Ji,
D., Moore, J. C., Karam, D. B., Kravitz, B., Rasch, P. J., Singh, C., Yoon,
J.-H., Niemeier, U., Schmidt, H., Robock, A., Yang, S., and Watanabe, S.: The
hydrological impact of geoengineering in the Geoengineering Model
Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 11036–11058,
2013.
von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers,
D., Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, P.-P.,
Meyssignac, B., and Wild, M.: An imperative to monitor Earth's energy
imbalance, Nature Climate Change, 6, 138–144, 2016.
Weisenstein, D. K., Keith, D. W., and Dykema, J. A.: Solar geoengineering
using solid aerosol in the stratosphere, Atmos. Chem. Phys., 15,
11835–11859, https://doi.org/10.5194/acp-15-11835-2015, 2015.
Yang, H., Zhu, S., and Pan, N.: Studying the Mechanisms of Titanium Dioxide
as Ultraviolet-Blocking Additive for Films and Fabrics by an Improved Scheme,
J. Appl. Polym. Sci., 92, 3201–3210, 2004.
Yu, X., Moore, J. C., Cui, X., Rinke, A., Ji, D., Kravitz, B., and Yoon,
J.-H.: Impacts, effectiveness and regional inequalities of the GeoMIP G1 to
G4 solar radiation management scenarios, Glob. Planet. Change, 129, 10–22,
2015.
Short summary
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black carbon and titania injection strategies. We find that black carbon injection results in severe stratospheric warming and precipitation impacts, and therefore black carbon is unsuitable for geoengineering purposes. As the injection rates and climatic impacts for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide.
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black...
Altmetrics
Final-revised paper
Preprint