Articles | Volume 15, issue 15
Research article
04 Aug 2015
Research article |  | 04 Aug 2015

Improvement of climate predictions and reduction of their uncertainties using learning algorithms

E. Strobach and G. Bel

Related authors

Earth system model parameter adjustment using a Green's functions approach
Ehud Strobach, Andrea Molod, Donifan Barahona, Atanas Trayanov, Dimitris Menemenlis, and Gael Forget
Geosci. Model Dev., 15, 2309–2324,,, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436,,, 2023
Short summary
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842,,, 2023
Short summary
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585,,, 2023
Short summary
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683,,, 2022
Short summary
Evaluation and bias correction of probabilistic volcanic ash forecasts
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996,,, 2022
Short summary

Cited articles

Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M., and Schär, C.: Bayesian multi-model projection of climate: bias assumptions and interannual variability, Clim. Dynam., 33, 849–868, 2009.
Buser, C., Künsch, H., and Schär, C.: Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results, Clim. Res., 44, 227–241, 2010.
Cesa-Bianchi, N. and Lugosi, G.: Prediction, Learning, and Games, Cambridge University Press, Cambridge, UK, 2006.
Chakraborty, A. and Krishnamurti, T. N.: Improving global model precipitation forecasts over India using downscaling and the FSU superensemble. Part II: Seasonal climate, Mon. Weather Rev., 137, 2736–2757, 2009.
Collins, M.: Ensembles and probabilities: a new era in the prediction of climate change, Philos. T. R. Soc. A, 365, 1957–1970, 2007.
Final-revised paper