Articles | Volume 13, issue 8
https://doi.org/10.5194/acp-13-3945-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-3945-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Recent variability of the solar spectral irradiance and its impact on climate modelling
I. Ermolli
INAF, Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
K. Matthes
GEOMAR I Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
T. Dudok de Wit
LPC2E, CNRS and University of Orléans, Orléans, France
N. A. Krivova
Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
K. Tourpali
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece
Institut für Umweltphysik, Universität Bremen FB1, Bremen, Germany
Y. C. Unruh
Astrophysics Group, Blackett Laboratory, Imperial College London, SW7 2AZ, UK
L. Gray
Centre for Atmospheric Sciences, Dept. of Atmospheric, Oceanic and Planetary Physics, University of Oxford, UK
U. Langematz
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
P. Pilewskie
University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USA
E. Rozanov
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Davos Dorf, Switzerland
IAC ETH, Zurich, Switzerland
W. Schmutz
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Davos Dorf, Switzerland
A. Shapiro
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Davos Dorf, Switzerland
S. K. Solanki
Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
School of Space Research, Kyung Hee University, Yongin, Gyeonggi 46-701, Republic of Korea
T. N. Woods
University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO, USA
Related authors
No articles found.
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1909, https://doi.org/10.5194/egusphere-2024-1909, 2024
Short summary
Short summary
In January 2022, the Hunga Tonga-Hunga Ha'apai volcano erupted, sending massive amount of water vapor into the atmosphere. This event had a significant impact on stratospheric and lower mesosphere chemical composition. A year later stratospheric conditions have been disturbed during so-called Sudden Stratospheric. Here we simulate a novel pathway by which the water-rich eruption such as HT may have contributed to conditions during these events and consequently impacted surface climate.
Falco Monsees, Alexei Rozanov, John P. Burrows, Mark Weber, Annette Rinke, Ralf Jaiser, and Peter von der Gathen
Atmos. Chem. Phys., 24, 9085–9099, https://doi.org/10.5194/acp-24-9085-2024, https://doi.org/10.5194/acp-24-9085-2024, 2024
Short summary
Short summary
Cyclones strongly influence weather predictability but still cannot be fully characterised in the Arctic because of the sparse coverage of meteorological measurements. A potential approach to compensate for this is the use of satellite measurements of ozone, because cyclones impact the tropopause and therefore also ozone. In this study we used this connection to investigate the correlation between ozone and the tropopause in the Arctic and to identify cyclones with satellite ozone observations.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024, https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Short summary
We investigate how stable the performance of a satellite instrument has to be to be useful for assessing long-term trends in stratospheric ozone. The stability of an instrument is specified in percent per decade and is also called instrument drift. Instrument drifts add to uncertainties of long-term trends. From simulated time series of ozone based on the Monte Carlo approach, we determine stability requirements that are needed to achieve the desired long-term trend uncertainty.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1288, https://doi.org/10.5194/egusphere-2024-1288, 2024
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate the 11-year solar signals in the short wave heating rate, temperature, and ozone anomalies are significant and robust. the simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
EGUsphere, https://doi.org/10.5194/egusphere-2023-2825, https://doi.org/10.5194/egusphere-2023-2825, 2024
Short summary
Short summary
CHORA, an advanced CCD technique, enhances the accuracy of tropospheric ozone retrievals. Unlike the traditional Pacific cloud reference sector (CPC) scheme, CHORA introduces a local cloud reference sector (CLC ) and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods, emerging as the preferred choice, especially in future geostationary satellite missions.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023, https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century, disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.7 K global surface warming and a poleward shift in storm tracks.
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023, https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
Short summary
Previously, it has been suggested that springtime Arctic ozone depletion might worsen in the coming decades due to climate change, which might counteract the effect of reduced ozone-depleting substances. Here, we show with different chemistry–climate models that springtime Arctic ozone depletion will likely decrease in the future. Further, we explain why models show a large spread in the projected development of Arctic ozone depletion and use the model spread to constrain future projections.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Tatiana Egorova, Jan Sedlacek, Timofei Sukhodolov, Arseniy Karagodin-Doyennel, Franziska Zilker, and Eugene Rozanov
Atmos. Chem. Phys., 23, 5135–5147, https://doi.org/10.5194/acp-23-5135-2023, https://doi.org/10.5194/acp-23-5135-2023, 2023
Short summary
Short summary
This paper describes the climate and atmosphere benefits of the Montreal Protocol, simulated with the state-of-the-art Earth system model SOCOLv4.0. We have added to and confirmed the previous studies by showing that without the Montreal Protocol by the end of the 21st century there would be a dramatic reduction in the ozone layer as well as substantial perturbation of the essential climate variables in the troposphere caused by the warming from increasing ozone-depleting substances.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, and Thomas Peter
Atmos. Chem. Phys., 23, 4801–4817, https://doi.org/10.5194/acp-23-4801-2023, https://doi.org/10.5194/acp-23-4801-2023, 2023
Short summary
Short summary
The future ozone evolution in SOCOLv4 simulations under SSP2-4.5 and SSP5-8.5 scenarios has been assessed for the period 2015–2099 and subperiods using the DLM approach. The SOCOLv4 projects a decline in tropospheric ozone in the 2030s in SSP2-4.5 and in the 2060s in SSP5-8.5. The stratospheric ozone increase is ~3 times higher in SSP5-8.5, confirming the important role of GHGs in ozone evolution. We also showed that tropospheric ozone strongly impacts the total column in the tropics.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022, https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Short summary
Applying the dynamic linear model, we confirm near-global ozone recovery (55°N–55°S) in the mesosphere, upper and middle stratosphere, and a steady increase in the troposphere. We also show that modern chemistry–climate models (CCMs) like SOCOLv4 may reproduce the observed trend distribution of lower stratospheric ozone, despite exhibiting a lower magnitude and statistical significance. The obtained ozone trend pattern in SOCOLv4 is generally consistent with observations and reanalysis datasets.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary
Short summary
Long-term trends in column ozone have been determined from five merged total ozone datasets spanning the period 1978–2020. We show that ozone recovery due to the decline in stratospheric halogens after the 1990s (as regulated by the Montreal Protocol) is evident outside the tropical region and amounts to half a percent per decade. The ozone recovery in the Northern Hemisphere is however compensated for by the negative long-term trend contribution from atmospheric dynamics since the year 2000.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Kseniia Golubenko, Eugene Rozanov, Gennady Kovaltsov, Ari-Pekka Leppänen, Timofei Sukhodolov, and Ilya Usoskin
Geosci. Model Dev., 14, 7605–7620, https://doi.org/10.5194/gmd-14-7605-2021, https://doi.org/10.5194/gmd-14-7605-2021, 2021
Short summary
Short summary
A new full 3-D time-dependent model, based on SOCOL-AERv2, of beryllium atmospheric production, transport, and deposition has been developed and validated using directly measured data. The model is recommended to be used in studies related to, e.g., atmospheric dynamical patterns, extreme solar particle storms, long-term solar activity reconstruction from cosmogenic proxy data, and solar–terrestrial relations.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Sandip S. Dhomse, Carlo Arosio, Wuhu Feng, Alexei Rozanov, Mark Weber, and Martyn P. Chipperfield
Earth Syst. Sci. Data, 13, 5711–5729, https://doi.org/10.5194/essd-13-5711-2021, https://doi.org/10.5194/essd-13-5711-2021, 2021
Short summary
Short summary
High-quality long-term ozone profile data sets are key to estimating short- and long-term ozone variability. Almost all the satellite (and chemical model) data sets show some kind of bias with respect to each other. This is because of differences in measurement methodologies as well as simplified processes in the models. We use satellite data sets and chemical model output to generate 42 years of ozone profile data sets using a random-forest machine-learning algorithm that is named ML-TOMCAT.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021, https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Short summary
This paper features the new atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0 and its validation. The model performance is evaluated against reanalysis products and observations of atmospheric circulation and trace gas distribution, with a focus on stratospheric processes. Although we identified some problems to be addressed in further model upgrades, we demonstrated that SOCOLv4.0 is already well suited for studies related to chemistry–climate–aerosol interactions.
Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Mark Weber, Carlo Arosio, Annette Ladstätter-Weißenmayer, and John P. Burrows
Atmos. Meas. Tech., 14, 5771–5789, https://doi.org/10.5194/amt-14-5771-2021, https://doi.org/10.5194/amt-14-5771-2021, 2021
Short summary
Short summary
OMPS/NPP (2012–present) allows obtaining the tropospheric ozone column by combining ozone data from limb and nadir observations from the same instrument platform. In a first step, the retrieval of the total ozone column from the OMPS Nadir Mapper using the weighting function fitting approach (WFFA) is described here. The OMPS total ozone was compared with ground-based and other satellite measurements, showing agreement within 2.5 %.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Julian Krüger, Robin Pilch Kedzierski, Karl Bumke, and Katja Matthes
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-32, https://doi.org/10.5194/wcd-2020-32, 2020
Revised manuscript not accepted
Short summary
Short summary
Motivated by the European heat wave occurrences of 2015 and 2018, this study evaluates the influence of cold North Atlantic SST anomalies on European heat waves by using the ERA-5 reanalysis product. Our findings show that widespread cold North Atlantic SST anomalies may be a precursor for a persistent jet stream pattern and are thus important for the onset of high European temperatures.
Tina Hilbig, Klaus Bramstedt, Mark Weber, John P. Burrows, and Matthijs Krijger
Atmos. Meas. Tech., 13, 3893–3907, https://doi.org/10.5194/amt-13-3893-2020, https://doi.org/10.5194/amt-13-3893-2020, 2020
Short summary
Short summary
One of the main limitations for long-term space-based measurements is
instrument degradation. We present an optimisation of the
degradation correction approach (Krijger et al. 2014) for SCIAMACHY
on-board Envisat, focusing on the improvement of the solar spectral
irradiance data. The main achievement of this study is the
successful integration of SCIAMACHY’s internal white light source
(WLS) into the existing degradation model and the
characterisation of WLS ageing in space.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020, https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Haiyan Li, Robin Pilch Kedzierski, and Katja Matthes
Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, https://doi.org/10.5194/acp-20-6541-2020, 2020
Short summary
Short summary
The QBO westerly phase was reversed by an unexpected easterly jet near 40 hPa and the westerly zonal wind lasted an unusually long time at 20 hPa during winter 2015/16. We find that quasi-stationary Rossby wave W1 and faster Rossby wave W2 propagating from the northern extratropics and a locally generated Rossby wave W3 were important contributors to the easterly jet at 40 hPa. Our results suggest that the unusual zonal wind structure at 20 hPa could be caused by enhanced Kelvin wave activity.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019, https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Short summary
For two cases from the NASA ORACLES experiments, we retrieve aerosol and cloud properties and calculate a direct aerosol radiative effect (DARE). We investigate the relationship between DARE and the cloud albedo by specifying the albedo for which DARE transitions from a cooling to warming radiative effect. Our new aerosol retrieval algorithm is successful despite complexities associated with scenes that contain aerosols above clouds and decreases the uncertainty on retrieved aerosol parameters.
Steffen Mauceri, Bruce Kindel, Steven Massie, and Peter Pilewskie
Atmos. Meas. Tech., 12, 6017–6036, https://doi.org/10.5194/amt-12-6017-2019, https://doi.org/10.5194/amt-12-6017-2019, 2019
Short summary
Short summary
Aerosols are fine particles that are suspended in Earth’s atmosphere. A better understanding of aerosols is important to lower uncertainties in climate predictions. We propose measuring aerosols from satellites and airplanes equipped with hyperspectral cameras using an artificial neural network, a form of machine learning. We applied our neural network to hyperspectral observations from a recent airplane flight over India and find general agreement with independent aerosol measurements.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Aryeh Feinberg, Timofei Sukhodolov, Bei-Ping Luo, Eugene Rozanov, Lenny H. E. Winkel, Thomas Peter, and Andrea Stenke
Geosci. Model Dev., 12, 3863–3887, https://doi.org/10.5194/gmd-12-3863-2019, https://doi.org/10.5194/gmd-12-3863-2019, 2019
Short summary
Short summary
We have improved several aspects of atmospheric sulfur cycling in SOCOL-AER, an aerosol–chemistry–climate model. The newly implemented features in SOCOL-AERv2 include interactive deposition schemes, improved sulfur mass conservation, and expanded tropospheric chemistry. SOCOL-AERv2 shows better agreement with stratospheric aerosol observations and sulfur deposition networks compared to SOCOL-AERv1. SOCOL-AERv2 can be used to study impacts of sulfate aerosol on climate, chemistry, and ecosystems.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Blanca Ayarzagüena, Froila M. Palmeiro, David Barriopedro, Natalia Calvo, Ulrike Langematz, and Kiyotaka Shibata
Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, https://doi.org/10.5194/acp-19-9469-2019, 2019
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are abrupt rises in the wintertime polar stratosphere that also affect the troposphere. Their study is hampered by the limited observations in the stratosphere and mostly relies on reanalyses, i.e., models that include observations. Here we compare the representation of SSWs by the most used reanalyses. SSW results are consistent across reanalyses but some differences are found, in particular before the satellite era.
Carlo Arosio, Alexei Rozanov, Elizaveta Malinina, Mark Weber, and John P. Burrows
Atmos. Meas. Tech., 12, 2423–2444, https://doi.org/10.5194/amt-12-2423-2019, https://doi.org/10.5194/amt-12-2423-2019, 2019
Short summary
Short summary
The aim of this study is the merging of stratospheric ozone profiles from three satellite data sets. The merged time series is used to compute long-term changes as a function of altitude, latitude and longitude to study the evolution of the ozone layer over 1985–2018. During the last 16 years we found positive trends in the upper stratosphere at mid latitudes, a large variability of the ozone changes as a function of longitude and a fluctuation in the tropical middle stratospheric trend.
Sabine Haase and Katja Matthes
Atmos. Chem. Phys., 19, 3417–3432, https://doi.org/10.5194/acp-19-3417-2019, https://doi.org/10.5194/acp-19-3417-2019, 2019
Short summary
Short summary
The Antarctic ozone hole influences surface climate in the Southern Hemisphere. Recent studies have shown that stratospheric ozone depletion in the Arctic can also affect the surface. We evaluate the importance of the direct and indirect representation of ozone variability in a climate model for this surface response. We show that allowing feedbacks between ozone chemistry, radiation, and dynamics enhances and prolongs the surface response to Northern Hemisphere spring ozone depletion.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Timofei Sukhodolov, Jian-Xiong Sheng, Aryeh Feinberg, Bei-Ping Luo, Thomas Peter, Laura Revell, Andrea Stenke, Debra K. Weisenstein, and Eugene Rozanov
Geosci. Model Dev., 11, 2633–2647, https://doi.org/10.5194/gmd-11-2633-2018, https://doi.org/10.5194/gmd-11-2633-2018, 2018
Short summary
Short summary
The Pinatubo eruption in 1991 is the strongest directly observed volcanic event. In a series of experiments, we simulate its influence on the stratospheric aerosol layer using a state-of-the-art aerosol–chemistry–climate model, SOCOL-AERv1.0, and compare our results to observations. We show that SOCOL-AER reproduces the most important atmospheric effects and can therefore be used to study the climate effects of future volcanic eruptions and geoengineering by artificial sulfate aerosol.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Stefanie Meul, Ulrike Langematz, Philipp Kröger, Sophie Oberländer-Hayn, and Patrick Jöckel
Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, https://doi.org/10.5194/acp-18-7721-2018, 2018
Short summary
Short summary
Using a chemistry--climate model future changes in the stratosphere-to-troposphere ozone mass flux, their drivers, and the future distribution of stratospheric ozone in the troposphere are investigated. In an extreme greenhouse gas (GHG) scenario, the global influx of stratospheric ozone into the troposphere is projected to grow between 2000 and 2100 by 53%. The increase is due to the recovery of stratospheric ozone owing to declining halogens and GHG induced circulation and temperature changes.
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Vered Silverman, Nili Harnik, Katja Matthes, Sandro W. Lubis, and Sebastian Wahl
Atmos. Chem. Phys., 18, 6637–6659, https://doi.org/10.5194/acp-18-6637-2018, https://doi.org/10.5194/acp-18-6637-2018, 2018
Short summary
Short summary
This study provides a quantified and mechanistic understanding of the radiative effects of ozone waves on the NH stratosphere. In particular, we find these effects to influence the seasonal evolution of the midlatitude QBO signal (Holton–Tan effect), which is important for getting realistic dynamical interactions in climate models. We also provide a synoptic view on the evolution of the seasonal development of the Holton–Tan effect by looking at the life cycle of upward-propagating waves.
Pavle Arsenovic, Eugene Rozanov, Julien Anet, Andrea Stenke, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 18, 3469–3483, https://doi.org/10.5194/acp-18-3469-2018, https://doi.org/10.5194/acp-18-3469-2018, 2018
Short summary
Short summary
Global warming will persist in the 21st century, even if the solar activity undergoes an unusually strong and long decline. Decreased ozone production caused by reduction of solar activity and change of atmospheric dynamics due to the global warming might result in further thinning of the tropical ozone layer. Globally, total ozone would not recover to the pre-ozone hole values as long as the decline of solar activity lasts. This may let more ultra-violet radiation reach the Earth's surface.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Mark Weber, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, John P. Burrows, Craig S. Long, and Diego Loyola
Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, https://doi.org/10.5194/acp-18-2097-2018, 2018
Short summary
Short summary
This paper commemorates the 30-year anniversary of the initial signing of the Montreal Protocol (MP) on substances that deplete the ozone layer. The MP is so far successful in reducing ozone-depleting substances, and total ozone decline was successfully stopped by the late 1990s. Total ozone levels have been mostly stable since then. In some regions, barely significant upward trends are observed that suggest an emergence into the expected ozone recovery phase.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Olaf Morgenstern, Kane A. Stone, Robyn Schofield, Hideharu Akiyoshi, Yousuke Yamashita, Douglas E. Kinnison, Rolando R. Garcia, Kengo Sudo, David A. Plummer, John Scinocca, Luke D. Oman, Michael E. Manyin, Guang Zeng, Eugene Rozanov, Andrea Stenke, Laura E. Revell, Giovanni Pitari, Eva Mancini, Glauco Di Genova, Daniele Visioni, Sandip S. Dhomse, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018, https://doi.org/10.5194/acp-18-1091-2018, 2018
Short summary
Short summary
We assess how ozone as simulated by a group of chemistry–climate models responds to variations in man-made climate gases and ozone-depleting substances. We find some agreement, particularly in the middle and upper stratosphere, but also considerable disagreement elsewhere. Such disagreement affects the reliability of future ozone projections based on these models, and also constitutes a source of uncertainty in climate projections using prescribed ozone derived from these simulations.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Laura E. Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov, and Thomas Peter
Atmos. Chem. Phys., 17, 13139–13150, https://doi.org/10.5194/acp-17-13139-2017, https://doi.org/10.5194/acp-17-13139-2017, 2017
Short summary
Short summary
Compiling stratospheric aerosol data sets after a major volcanic eruption is difficult as the stratosphere becomes too optically opaque for satellite instruments to measure accurately. We performed ensemble chemistry–climate model simulations with two stratospheric aerosol data sets compiled for two international modelling activities and compared the simulated volcanic aerosol-induced effects from the 1991 Mt Pinatubo eruption on tropical stratospheric temperature and ozone with observations.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Eugene V. Rozanov, Fiona Tummon, and Joanna D. Haigh
Atmos. Chem. Phys., 17, 12269–12302, https://doi.org/10.5194/acp-17-12269-2017, https://doi.org/10.5194/acp-17-12269-2017, 2017
Short summary
Short summary
Several ozone composites show different decadal trends, even in composites built with the same data. We remove artefacts affecting trend analysis with a new method (BASIC) and construct an ozone composite, with uncertainties. We find a significant ozone recovery since 1998 in the midlatitude upper stratosphere, with no hemispheric difference. We recommend using a similar approach to construct a composite based on the original instrument data to improve stratospheric ozone trend estimates.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Sandro W. Lubis, Vered Silverman, Katja Matthes, Nili Harnik, Nour-Eddine Omrani, and Sebastian Wahl
Atmos. Chem. Phys., 17, 2437–2458, https://doi.org/10.5194/acp-17-2437-2017, https://doi.org/10.5194/acp-17-2437-2017, 2017
Short summary
Short summary
Downward wave coupling (DWC) events impact high-latitude stratospheric ozone in two ways: (1) reduced dynamical transport of ozone from low to high latitudes during individual events and (2) enhanced springtime chemical destruction of ozone via the cumulative impact of DWC events on polar stratospheric temperatures. The results presented here broaden the scope of the impact of wave–mean flow interaction on stratospheric ozone by highlighting the key role of wave reflection.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500, https://doi.org/10.5194/acp-16-15485-2016, https://doi.org/10.5194/acp-16-15485-2016, 2016
Short summary
Short summary
We find monthly, mid-latitude temperature changes above 40 km are related to ozone and temperature variations throughout the middle atmosphere. We develop an index to represent this atmospheric variability. In statistical analysis, the index can account for up to 60 % of variability in tropical temperature and ozone above 27 km. The uncertainties can be reduced by up to 35 % and 20 % in temperature and ozone, respectively. This index is an important tool to quantify current and future ozone recovery.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791–13806, https://doi.org/10.5194/acp-16-13791-2016, https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
Short summary
The radiative effects of spatially complex cloud fields are notoriously difficult to estimate and are afflicted with errors up to ±50 % of the incident solar radiation. We find that horizontal photon transport, the leading cause for these three-dimensional effects, manifests itself through a spectral fingerprint – a new observable that holds promise for reducing the errors associated with spatial complexity by moving the problem to the spectral dimension.
Laura E. Revell, Andrea Stenke, Eugene Rozanov, William Ball, Stefan Lossow, and Thomas Peter
Atmos. Chem. Phys., 16, 13067–13080, https://doi.org/10.5194/acp-16-13067-2016, https://doi.org/10.5194/acp-16-13067-2016, 2016
Short summary
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Kunihiko Kodera, Rémi Thiéblemont, Seiji Yukimoto, and Katja Matthes
Atmos. Chem. Phys., 16, 12925–12944, https://doi.org/10.5194/acp-16-12925-2016, https://doi.org/10.5194/acp-16-12925-2016, 2016
Short summary
Short summary
The spatial structure of the solar cycle signals on the Earth's surface is analysed to identify the mechanisms. Both tropical and extratropical solar surface signals can result from circulation changes in the upper stratosphere through (i) a downward migration of wave zonal mean flow interactions and (ii) changes in the stratospheric mean meridional circulation. Amplification of the solar signal also occurs through interaction with the ocean.
Nathan P. Gillett, Hideo Shiogama, Bernd Funke, Gabriele Hegerl, Reto Knutti, Katja Matthes, Benjamin D. Santer, Daithi Stone, and Claudia Tebaldi
Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, https://doi.org/10.5194/gmd-9-3685-2016, 2016
Short summary
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Christoph Jacobi, Norbert Jakowski, Gerhard Schmidtke, and Thomas N. Woods
Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, https://doi.org/10.5194/ars-14-175-2016, 2016
Short summary
Short summary
The ionospheric response to solar extreme ultraviolet variability is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar spectra. The daily proxies are compared with global mean total electron content. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Mark Weber, Victor Gorshelev, and Anna Serdyuchenko
Atmos. Meas. Tech., 9, 4459–4470, https://doi.org/10.5194/amt-9-4459-2016, https://doi.org/10.5194/amt-9-4459-2016, 2016
Short summary
Short summary
Ozone absorption cross sections measured in the laboratory using spectroscopic means can be a major source of uncertainty in atmospheric ozone retrievals. In this paper we assess the overall uncertainty in three published UV ozone cross-section datasets that are most popular in the remote sensing community. The overall uncertainties were estimated using Monte Carlo simulations. They are important for traceability of atmospheric ozone measuring instruments to common metrological standards.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Rémi Thiéblemont, and Lon Hood
Atmos. Chem. Phys., 16, 10021–10043, https://doi.org/10.5194/acp-16-10021-2016, https://doi.org/10.5194/acp-16-10021-2016, 2016
Short summary
Short summary
The impact of changes in incoming solar radiation on stratospheric ozone has important impacts on the atmosphere. Understanding this ozone response is crucial for constraining how solar activity affects climate. This study analyses the solar ozone response (SOR) in satellite datasets and shows that there are substantial differences in the magnitude and spatial structure across different records. In particular, the SOR in the new SAGE v7.0 mixing ratio data is smaller than in the previous v6.2.
Elpida Leventidou, Kai-Uwe Eichmann, Mark Weber, and John P. Burrows
Atmos. Meas. Tech., 9, 3407–3427, https://doi.org/10.5194/amt-9-3407-2016, https://doi.org/10.5194/amt-9-3407-2016, 2016
Short summary
Short summary
Here, we present a 17 years tropical tropospheric ozone columns dataset (1996–2012) using GOME, SCIAMACHY, and GOME-2 data, developed as part of the verification algorithm for TROPOMI on S5p mission.The uncertainty is less than 2 DU. Validation with SHADOZ ozonesonde data showed biases within 5 DU and RMS errors less than 10 DU. Comparisons with tropospheric ozone columns derived from limb–nadir matching showed that the bias and RMS are within the range of the CCD_IUP comparison with the sondes.
Ming Shangguan, Katja Matthes, Wuke Wang, and Tae-Kwon Wee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-248, https://doi.org/10.5194/amt-2016-248, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper troposphere and lower stratosphere (UTLS) are presented in this paper. The COSMIC water vapor shows a good agreement with the Microwave limb Sounder (MLS) in both the spatial distribution and the seasonal to interannual variations. It is very valuable for studying the water vapor in the UTLS, thanks to its global coverage, all- weather aptitude and high vertical resolution.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
A.-M. Blechschmidt, A. Richter, J. P. Burrows, L. Kaleschke, K. Strong, N. Theys, M. Weber, X. Zhao, and A. Zien
Atmos. Chem. Phys., 16, 1773–1788, https://doi.org/10.5194/acp-16-1773-2016, https://doi.org/10.5194/acp-16-1773-2016, 2016
Short summary
Short summary
A comprehensive case study of a comma-shaped bromine monoxide plume in the Arctic, which was transported by a polar cyclone and was observed by the GOME-2 satellite sensor over several days, is presented. By making combined use of different kinds of satellite data and numerical models, we demonstrate the important role of the frontal weather system in favouring the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.
F. Ebojie, J. P. Burrows, C. Gebhardt, A. Ladstätter-Weißenmayer, C. von Savigny, A. Rozanov, M. Weber, and H. Bovensmann
Atmos. Chem. Phys., 16, 417–436, https://doi.org/10.5194/acp-16-417-2016, https://doi.org/10.5194/acp-16-417-2016, 2016
Short summary
Short summary
The goal of this study is to determine the global and zonal changes in the tropospheric ozone data product derived from SCIAMACHY limb-nadir-matching (LNM) observations during the period 2003–2011.
Tropospheric O3 shows statistically significant increases over some regions of South Asia, the South American continent, Alaska, around Congo in Africa and over some continental outflows. Significant decrease in TOC is observed over some continents and oceans.
K. Weigel, A. Rozanov, F. Azam, K. Bramstedt, R. Damadeo, K.-U. Eichmann, C. Gebhardt, D. Hurst, M. Kraemer, S. Lossow, W. Read, N. Spelten, G. P. Stiller, K. A. Walker, M. Weber, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 9, 133–158, https://doi.org/10.5194/amt-9-133-2016, https://doi.org/10.5194/amt-9-133-2016, 2016
Short summary
Short summary
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements between 2002 and 2012 with different viewing geometries. The limb viewing geometry allows the retrieval of water vapour profiles in the UTLS (upper troposphere and lower stratosphere) from the near-infrared spectral range (1353–1410 nm). Here, we present data version 3.01 and compare it to other water vapour data.
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015, https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted
J.-X. Sheng, D. K. Weisenstein, B.-P. Luo, E. Rozanov, F. Arfeuille, and T. Peter
Atmos. Chem. Phys., 15, 11501–11512, https://doi.org/10.5194/acp-15-11501-2015, https://doi.org/10.5194/acp-15-11501-2015, 2015
Short summary
Short summary
We have conducted a perturbed parameter model ensemble to investigate Mt.
Pinatubo's 1991 initial sulfur mass emission. Our results suggest that (a) the initial mass loading of the Pinatubo eruption is ~14 Mt of SO2; (b) the injection vertical distribution is strongly skewed towards the lower stratosphere, leading to a peak mass sulfur injection at 18-21 km; (c) the injection magnitude and height affect early southward transport of the volcanic cloud observed by SAGE II.
N. Rahpoe, M. Weber, A. V. Rozanov, K. Weigel, H. Bovensmann, J. P. Burrows, A. Laeng, G. Stiller, T. von Clarmann, E. Kyrölä, V. F. Sofieva, J. Tamminen, K. Walker, D. Degenstein, A. E. Bourassa, R. Hargreaves, P. Bernath, J. Urban, and D. P. Murtagh
Atmos. Meas. Tech., 8, 4369–4381, https://doi.org/10.5194/amt-8-4369-2015, https://doi.org/10.5194/amt-8-4369-2015, 2015
Short summary
Short summary
The analyses among six satellite instruments measuring ozone reveals that the relative drift between the sensors is not significant in the stratosphere and we conclude that merging of data from these instruments is possible. The merged ozone profiles can then be ingested in global climate models for long-term forecasts of ozone and climate change in the atmosphere. The added drift uncertainty is estimated at about 3% per decade (1 sigma) and should be applied in the calculation of ozone trends.
S. Muthers, F. Arfeuille, C. C. Raible, and E. Rozanov
Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, https://doi.org/10.5194/acp-15-11461-2015, 2015
Short summary
Short summary
After volcanic eruptions different radiative and chemical processes take place in the stratosphere which perturb the ozone layer and cause pronounced dynamical changes. In idealized chemistry-climate model simulations the importance of these processes and the modulating role of the climate state is analysed. The chemical effect strongly differs between a preindustrial and present-day climate, but the effect on the dynamics is weak. Radiative processes dominate the dynamics in all climate states.
S. Meul, S. Oberländer-Hayn, J. Abalichin, and U. Langematz
Atmos. Chem. Phys., 15, 6897–6911, https://doi.org/10.5194/acp-15-6897-2015, https://doi.org/10.5194/acp-15-6897-2015, 2015
Short summary
Short summary
The attribution of stratospheric ozone (O3) loss in the recent past to increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs) is important to verify the success of the Montreal Protocol. So far, nonlinearity in the O3 response to ODS and GHG changes has been mostly neglected. In this study we explicitly account for nonlinear O3 changes and aim to clarify their relevance in the past. We show that both O3 chemistry and transport are significantly affected by nonlinearity.
L. E. Revell, F. Tummon, A. Stenke, T. Sukhodolov, A. Coulon, E. Rozanov, H. Garny, V. Grewe, and T. Peter
Atmos. Chem. Phys., 15, 5887–5902, https://doi.org/10.5194/acp-15-5887-2015, https://doi.org/10.5194/acp-15-5887-2015, 2015
Short summary
Short summary
We have examined the effects of ozone precursor emissions and climate change on the tropospheric ozone budget. Under RCP 6.0, ozone in the future is governed primarily by changes in nitrogen oxides (NOx). Methane is also important, and induces an increase in tropospheric ozone that is approximately one-third of that caused by NOx. This study highlights the critical role that emission policies globally have to play in determining tropospheric ozone evolution through the 21st century.
W. Wang, K. Matthes, and T. Schmidt
Atmos. Chem. Phys., 15, 5815–5826, https://doi.org/10.5194/acp-15-5815-2015, https://doi.org/10.5194/acp-15-5815-2015, 2015
B. C. Kindel, P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui
Atmos. Meas. Tech., 8, 1147–1156, https://doi.org/10.5194/amt-8-1147-2015, https://doi.org/10.5194/amt-8-1147-2015, 2015
Short summary
Short summary
Measurements of upper tropospheric-lower stratospheric water vapor amounts in the tropics were made using the 1400 and 1900nm water vapor bands present in airborne solar spectral irradiance data. These were validated with radiative transfer modeling using in situ profiles of water vapor, temperature, and pressure. An approach to extending these types of measurements from aircraft altitudes to the top of the atmosphere to infer stratospheric water vapor amount is outlined.
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
T. Sukhodolov, E. Rozanov, A. I. Shapiro, J. Anet, C. Cagnazzo, T. Peter, and W. Schmutz
Geosci. Model Dev., 7, 2859–2866, https://doi.org/10.5194/gmd-7-2859-2014, https://doi.org/10.5194/gmd-7-2859-2014, 2014
Short summary
Short summary
The performance of the main generations of the ECHAM shortwave radiation schemes is analysed in terms of the representation of the solar signal in the heating rates. The way to correct missing or underrepresented spectral intervals in the solar signal in the heating rates is suggested using the example of ECHAM6 and six-band ECHAM5 schemes. The suggested method is computationally fast and suitable for any other radiation scheme.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
S. Muthers, J. G. Anet, A. Stenke, C. C. Raible, E. Rozanov, S. Brönnimann, T. Peter, F. X. Arfeuille, A. I. Shapiro, J. Beer, F. Steinhilber, Y. Brugnara, and W. Schmutz
Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, https://doi.org/10.5194/gmd-7-2157-2014, 2014
M. Kozubek, E. Rozanov, and P. Krizan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23891-2014, https://doi.org/10.5194/acpd-14-23891-2014, 2014
Revised manuscript not accepted
W. Chehade, M. Weber, and J. P. Burrows
Atmos. Chem. Phys., 14, 7059–7074, https://doi.org/10.5194/acp-14-7059-2014, https://doi.org/10.5194/acp-14-7059-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
A. C. Kren, D. R. Marsh, A. K. Smith, and P. Pilewskie
Atmos. Chem. Phys., 14, 4843–4856, https://doi.org/10.5194/acp-14-4843-2014, https://doi.org/10.5194/acp-14-4843-2014, 2014
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
R. Hommel, K.-U. Eichmann, J. Aschmann, K. Bramstedt, M. Weber, C. von Savigny, A. Richter, A. Rozanov, F. Wittrock, F. Khosrawi, R. Bauer, and J. P. Burrows
Atmos. Chem. Phys., 14, 3247–3276, https://doi.org/10.5194/acp-14-3247-2014, https://doi.org/10.5194/acp-14-3247-2014, 2014
S. Meul, U. Langematz, S. Oberländer, H. Garny, and P. Jöckel
Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014, https://doi.org/10.5194/acp-14-2959-2014, 2014
F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann
Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, https://doi.org/10.5194/cp-10-359-2014, 2014
A. Redondas, R. Evans, R. Stuebi, U. Köhler, and M. Weber
Atmos. Chem. Phys., 14, 1635–1648, https://doi.org/10.5194/acp-14-1635-2014, https://doi.org/10.5194/acp-14-1635-2014, 2014
C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, H. Bovensmann, J. P. Burrows, D. Degenstein, L. Froidevaux, and A. M. Thompson
Atmos. Chem. Phys., 14, 831–846, https://doi.org/10.5194/acp-14-831-2014, https://doi.org/10.5194/acp-14-831-2014, 2014
V. F. Sofieva, N. Rahpoe, J. Tamminen, E. Kyrölä, N. Kalakoski, M. Weber, A. Rozanov, C. von Savigny, A. Laeng, T. von Clarmann, G. Stiller, S. Lossow, D. Degenstein, A. Bourassa, C. Adams, C. Roth, N. Lloyd, P. Bernath, R. J. Hargreaves, J. Urban, D. Murtagh, A. Hauchecorne, F. Dalaudier, M. van Roozendael, N. Kalb, and C. Zehner
Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, https://doi.org/10.5194/essd-5-349-2013, 2013
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
W. Chehade, V. Gorshelev, A. Serdyuchenko, J. P. Burrows, and M. Weber
Atmos. Meas. Tech., 6, 3055–3065, https://doi.org/10.5194/amt-6-3055-2013, https://doi.org/10.5194/amt-6-3055-2013, 2013
J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz
Atmos. Chem. Phys., 13, 10951–10967, https://doi.org/10.5194/acp-13-10951-2013, https://doi.org/10.5194/acp-13-10951-2013, 2013
N. Rahpoe, C. von Savigny, M. Weber, A.V. Rozanov, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 6, 2825–2837, https://doi.org/10.5194/amt-6-2825-2013, https://doi.org/10.5194/amt-6-2825-2013, 2013
S. S. Dhomse, M. P. Chipperfield, W. Feng, W. T. Ball, Y. C. Unruh, J. D. Haigh, N. A. Krivova, S. K. Solanki, and A. K. Smith
Atmos. Chem. Phys., 13, 10113–10123, https://doi.org/10.5194/acp-13-10113-2013, https://doi.org/10.5194/acp-13-10113-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
S. Brönnimann, J. Bhend, J. Franke, S. Flückiger, A. M. Fischer, R. Bleisch, G. Bodeker, B. Hassler, E. Rozanov, and M. Schraner
Atmos. Chem. Phys., 13, 9623–9639, https://doi.org/10.5194/acp-13-9623-2013, https://doi.org/10.5194/acp-13-9623-2013, 2013
A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter
Geosci. Model Dev., 6, 1407–1427, https://doi.org/10.5194/gmd-6-1407-2013, https://doi.org/10.5194/gmd-6-1407-2013, 2013
W. Chehade, B. Gür, P. Spietz, V. Gorshelev, A. Serdyuchenko, J. P. Burrows, and M. Weber
Atmos. Meas. Tech., 6, 1623–1632, https://doi.org/10.5194/amt-6-1623-2013, https://doi.org/10.5194/amt-6-1623-2013, 2013
Y. Brugnara, S. Brönnimann, J. Luterbacher, and E. Rozanov
Atmos. Chem. Phys., 13, 6275–6288, https://doi.org/10.5194/acp-13-6275-2013, https://doi.org/10.5194/acp-13-6275-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
V. Zubov, E. Rozanov, T. Egorova, I. Karol, and W. Schmutz
Atmos. Chem. Phys., 13, 4697–4706, https://doi.org/10.5194/acp-13-4697-2013, https://doi.org/10.5194/acp-13-4697-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
Y. L. Roberts, P. Pilewskie, B. C. Kindel, D. R. Feldman, and W. D. Collins
Atmos. Chem. Phys., 13, 3133–3147, https://doi.org/10.5194/acp-13-3133-2013, https://doi.org/10.5194/acp-13-3133-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Revisiting the question “Why is the sky blue?”
Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios
Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model
Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation
Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics
Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry–climate model simulations
The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer
Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario
Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments
Technical Note: A novel parameterization of the transmissivity due to ozone absorption in the k-distribution method and correlated-k approximation of Kato et al. (1999) over the UV band
Gauss–Seidel limb scattering (GSLS) radiative transfer model development in support of the Ozone Mapping and Profiler Suite (OMPS) limb profiler mission
Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation
Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO
Tropospheric temperature response to stratospheric ozone recovery in the 21st century
Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model
Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE
The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes
Anna Lange, Alexei Rozanov, and Christian von Savigny
Atmos. Chem. Phys., 23, 14829–14839, https://doi.org/10.5194/acp-23-14829-2023, https://doi.org/10.5194/acp-23-14829-2023, 2023
Short summary
Short summary
We were able to demonstrate quantitatively that the blue colour of the sky cannot be solely attributed to Rayleigh scattering. The influence of ozone on the blue colour of the sky is calculated for different viewing geometries, total ozone columns and an enhanced stratospheric aerosol scenario. Furthermore, the effects of polarisation, surface albedo and observer height are investigated.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850, https://doi.org/10.5194/acp-23-5835-2023, https://doi.org/10.5194/acp-23-5835-2023, 2023
Short summary
Short summary
Teleconnection patterns are important characteristics of the climate system; well-known examples include the El Niño and La Niña events driven from the tropical Pacific. We examined how spatiotemporal patterns that arise in the Pacific and Atlantic oceans behave under stratospheric aerosol geoengineering and greenhouse gas (GHG)-induced warming. In general, geoengineering reverses trends; however, the changes in decadal oscillation for the AMO, NAO, and PDO imposed by GHG are not suppressed.
Sandro Vattioni, Debra Weisenstein, David Keith, Aryeh Feinberg, Thomas Peter, and Andrea Stenke
Atmos. Chem. Phys., 19, 4877–4897, https://doi.org/10.5194/acp-19-4877-2019, https://doi.org/10.5194/acp-19-4877-2019, 2019
Short summary
Short summary
This study is among the first modeling studies on stratospheric sulfate geoengineering that interactively couple a size-resolved sectional aerosol module to well-described stratospheric chemistry and radiation schemes in a global 3-D chemistry–climate model. We found that compared with SO2 injection, the direct emission of aerosols results in more effective radiative forcing and that sensitivities to different injection strategies vary for different forms of injected sulfur.
Katharina Meraner and Hauke Schmidt
Atmos. Chem. Phys., 18, 1079–1089, https://doi.org/10.5194/acp-18-1079-2018, https://doi.org/10.5194/acp-18-1079-2018, 2018
Short summary
Short summary
Using a coupled Earth system model and radiative transfer modeling we show that the radiative forcing of a winter polar mesospheric ozone loss due to energetic particle precipitation is negligible. A climate impact of a mesospheric ozone loss as suggested by Andersson et al. (2014, Nature Communications) seems unlikely. A winter polar stratospheric ozone loss due to energetic particle precipitation leads to a small warming of the stratosphere, but only a few statistically significant changes.
Kévin Lamy, Thierry Portafaix, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Béatrice Morel, Andrea Pazmino, Jean Marc Metzger, Frédérique Auriol, Christine Deroo, Valentin Duflot, Philippe Goloub, and Charles N. Long
Atmos. Chem. Phys., 18, 227–246, https://doi.org/10.5194/acp-18-227-2018, https://doi.org/10.5194/acp-18-227-2018, 2018
Short summary
Short summary
This work focuses on solar radiation in the tropics, more specifically on ultraviolet radiation. From ground-based and satellite observations of the chemical state of the atmosphere, we were able to model the ultraviolet measurements measured in the southern tropics with a very small error. This is a first step to modelling and predicting future ultraviolet levels in the tropics from chemistry-climate projections.
Rémi Thiéblemont, Marion Marchand, Slimane Bekki, Sébastien Bossay, Franck Lefèvre, Mustapha Meftah, and Alain Hauchecorne
Atmos. Chem. Phys., 17, 9897–9916, https://doi.org/10.5194/acp-17-9897-2017, https://doi.org/10.5194/acp-17-9897-2017, 2017
Alison Ming, Amanda C. Maycock, Peter Hitchcock, and Peter Haynes
Atmos. Chem. Phys., 17, 5677–5701, https://doi.org/10.5194/acp-17-5677-2017, https://doi.org/10.5194/acp-17-5677-2017, 2017
Short summary
Short summary
This work quantifies the contribution of the seasonal changes in ozone and water vapour to the temperature cycle in a region of the atmosphere about ~ 18 km up in the tropics (the lower stratosphere). This region is important because most of the air entering the stratosphere does so through this region and temperature fluctuations there influence how much water vapour enters the stratosphere and hence the properties of the stratosphere.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Yan Xia, Yongyun Hu, and Yi Huang
Atmos. Chem. Phys., 16, 7559–7567, https://doi.org/10.5194/acp-16-7559-2016, https://doi.org/10.5194/acp-16-7559-2016, 2016
Short summary
Short summary
In this work, we discover a strong cloud radiative adjustment that affects the sign of the global surface temperature change in response to stratospheric ozone forcing. We believe this discovery is both interesting, in that our GCM experiments show that a global cooling can result from a warming forcing, and new, in that a strong cloud adjustment to ozone forcing, to the best of our knowledge, has not being documented before.
W. Wandji Nyamsi, A. Arola, P. Blanc, A. V. Lindfors, V. Cesnulyte, M. R. A. Pitkänen, and L. Wald
Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, https://doi.org/10.5194/acp-15-7449-2015, 2015
Short summary
Short summary
A novel model of the absorption of radiation by ozone in the UV bands [283, 307]nm and [307, 328]nm yields improvements in the modeling of the transmissivity in these bands. This model is faster than detailed spectral calculations and is as accurate with maximum errors of respectively 0.0006 and 0.0143. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran.
R. Loughman, D. Flittner, E. Nyaku, and P. K. Bhartia
Atmos. Chem. Phys., 15, 3007–3020, https://doi.org/10.5194/acp-15-3007-2015, https://doi.org/10.5194/acp-15-3007-2015, 2015
Short summary
Short summary
The Gauss--Seidel limb scattering (GSLS) radiative transfer model simulates the transfer of solar radiation through the atmosphere. Several recent changes have been added that improve the accuracy and flexibility of the GSLS radiance calculations. The single-scattered radiance errors have been reduced from 4% in earlier studies to 0.3%, while total radiance errors generally decline from 10% to 1-3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.
A. Montornès, B. Codina, and J. W. Zack
Atmos. Chem. Phys., 15, 2693–2707, https://doi.org/10.5194/acp-15-2693-2015, https://doi.org/10.5194/acp-15-2693-2015, 2015
A. C. Kren, D. R. Marsh, A. K. Smith, and P. Pilewskie
Atmos. Chem. Phys., 14, 4843–4856, https://doi.org/10.5194/acp-14-4843-2014, https://doi.org/10.5194/acp-14-4843-2014, 2014
Y. Hu, Y. Xia, and Q. Fu
Atmos. Chem. Phys., 11, 7687–7699, https://doi.org/10.5194/acp-11-7687-2011, https://doi.org/10.5194/acp-11-7687-2011, 2011
M. M. Joshi, M. J. Webb, A. C. Maycock, and M. Collins
Atmos. Chem. Phys., 10, 7161–7167, https://doi.org/10.5194/acp-10-7161-2010, https://doi.org/10.5194/acp-10-7161-2010, 2010
A. Jones, J. Haywood, O. Boucher, B. Kravitz, and A. Robock
Atmos. Chem. Phys., 10, 5999–6006, https://doi.org/10.5194/acp-10-5999-2010, https://doi.org/10.5194/acp-10-5999-2010, 2010
A. I. Jonsson, V. I. Fomichev, and T. G. Shepherd
Atmos. Chem. Phys., 9, 8447–8452, https://doi.org/10.5194/acp-9-8447-2009, https://doi.org/10.5194/acp-9-8447-2009, 2009
Cited articles
Abbot, C. G., Fowle, F. E., and Aldrich, L. B.: Chapter VI., Annals of the Astrophysical Observatory of the Smithsonian Institution, 4, 177–215, 1923.
Afram, N., Unruh, Y. C., Solanki, S. K., Sch{ü}ssler, M., Lagg, A., and V{ö}gler, A.: Intensity contrast from MHD simulations and HINODE observations, Astron. Astrophys., 526, A120, https://doi.org/10.1051/0004-6361/201015582, 2011.
Amblard, P.-O., Moussaoui, S., Dudok de Wit, T., Aboudarham, J., Kretzschmar, M., Lilensten, J., and Auch{è}re, F.: The EUV Sun as the superposition of elementary Suns, Astron. Astrophys., 487, L13–L16, https://doi.org/10.1051/0004-6361:200809588, 2008.
Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Br{ü}hl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., and Tian, W.: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res.-Atmos., 113, D11306, https://doi.org/10.1029/2007JD009391, 2008.
Avrett, E. H. and Loeser, R.: Models of the Solar Chromosphere and Transition Region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen, Astrophys. J. Suppl. Ser., 175, 229–276, https://doi.org/10.1086/523671, 2008.
Baldwin, M., Dameris, M., Austin, J., Bekki, S., Bregman, B., Butchart, N., Cordero, E., Gillett, N., Graf, H., Granier, C., Kinnison, D., Lal, S., Peter, T., Randel, W., Scinocca, J., Shindell, D., Struthers, H., Takahashi, M., and Thompson, D.: Climate-ozone connections, in: Scientific Assesment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project Report No. 50, World Meteorological Organization, 2007.
Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S., and Harder, J. W.: Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model, Astron. Astrophys., 530, A71, https://doi.org/10.1051/0004-6361/201016189, 2011.
Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S., Wenzler, T., Mortlock, D. J., and Jaffe, A. H.: Reconstruction of total solar irradiance 1974–2009, Astron. Astrophys., 541, A27, https://doi.org/10.1051/0004-6361/201118702, 2012.
Balmaceda, L. A., Solanki, S. K., Krivova, N. A., and Foster, S.: A homogeneous database of sunspot areas covering more than 130 years, J. Geophys. Res. (Space Physics), 114, A07104, https://doi.org/10.1029/2009JA014299, 2009.
Bard, E. and Frank, M.: Climate change and solar variability: What's new under the Sun?, Earth and Planetary Science Letters, 248, 1–14, https://doi.org/10.1016/j.epsl.2006.06.016, 2006.
Beer, J., Vonmoos, M., and Muscheler, R.: Solar Variability Over the Past Several Millennia, Space Sci. Rev., 125, 67–79, https://doi.org/10.1007/s11214-006-9047-4, 2006.
Bolduc, C., Charbonneau, P., Dumoulin, V., Bourqui, M. S., and Crouch, A. D.: A Fast Model for the Reconstruction of Spectral Solar Irradiance in the Near- and Mid-Ultraviolet, Solar Phys., 279, 383–409, https://doi.org/10.1007/s11207-012-0019-4, 2012.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., No{ë}l, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Bovensmann, H., Aben, I., van Roozendael, M., Kühl, S., Gottwald, M., von Savigny, C., Buchwitz, M., Richter, A., Frankenberg, C., Stammes, P., de Graaf, M., Wittrock, F., Sinnhuber, B. M., Schönhardt, A., Beirle, S., Gloudemans, A., Schrijver, H., Bracher, A., Rozanov, A. V., Weber, M., and Burrows, J. P.: SCIAMACHY's view of the changing earth's environment, Chap. 10 in: SCIAMACHY – Exploring the Changing Earth's Atmopshere, Springer, Dordrecht, 2011.
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, in: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, by G.P. Brasseur and S. Solomon. 2005 XII, 644 pp. 3rd rev. and enlarged ed. 1-4020-3284-6, Berlin: Springer, 2005.
Brueckner, G. E., Edlow, K. L., Floyd, IV, L. E., Lean, J. L., and Vanhoosier, M. E.: The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS), J. Geophys. Res., 98, 10695, https://doi.org/10.1029/93JD00410, 1993.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladst{ä}tter-Wei{ß}enmayer, A., Richter, A., Debeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results., J. Atmos. Sci., 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.
Butler, J. J., Johnson, B. C., Price, K. P., Shirley, E. L., and Barnes, R. A.: Sources of Differences in On-Orbital Total Solar Irradiance Measurements and Description of a Proposed Laboratory Intercomparison, Journal of Research of the National Institute of Standards and Technology, 113, 187–203, https://doi.org/10.6028/jres.113.014, 2008.
Cahalan, R. F., Wen, G., Harder, J. W., and Pilewskie, P.: Temperature responses to spectral solar variability on decadal time scales, Geophys. Res. Lett., 37, L07705, https://doi.org/10.1029/2009GL041898, 2010.
Cahalan, R., Pilewskie, P., and Woods, T.: Free flyer Total and Spectral Solar Irradiance Sensor (TSIS) and climate services missions, in: EGU General Assembly Conference Abstracts, edited by: Abbasi, A. and Giesen, N., vol. 14 of EGU General Assembly Conference Abstracts, p. 1886, 2012.
Calisesi, Y., Bonnet, R.-M., Gray, L., Langen, J., and Lockwood, M.: Solar Variability and Planetary Climates, vol. 23 of \em Space Sciences Series of ISSI\/, Springer Verlag, Berlin, https://doi.org/10.1007/978-0-387-48341-2, 2007.
Carlsson, M. and Stein, R. F.: Formation of Solar Calcium H and K Bright Grains, Astrophys. J., 481, 500, https://doi.org/10.1086/304043, 1997.
Cebula, R. P., DeLand, M. T., and Hilsenrath, E.: NOAA 11 solar backscattered ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989-1994 1. Observations and long-term calibration, J. Geophys. Res., 103, 16235–16250, https://doi.org/10.1029/98JD01205, 1998.
Chapman, G. A., Cookson, A. M., and Dobias, J. J.: Variations in total solar irradiance during solar cycle 22, J. Geophys. Res., 101, 13541–13548, https://doi.org/10.1029/96JA00683, 1996.
Chapman, G. A., Cookson, A. M., and Preminger, D. G.: Comparison of TSI from SORCE TIM with SFO Ground-Based Photometry, Solar Phys., 276, 35–41, https://doi.org/10.1007/s11207-011-9867-6, 2012.
Coulter, R. L. and Kuhn, J. R.: RISE/PSPT as an Experiment to Study Active Region Irradiance and Luminosity Evolution, in: Solar Active Region Evolution: Comparing Models with Observations, edited by Balasubramaniam, K. S. and Simon, G. W., vol. 68 of Astronomical Society of the Pacific Conference Series, p. 37, 1994.
Crouch, A. D., Charbonneau, P., Beaubien, G., and Paquin-Ricard, D.: A Model for the Total Solar Irradiance Based on Active Region Decay, Astrophys. J., 677, 723–741, https://doi.org/10.1086/527433, 2008.
DeLand, M. T. and Cebula, R. P.: Composite MG II solar activity index for solar cycles 21 and 22, J. Geophys. Res., 98, 12809, https://doi.org/10.1029/93JD00421, 1993.
DeLand, M. T. and Cebula, R. P.: Creation of a composite solar ultraviolet irradiance data set, J. Geophys. Res. (Space Physics), 113, 11103, https://doi.org/10.1029/2008JA013401, 2008.
DeLand, M. T. and Cebula, R. P.: Solar UV variations during the decline of Cycle 23, J. Atmos. Sol.-Terr. Phys., 77, 225–234, https://doi.org/10.1016/j.jastp.2012.01.007, 2012.
DeLand, M. T., Floyd, L. E., Rottman, G. J., and Pap, J. M.: Status of UARS solar UV irradiance data, Adv. Space Res., 34, 243–250, https://doi.org/10.1016/j.asr.2003.03.043, 2004.
Domingo, V., Ermolli, I., Fox, P., Fr{ö}hlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., and V{ö}gler, A.: Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle, Space Sci. Rev., 145, 337–380, https://doi.org/10.1007/s11214-009-9562-1, 2009.
Donnelly, R. F., Heath, D. F., and Lean, J. L.: Active-region evolution and solar rotation variations in solar UV irradiance, total solar irradiance, and soft X rays, J. Geophys. Res., 87, 10318–10324, 1982.
Dudok de Wit, T.: A method for filling gaps in solar irradiance and solar proxy data, Astron. Astrophys., 533, A29, https://doi.org/10.1051/0004-6361/201117024, 2011.
Dudok de Wit, T., Kretzschmar, M., Lilensten, J., and Woods, T.: Finding the best proxies for the solar UV irradiance, Geophys. Res. Lett., 36, L10107, https://doi.org/10.1029/2009GL037825, 2009.
Eddy, J. A., Gilliland, R. L., and Hoyt, D. V.: Changes in the solar constant and climatic effects, Nature, 300, 689–693, https://doi.org/10.1038/300689a0, 1982.
Egorova, T., Rozanov, E., Manzini, E., Haberreiter, M., Schmutz, W., Zubov, V., and Peter, T.: Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model, Geophys. Res. Lett., 31, L06119, https://doi.org/10.1029/2003GL019294, 2004.
Ermolli, I., Fofi, M., Bernacchia, C., Berrilli, F., Caccin, B., Egidi, A., and Florio, A.: The prototype RISE-PSPT instrument operating in Rome, Solar Phys., 177, 1–10, 1998.
Ermolli, I., Berrilli, F., and Florio, A.: A measure of the network radiative properties over the solar activity cycle, Astron. Astrophys., 412, 857–864, https://doi.org/10.1051/0004-6361:20031479, 2003.
Ermolli, I., Criscuoli, S., Centrone, M., Giorgi, F., and Penza, V.: Photometric properties of facular features over the activity cycle, Astron. Astrophys., 465, 305–314, https://doi.org/10.1051/0004-6361:20065995, 2007.
Ermolli, I., Solanki, S. K., Tlatov, A. G., Krivova, N. A., Ulrich, R. K., and Singh, J.: Comparison Among Ca II K Spectroheliogram Time Series with an Application to Solar Activity Studies, Astrophys. J., 698, 1000–1009, https://doi.org/10.1088/0004-637X/698/2/1000, 2009.
Ermolli, I., Criscuoli, S., Uitenbroek, H., Giorgi, F., Rast, M. P., and Solanki, S. K.: Radiative emission of solar features in the Ca II K line: comparison of measurements and models, Astron. Astrophys., 523, A55, https://doi.org/10.1051/0004-6361/201014762, 2010.
Ermolli, I., Criscuoli, S., and Giorgi, F.: Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments, Contributions of the Astronomical Observatory Skalnate Pleso, 41, 73–84, 2011.
Fehlmann, A., Kopp, G., Schmutz, W., Winkler, R., Finsterle, W., and Fox, N.: Fourth World Radiometric Reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance, Metrologia, 49, 34, https://doi.org/10.1088/0026-1394/49/2/S34, 2012.
Fligge, M. and Solanki, S. K.: The solar spectral irradiance since 1700, Geophys. Res. Lett., 27, 2157–2160, https://doi.org/10.1029/2000GL000067, 2000.
Fligge, M., Solanki, S. K., Unruh, Y. C., Fröhlich, C., and Wehrli, C.: A model of solar total and spectral irradiance variations, Astron. Astrophys., 335, 709–718, 1998.
Fligge, M., Solanki, S. K., and Unruh, Y. C.: Modelling irradiance variations from the surface distribution of the solar magnetic field, Astron. Astrophys., 353, 380–388, 2000.
Floyd, L., Rottman, G., DeLand, M., and Pap, J.: 11 years of solar UV irradiance measurements from UARS, in: Solar Variability as an Input to the Earth's Environment, edited by Wilson, A., vol. 535 of ESA Special Publication, 195–203, 2003.
Floyd, L. E., Prinz, D. K., Crane, P. C., and Herring, L. C.: Solar UV irradiance variation during cycles 22 and 23, Adv. Space Res., 29, 1957–1962, https://doi.org/10.1016/S0273-1177(02)00242-9, 2002.
Fontenla, J. and Harder, G.: Physical modeling of spectral irradiance variations, Mem. Soc. Astron. It., 76, 826–833, 2005.
Fontenla, J., White, O. R., Fox, P. A., Avrett, E. H., and Kurucz, R. L.: Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum, Astrophys. J., 518, 480–499, https://doi.org/10.1086/307258, 1999.
Fontenla, J. M., Harder, J., Rottman, G., Woods, T. N., Lawrence, G. M., and Davis, S.: The Signature of Solar Activity in the Infrared Spectral Irradiance, Astrophys. J., 605, L85–L88, https://doi.org/10.1086/386335, 2004.
Fontenla, J. M., Avrett, E., Thuillier, G., and Harder, J.: Semiempirical Models of the Solar Atmosphere. I. The quiet- and active sun photosphere at moderate resolution, Astrophys. J., 639, 441–458, https://doi.org/10.1086/499345, 2006.
Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J., and Tian, H.: Semiempirical Models of the Solar Atmosphere. III. Set of Non-LTE Models for Far-Ultraviolet/Extreme-Ultraviolet Irradiance Computation, Astrophys. J., 707, 482–502, https://doi.org/10.1088/0004-637X/707/1/482, 2009.
Fontenla, J. M., Harder, J., Livingston, W., Snow, M., and Woods, T.: High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res., 116, D20108, https://doi.org/10.1029/2011JD016032, 2011.
Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I., Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E., Myhre, G., Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li, J., Lemennais, P., Morgenstern, O., Oberl{ä}nder, S., Sigmond, M., and Shibata, K.: Evaluation of radiation scheme performance within chemistry climate models, J. Geophys. Res.-Atmos., 116, D10302, https://doi.org/10.1029/2010JD015361, 2011.
Foukal, P. and Lean, J.: The influence of faculae on total solar irradiance and luminosity, Astrophys. J., 302, 826–835, https://doi.org/10.1086/164043, 1986.
Foukal, P. and Lean, J.: An empirical model of total solar irradiance variation between 1874 and 1988, Science, 247, 556–558, https://doi.org/10.1126/science.247.4942.556, 1990.
Foukal, P. and Vernazza, J.: The effect of magnetic fields on solar luminosity, Astrophys. J., 234, 707–715, https://doi.org/10.1086/157547, 1979.
Foukal, P., Little, R., Graves, J., Rabin, D., and Lynch, D.: Infrared imaging of faculae at the deepest photospheric layers, Solar Phys., 353, 712–715, https://doi.org/10.1086/168660, 1990.
Fr{öhlich}, C.: Solar Irradiance Variability Since 1978. Revision of the PMOD Composite during Solar Cycle 21, Space Sci. Rev., 125, 53–65, https://doi.org/10.1007/s11214-006-9046-5, 2006.
Fr{öhlich}, C.: Evidence of a long-term trend in total solar irradiance, Astron. Astrophys., 501, L27–L30, https://doi.org/10.1051/0004-6361/200912318, 2009.
Fr{öhlich}, C. and Lean, J.: Total Solar Irradiance Variations: The Construction of a Composite and its Comparison with Models, in: Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, edited by: Wilson, A., vol. 415 of ESA Special Publication, p. 227, 1997.
Fr{öhlich}, C. and Lean, J.: The Sun's total irradiance: Cycles, trends and related climate change uncertainties since 1976, Geophys. Res. Lett., 25, 4377–4380, https://doi.org/10.1029/1998GL900157, 1998.
Fr{öhlich}, C. and Lean, J.: Solar radiative output and its variability: evidence and mechanisms, Astron. Astrophys. Rev., 12, 273–320, https://doi.org/10.1007/s00159-004-0024-1, 2004.
Fröhlich, C., Andersen, B. N., Appourchaux, T., Berthomieu, G., Crommelynck, D. A., Domingo, V., Fichot, A., Finsterle, W., Gomez, M. F., Gough, D., Jimenez, A., Leifsen, T., Lombaerts, M., Pap, J. M., Provost, J., Cortes, T. R., Romero, J., Roth, H., Sekii, T., Telljohann, U., Toutain, T., and Wehrli, C.: First Results from VIRGO, the Experiment for Helioseismology and Solar Irradiance Monitoring on SOHO, Solar Phys., 170, 1–25, 1997.
Garcia, R. R.: Atmospheric physics: Solar surprise?, Nature, 467, 668–669, https://doi.org/10.1038/467668a, 2010.
Gerber, E. P., Baldwin, M. P., Akiyoshi, H., Austin, J., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Frith, S. M., Garcia, R. R., Garny, H., Gettelman, A., Hardiman, S. C., Karpechko, A., Marchand, M., Morgenstern, O., Nielsen, J. E., Pawson, S., Peter, T., Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J. F., Shepherd, T. G., and Smale, D.: Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models, J. Geophys. Res.-Atmos., 115, D00M06, https://doi.org/10.1029/2009JD013770, 2010.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: SOLAR INFLUENCES ON CLIMATE, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Grossmann-Doerth, U., Knoelker, M., Schuessler, M., and Solanki, S. K.: The deep layers of solar magnetic elements, Astron. Astrophys., 285, 648–654, 1994.
Haberreiter, M., Krivova, N. A., Schmutz, W., and Wenzler, T.: Reconstruction of solar UV irradiance back to 1974, Adv. Space Res., 35, 365–369, https://doi.org/10.1051/0004-6361:200809503, 2005.
Haberreiter, M., Schmutz, W., and Hubeny, I.: NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions, Astron. Astrophys., 492, 833–840, https://doi.org/10.1051/0004-6361:200809503, 2008.
Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546, https://doi.org/10.1038/370544a0, 1994.
Haigh, J. D.: A GCM study of climate change in response to the 11-year solar cycle, Q. J. Roy. Meteorol. Soc., 125, 871–892, https://doi.org/10.1002/qj.49712555506, 1999.
Haigh, J. D.: The Sun and the Earth's Climate, Living Rev. Solar Phys., 4, 64 pp., 2007.
Haigh, J. D., Lockwood, M., and Giampapa, M. S.: The Sun, Solar Analogs and the Climate, Springer Verlag, 2005.
Haigh, J. D., Winning, A. R., Toumi, R., and Harder, J. W.: An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, https://doi.org/10.1038/nature09426, 2010.
Harder, J., Lawrence, G., Fontenla, J., Rottman, G., and Woods, T.: The Spectral Irradiance Monitor: Scientific Requirements, Instrument Design, and Operation Modes, Solar Phys., 230, 141–167, https://doi.org/10.1007/s11207-005-5007-5, 2005{a}.
Harder, J. W., Fontenla, J., Lawrence, G., Woods, T., and Rottman, G.: The Spectral Irradiance Monitor}: Measurement equations and calibration, Solar Phys., 230, 169–204, https://doi.org/10.1007/s11207-005-1528-1, 2005{b.
Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., and Woods, T. N.: Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, L07801, https://doi.org/10.1029/2008GL036797, 2009.
Harder, J. W., Thuillier, G., Richard, E. C., Brown, S. W., Lykke, K. R., Snow, M., McClintock, W. E., Fontenla, J. M., Woods, T. N., and Pilewskie, P.: The SORCE SIM solar spectrum: Comparison with recent observations, Solar Phys., 263, 3–24, https://doi.org/10.1007/s11207-010-9555-y, 2010.
Hardiman, S., Butchart, N., Hinton, T., Osprey, S., and Gray, L.: The effect of a well resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model, J. Climate, 25, 7083–7099, https://doi.org/10.1175/JCLI-D-11-00579.1, 2012.
Hickey, J. R., Stowe, L. L., Jacobowitz, H., Pellegrino, P., Maschhoff, R. H., House, F., and Vonder Haar, T. H.: Initial Solar Irradiance Determinations from Nimbus 7 Cavity Radiometer Measurements, Science, 208, 281–283, https://doi.org/10.1126/science.208.4441.281, 1980.
Hubeny, I. and Lanz, T.: Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method, Astrophys. J., 439, 875–904, https://doi.org/10.1086/175226, 1995.
Ineson, S., Scaife, A. A., Knight, J. R., Manners, J. C., Dunstone, N. J., Gray, L. J., and Haigh, J. D.: Solar forcing of winter climate variability in the Northern Hemisphere, Nature Geosci., 4, 753–757, https://doi.org/10.1038/ngeo1282, 2011.
Jain, K. and Hasan, S. S.: Modulation in the solar irradiance due to surface magnetism during cycles 21, 22 and 23, Astron. Astrophys., 425, 301–307, https://doi.org/10.1051/0004-6361:20047102, 2004.
Jones, G. S., Lockwood, M., and Stott, P. A.: What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes?, J. Geophys. Res.-Atmos., 117, D05103, https://doi.org/10.1029/2011JD017013, http://dx.doi.org/10.1029/2011JD017013, 2012.
Keller, C. U., Sch{ü}ssler, M., V{ö}gler, A., and Zakharov, V.: On the Origin of Solar Faculae, Astrophys. J., 607, L59–L62, https://doi.org/10.1086/421553, 2004.
Kobel, P., Solanki, S. K., and Borrero, J. M.: The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements, Astron. Astrophys., 531, A112, https://doi.org/10.1051/0004-6361/201016255, 2011.
Kodera, K.: Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO, Geophys. Res. Lett., 29, 1218, https://doi.org/10.1029/2001GL014557, 2002.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, Journal of Geophysical Research (Atmospheres), 107, 4749, https://doi.org/10.1029/2002JD002224, 2002.
Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777, 2011.
Kopp, G., Lawrence, G., and Rottman, G.: The Total Irradiance Monitor (TIM): Science Results, Solar Phys., 230, 129–139, https://doi.org/10.1007/s11207-005-7433-9, 2005.
Krivova, N. and Solanki, S.: Models of Solar Total and Spectral Irradiance Variability of Relevance for Climate Studies, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by: Lübken, F.-J., Springer Atmospheric Sciences, 19–38, Springer, the Netherlands, https://doi.org/10.1007/978-94-007-4348-9_2, 2013.
Krivova, N. A., Solanki, S. K., Fligge, M., and Unruh, Y. C.: Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause?, Astron. Astrophys., 399, L1–L4, https://doi.org/10.1051/0004-6361:20030029, 2003.
Krivova, N. A., Solanki, S. K., and Floyd, L.: Reconstruction of solar UV irradiance in cycle 23, Astron. Astrophys., 452, 631–639, https://doi.org/10.1051/0004-6361:20064809, 2006.
Krivova, N. A., Balmaceda, L., and Solanki, S. K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, Astron. Astrophys., 467, 335–346, https://doi.org/10.1051/0004-6361:20066725, 2007.
Krivova, N. A., Solanki, S. K., Wenzler, T., and Podlipnik, B.: Reconstruction of solar UV irradiance since 1974, J. Geophys. Res.-Atmos., 114, D00I04, https://doi.org/10.1029/2009JD012375, 2009.
Krivova, N. A., Vieira, L. E. A., and Solanki, S. K.: Reconstruction of solar spectral irradiance since the Maunder minimum, J. Geophys. Res. (Space Physics), 115, A12112, https://doi.org/10.1029/2010JA015431, 2010.
Kuroda, Y.: Relationship between the Polar-Night Jet Oscillation and the Annular Mode, Geophys. Res. Lett., 29, 1240, https://doi.org/10.1029/2001GL013933, 2002.
Kurucz, R.: ATLAS9 Stellar Atmosphere Programs and 2 km/s grid., ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cambridge, Mass.: Smithsonian Astrophysical Observatory, 13, 1993.
Kurucz, R. L.: New Opacity Calculations, in: NATO ASIC Proc. 341: Stellar Atmospheres – Beyond Classical Models, edited by: Crivellari, L., Hubeny, I., and Hummer, D. G., p. 441, 1991.
Kurucz, R. L.: ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera, Memorie della Societa Astronomica Italiana Supplementi, 8, 14, 2005.
Langematz, U., Kubin, A., Brühl, C., Baumgaertner, A., Cubasch, U., and Spangehl, T.: Solar Effects on Chemistry and Climate Including Ocean Interactions, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by: Lübken, F.-J., Springer Atmospheric Sciences, 541–571, Springer Netherlands, https://doi.org/10.1007/978-94-007-4348-9_29, 2013.
Lawrence, G. M., Rottman, G., Harder, J., and Woods, T.: Solar Total Irradiance Monitor (TIM), Metrologia, 37, 407, https://doi.org/10.1088/0026-1394/37/5/13, 2000.
Lawrence, G. M., Kopp, G., Rottman, G., Harder, J., Woods, T., and H Loui}: {Calibration of the total irradiance monitor, Metrologia, 40, S78–S80, https://doi.org/10.1088/0026-1394/40/1/317, 2003.
Lean, J.: The Sun's Variable Radiation and Its Relevance For Earth, Annu. Rev. Astron. Astrophys., 35, 33–67, https://doi.org/10.1146/annurev.astro.35.1.33, 1997.
Lean, J. L.: Evolution of the Sun's spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 27, 2425–2428, https://doi.org/10.1029/2000GL000043, 2000.
Lean, J. L. and DeLand, M. T.: How Does the Sun's Spectrum Vary?, J. Climate, 25, 2555–2560, https://doi.org/10.1175/JCLI-D-11-00571.1, 2012.
Lean, J. L. and Woods, T. N.: Solar total and spectral irradiance measurements and models, in: Evolving Solar Physics and the Climates of Earth and Space, edited by Schrijver, C. J. and Siscoe, G. L., Cambridge Univeristy Press, Cambridge, 2010.
Lean, J. L., Livingston, W. C., Heath, D. F., Donnelly, R. F., Skumanich, A., and White, O. R.: A three-component model of the variability of the solar ultraviolet flux 145–200 nM, J. Geophys. Res., 87, 10307–10317, https://doi.org/10.1029/JA087iA12p10307, 1982.
Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., and Puga, L. C.: Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200-400 nm), J. Geophys. Res., 102, 29939–29956, https://doi.org/10.1029/97JD02092, 1997.
Lee, III, R. B., Barkstrom, B. R., and Cess, R. D.: Characteristics of the earth radiation budget experiment solar monitors, Appl. Optics, 26, 3090–3096, https://doi.org/10.1364/AO.26.003090, 1987.
Lee, III, R. B., Gibson, M. A., Wilson, R. S., and Thomas, S.: Long-term total solar irradiance variability during sunspot cycle 22, J. Geophys. Res., 100, 1667–1675, https://doi.org/10.1029/94JA02897, 1995.
Lockwood, M.: Was UV spectral solar irradiance lower during the recent low sunspot minimum?, J. Geophys. Res.-Atmos., 116, D16103, https://doi.org/10.1029/2010JD014746, 2011.
Lockwood, M.: Solar Influence on Global and Regional Climates, Surveys in Geophysics, p. 27, https://doi.org/10.1007/s10712-012-9181-3, 2012.
Lockwood, M., Harrison, R. G., Woollings, T., and Solanki, S. K.: Are cold winters in Europe associated with low solar activity?, Environ. Res. Lett., 5, 024001, https://doi.org/10.1088/1748-9326/5/2/024001, 2010.
Loukitcheva, M., Solanki, S. K., Carlsson, M., and Stein, R. F.: Millimeter observations and chromospheric dynamics, Astron. Astrophys., 419, 747–756, https://doi.org/10.1051/0004-6361:20034159, 2004.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM), J. Climate, in review, 2013.
Matthes, K.: Atmospheric science: Solar cycle and climate predictions, Nature Geosci., 4, 735–736, https://doi.org/10.1038/ngeo1298, 2011.
Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter, J. Geophys. Res.-Atmos., 111, D06108, https://doi.org/10.1029/2005JD006283, 2006.
McClintock, W. E., Rottman, G. J., and Woods, T. N.: Solar-Stellar Irradiance Comparison Experiment II (Solstice II): Instrument Concept and Design, Solar Phys., 230, 225–258, https://doi.org/10.1007/s11207-005-7432-x, 2005.
Meehl, G., Arblaster, J., Matthes, K., Sassi, F., and van Loon, H.: Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science, 325, 1114–1118, https://doi.org/10.1126/science.1172872, 2009.
Merkel, A. W., Harder, J. W., Marsh, D. R., Smith, A. K., Fontenla, J. M., and Woods, T. N.: The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, L13802, https://doi.org/10.1029/2011GL047561, 2011.
Morrill, J. S., Floyd, L., and McMullin, D.: The Solar Ultraviolet Spectrum Estimated Using the Mg ii Index and Ca ii K Disk Activity, Solar Phys., 269, 253–267, https://doi.org/10.1007/s11207-011-9708-7, 2011{a}.
Morrill, J. S., Floyd, L. E., and McMullin, D. R.: Solar UV Spectral Irradiance Measured by SUSIM During Solar Cycle 22 and 23, AGU Fall Meeting Abstracts, p. A914, 2011{b}.
Nissen, K. M., Matthes, K., Langematz, U., and Mayer, B.: Towards a better representation of the solar cycle in general circulation models, Atmos. Chem. Phys., 7, 5391–5400, https://doi.org/10.5194/acp-7-5391-2007, 2007.
Oberl{änder}, S., Langematz, U., Matthes, K., Kunze, M., Kubin, A., Harder, J., Krivova, N. A., Solanki, S. K., Pagaran, J., and Weber, M.: The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle, Geophys. Res. Lett., 39, L01801, https://doi.org/10.1029/2011GL049539, 2012.
Oster, L., Schatten, K. H., and Sofia, S.: Solar irradiance variations due to active regions, Astrophys. J., 256, 768–773, https://doi.org/10.1086/159949, 1982.
Pagaran, J., Weber, M., and Burrows, J.: Solar Variability from 240 to 1750 nm in Terms of Faculae Brightening and Sunspot Darkening from SCIAMACHY, Astrophys. J., 700, 1884–1895, https://doi.org/10.1088/0004-637X/700/2/1884, 2009.
Pagaran, J., Harder, J. W., Weber, M., Floyd, L. E., and Burrows, J. P.: Intercomparison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales, Astron. Astrophys., 528, A67, https://doi.org/10.1051/0004-6361/201015632, 2011{a}.
Pagaran, J., Weber, M., DeLand, M. T., Floyd, L. E., and Burrows, J. P.: Solar Spectral Irradiance Variations in 240–1600 nm During the Recent Solar Cycles 21–3, Solar Phys., 272, 159–188, https://doi.org/10.1007/s11207-011-9808-4, 2011{b}.
Pap, J. M., Willson, R. C., Froelich, C., Donnelly, R. F., and Puga, L.: Long-term variations in total solar irradiance, Solar Phys., 152, 13–21, https://doi.org/10.1007/BF01473177, 1994.
Pap, J. M., Fox, P., Fröhlich, C., Hudson, H. S., Kuhn, J., McCormack, J., North, G., Sprigg, W., and Wu, S. T. (Eds.): Solar Variability and its Effects on Climate, vol. 141 of Geophysical Monograph Series, American Geophysical Union, Washington DC, 2004.
Penza, V., Caccin, B., Ermolli, I., Centrone, M., and Gomez, M. T.: Modeling solar irradiance variations through PSPT images and semiempirical models, in: Solar Variability as an Input to the Earth's Environment, edited by: Wilson, A., vol. 535 of ESA Special Publication, 299–302, 2003.
Penza, V., Caccin, B., Ermolli, I., and Centrone, M.: Comparison of model calculations and photometric observations of bright "magnetic" regions, Astron. Astrophys., 413, 1115–1123, https://doi.org/10.1051/0004-6361:20031397, 2004.
Penza, V., Pietropaolo, E., and Livingston, W.: Modeling the cyclic modulation of photospheric lines, Astron. Astrophys., 454, 349–358, https://doi.org/10.1051/0004-6361:20053405, 2006.
Preminger, D. G., Walton, S. R., and Chapman, G. A.: Photometric quantities for solar irradiance modeling, J. Geophys. Res. (Space Physics), 107, 1354, https://doi.org/10.1029/2001JA009169, 2002.
Remsberg, E. E.: On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11-year solar cycle forcing, J. Geophys. Res.-Atmos., 113, D22304, https://doi.org/10.1029/2008JD010189, 2008.
R{öhrbein}, D., Cameron, R., and Sch{ü}ssler, M.: Is there a non-monotonic relation between photospheric brightness and magnetic field strength in solar plage regions?, Astron. Astrophys., 532, A140, https://doi.org/10.1051/0004-6361/201117090, 2011.
Rottman, G.: The SORCE Mission, Solar Phys., 230, 7–25, https://doi.org/10.1007/s11207-005-8112-6, 2005.
Rottman, G., Woods, T., Snow, M., and Detoma, G.: The solar cycle variation in ultraviolet irradiance, Adv. Space Res., 27, 1927–1932, https://doi.org/10.1016/S0273-1177(01)00272-1, 2001.
Rottman, G., Floyd, L., and Viereck, R.: Measurement of the Solar Ultraviolet Irradiance, in: Solar Variability and its Effects on Climate. Geophysical Monograph 141, edited by Pap, J. M., Fox, P., Fröhlich, C., Hudson, H. S., Kuhn, J., McCormack, J., North, G., Sprigg, W., and Wu, S. T., vol. 141 of Washington DC American Geophysical Union Geophysical Monograph Series, 111–125, 2004.
Rottman, G. J., Woods, T. N., and Sparn, T. P.: Solar-Stellar Irradiance Comparison Experiment 1. I – Instrument design and operation, J. Geophys. Res., 98, 10667, https://doi.org/10.1029/93JD00462, 1993.
Rozanov, E., Egorova, T., Fr{ö}hlich, C., Haberreiter, M., Peter, T., and Schmutz, W.: Estimation of the ozone and temperature sensitivity to the variation of spectral solar flux, in: From Solar Min to Max: Half a Solar Cycle with SOHO, edited by: Wilson, A., vol. 508 of ESA Special Publication\/, pp. 181–184, 2002.
Rozanov, E. V., Egorova, T. A., Shapiro, A. I., and Schmutz, W. K.: Modeling of the atmospheric response to a strong decrease of the solar activity, in: IAU Symposium, vol. 286 of IAU Symposium\/, pp. 215–224, https://doi.org/10.1017/S1743921312004863, 2012.
Rutten, R. J.: Radiative Transfer in Stellar Atmospheres, University of Utrecht, Uttecht, the Netherlands, 2003.
Rutten, R. J. and Kostik, R. I.: Empirical NLTE analyses of solar spectral lines. III – Iron lines versus LTE models of the photosphere, Astron. Astrophys., 115, 104–114, 1982.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schmutz, W., Fehlmann, A., H{ü}lsen, G., Meindl, P., Winkler, R., Thuillier, G., Blattner, P., Buisson, F., Egorova, T., Finsterle, W., Fox, N., Gr{ö}bner, J., Hochedez, J.-F., Koller, S., Meftah, M., Meisonnier, M., Nyeki, S., Pfiffner, D., Roth, H., Rozanov, E., Spescha, M., Wehrli, C., Werner, L., and Wyss, J. U.: The PREMOS/PICARD instrument calibration, Metrologia, 46, 202, https://doi.org/10.1088/0026-1394/46/4/S13, 2009.
Schmutz, W., Fehlmann, A., Finsterle, W., and the PREMOS team: First light of PREMOS/PICARD, Annual report 2011, p. 44, PMOD/WRC, www.pmodwrc.ch, 2012.
Schraner, M., Rozanov, E., Schnadt Poberaj, C., Kenzelmann, P., Fischer, A. M., Zubov, V., Luo, B. P., Hoyle, C. R., Egorova, T., Fueglistaler, S., Brönnimann, S., Schmutz, W., and Peter, T.: Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes, Atmos. Chem. Phys., 8, 5957–5974, https://doi.org/10.5194/acp-8-5957-2008, 2008.
Schrijver, C. J., Livingston, W. C., Woods, T. N., and Mewaldt, R. A.: The minimal solar activity in 2008–2009 and its implications for long-term climate modeling, Geophys. Res. Lett., 38, L06701, https://doi.org/10.1029/2011GL046658, 2011.
Shapiro, A., Schmutz, W., Dominique, M., and Shapiro, A.: Eclipses observed by LYRA – a sensitive tool to test the models for the solar irradiance, Solar Phys., in press, 2013{a}.
Shapiro, A. I., Schmutz, W., Schoell, M., Haberreiter, M., and Rozanov, E.: NLTE solar irradiance modeling with the COSI code, Astron. Astrophys., 517, A48, https://doi.org/10.1051/0004-6361/200913987, 2010.
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., and Nyeki, S.: A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173, 2011.
Shapiro, A. V., Rozanov, E. V., Shapiro, A. I., Egorova, T. A., Harderi, J., Weber, M., Smith, A. K., Schmutz, W., and Peter, T.: The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009, J. Geophys. Res.-Atmos., https://doi.org/10.1002/jgrd.50208, in press, 2013{b}.
Shapiro, A. V., Shapiro, A. I., Dominique, M., Dammasch, I. E., Wehrli, C., Rozanov, E., and Schmutz, W.: Detection of Solar Rotational Variability in the Large Yield RAdiometer (LYRA) 190–222 nm Spectral Band, Solar Phys., p. 121, https://doi.org/10.1007/s11207-012-0029-2, 2012.
Shchukina, N. and Trujillo Bueno, J.: The Iron Line Formation Problem in Three-dimensional Hydrodynamic Models of Solar-like Photospheres, Astrophys. J., 550, 970–990, https://doi.org/10.1086/319789, 2001.
Snow, M., McClintock, W. E., Rottman, G., and Woods, T. N.: Solar Stellar Irradiance Comparison Experiment II (Solstice II): Examination of the Solar Stellar Comparison Technique, Solar Phys., 230, 295–324, https://doi.org/10.1007/s11207-005-8763-3, 2005.
Socas-Navarro, H.: A high-resolution three-dimensional model of the solar photosphere derived from Hinode observations, Astron. Astrophys., 529, A37, https://doi.org/10.1051/0004-6361/201015805, 2011.
Solanki, S. K. and Unruh, Y. C.: A model of the wavelength dependence of solar irradiance variations, Astron. Astrophys., 329, 747–753, 1998.
Solanki, S. K., Usoskin, I. G., Kromer, B., Sch{ü}ssler, M., and Beer, J.: Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431, 1084–1087, https://doi.org/10.1038/nature02995, 2004.
Solanki, S. K., Krivova, N. A., and Haigh, J. D.: Solar Activity and Climate, Annu. Rev. Astron. Astrophys., 51, http://www.annualreviews.org/doi/abs/10.1146/annurev-astro-082812-141007, 2013.
Solomon, S. D., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H.: Climate Change 2007: The Physical Science Basis (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change), Cambridge Univeristy Press, Cambridge, UK, 2007.
SPARC-CCMVal: SPARC Report on the Evaluation of Chemistry-Climate Models, SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526, edited by: Eyring, V., Shepherd, T. G., and Waugh, D. W., www.atmosp.physics.utoronto.ca/SPARC (last access: May 2011), 2010.
Sperfeld, P., Metzdorf, J., Galal Yousef, S., Stock, K. D., and M{ö}ller, W.: Improvement and extension of the black-body-based spectral irradiance scale, Metrologia, 35, 267, https://doi.org/10.1088/0026-1394/35/4/9, 1998.
Spruit, H. C.: Pressure equilibrium and energy balance of small photospheric fluxtubes, Solar Phys., 50, 269–295, https://doi.org/10.1007/BF00155292, 1976.
Spruit, H. C.: The flow of heat near a starspot, Astron. Astrophys., 108, 356–360, 1982.
Swartz, W. H., Stolarski, R. S., Oman, L. D., Fleming, E. L., and Jackman, C. H.: Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937–5948, https://doi.org/10.5194/acp-12-5937-2012, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thuillier, G., Herse, M., Simon, P. C., Labs, D., Mandel, H., Gillotay, D., and Foujols, T.: The Visible Solar Spectral Irradiance from 350 to 850 NM as Measured by the SOLSPEC Spectrometer During the Atlas I Mission, Solar Phys., 177, 41–61, 1998.
Thuillier, G., Floyd, L., Woods, T. N., Cebula, R., Hilsenrath, E., Hers{é}, M., and Labs, D.: Solar Irradiance Reference Spectra, in: Solar Variability and its Effects on Climate. Geophysical Monograph 141, edited by Pap, J. M., Fox, P., Fröhlich, C., Hudson, H. S., Kuhn, J., McCormack, J., North, G., Sprigg, W., and Wu, S. T., vol. 141 of Washington DC American Geophysical Union Geophysical Monograph Series, 171–194, 2004.
Thuillier, G., Foujols, T., Bols{é}e, D., Gillotay, D., Hers{é}, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D. R., and Hartmann, J.: SOLAR/SOLSPEC: Scientific Objectives, Instrument Performance and Its Absolute Calibration Using a Blackbody as Primary Standard Source, Solar Phys., 257, 185–213, https://doi.org/10.1007/s11207-009-9361-6, 2009.
Thuillier, G., Claudel, J., Djafer, D., Haberreiter, M., Mein, N., Melo, S. M. L., Schmutz, W., Shapiro, A., Short, C. I., and Sofia, S.: The Shape of the Solar Limb: Models and Observations, Solar Phys., 268, 125–149, https://doi.org/10.1007/s11207-010-9664-7, 2011.
Thuillier, G., DeLand, M., Shapiro, A., Schmutz, W., Bols{é}e, D., and Melo, S. M. L.: The Solar Spectral Irradiance as a Function of the Mg ii Index for Atmosphere and Climate Modelling, Solar Phys., 277, 245–266, https://doi.org/10.1007/s11207-011-9912-5, 2012.
Topka, K. P., Tarbell, T. D., and Title, A. M.: Properties of the smallest solar magnetic elements. I – Facular contrast near sun center, Astrophys. J., 396, 351–363, https://doi.org/10.1086/171721, 1992.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy Budget, B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Uitenbroek, H.: Multilevel Radiative Transfer with Partial Frequency Redistribution, Astrophys. J., 557, 389–398, https://doi.org/10.1086/321659, 2001.
Uitenbroek, H.: The Effect of Coherent Scattering on Radiative Losses in the Solar Ca II K Line, Astrophys. J., 565, 1312–1322, https://doi.org/10.1086/324698, 2002.
Uitenbroek, H. and Criscuoli, S.: Why One-dimensional Models Fail in the Diagnosis of Average Spectra from Inhomogeneous Stellar Atmospheres, Astrophys. J., 736, 69, https://doi.org/10.1088/0004-637X/736/1/69, 2011.
Unruh, Y. C., Solanki, S. K., and Fligge, M.: The spectral dependence of facular contrast and solar irradiance variations, Astron. Astrophys., 345, 635–642, 1999.
Unruh, Y. C., Krivova, N. A., Solanki, S. K., Harder, J. W., and Kopp, G.: Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales, Astron. Astrophys., 486, 311–323, https://doi.org/10.1051/0004-6361:20078421, 2008.
Unruh, Y. C., Ball, W. T., and Krivova, N. A.: Solar Irradiance Models and Measurements: A Comparison in the 220–240 nm wavelength band, Surveys in Geophysics, 33, 475–481, https://doi.org/10.1007/s10712-011-9166-7, 2012.
Usoskin, I. G.: A History of Solar Activity over Millennia, Living Reviews in Solar Physics, 5, http://solarphysics.livingreviews.org/Articles/lrsp-2008-3/, 2008.
van Loon, H., Meehl, G. A., and Shea, D.: Coupled air-sea response to solar forcing in the Pacific region during northern winter, J. Geophys. Res., 112, D02108, https://doi.org/10.1029/2006JD007378, 2007.
Vernazza, J. E., Avrett, E. H., and Loeser, R.: Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun, Astrophys. J. Suppl. Ser., 45, 635–725, https://doi.org/10.1086/190731, 1981.
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution of the solar irradiance during the Holocene, Astron. Astrophys., 531, A6, https://doi.org/10.1051/0004-6361/201015843, 2011.
Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., and Tobiska, W. K.: The Mg II index: A proxy for solar EUV, Geophys. Res. Lett., 28, 1343–1346, https://doi.org/10.1029/2000GL012551, 2001.
V{ögler}, A.: On the effect of photospheric magnetic fields on solar surface brightness, Results of radiative MHD simulations, Memorie della Società Astronomica Italianasai, 76, 842–849, 2005.
Wang, H., Spirock, T., Goode, P., Lee, C., Zirin, H., and Kosonocky, W.: Contrast of faculae at 1.6 mMicrons, Astrophys. J., 495, 957–964, https://doi.org/10.1086/305311, 1998.
Weber, M., Burrows, J. P., and Cebula, R. P.: Gome Solar UV/VIS Irradiance Measurements between 1995 and 1997 – First Results on Proxy Solar Activity Studies, Solar Phys., 177, 63–77, 1998.
Weber, M., Pagaran, J., Dikty, S., von Savigny, C., Burrows, J., DeLand, M., Floyd, L., Harder, J., Mlynczak, M., and Schmidt, H.: Investigation of solar irradiance variations and their impact on middle atmospheric ozone, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by: Lubken, F.-J., Springer Atmospheric Sciences, 39–54, Springer, the Netherlands, https://doi.org/10.1007/978-94-007-4348-9_3, 2013.
Wehrli, C., Schmutz, W., and Shapiro, A.: Correlation of Spectral Solar Irradiance with solar activity as measured by SPM/VIRGO, Astron. Astrophys., submitted, 2012.
Wenzler, T., Solanki, S. K., Krivova, N. A., and Fluri, D. M.: Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions, Astron. Astrophys., 427, 1031–1043, https://doi.org/10.1051/0004-6361:20041313, 2004.
Wenzler, T., Solanki, S. K., and Krivova, N. A.: Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23?, Astron. Astrophys., 432, 1057–1061, https://doi.org/10.1051/0004-6361:20041956, 2005.
Wenzler, T., Solanki, S. K., Krivova, N. A., and Fr{ö}hlich, C.: Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields, Astron. Astrophys., 460, 583–595, https://doi.org/10.1051/0004-6361:20065752, 2006.
Wenzler, T., Solanki, S. K., and Krivova, N. A.: Reconstructed and measured total solar irradiance: Is there a secular trend between 1978 and 2003?, Geophys. Res. Lett., 36, L11102, https://doi.org/10.1029/2009GL037519, 2009.
Willson, R. C.: Active cavity radiometer type IV, Appl. Optics, 18, 179–188, https://doi.org/10.1364/AO.18.000179, 1979.
Willson, R. C.: The ACRIMSAT/ACRIM III experiment: extending the precision, long-term total solar irradiance climate database, Earth Observer, 13, 14–17, 2001.
Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., and Chapman, G. A.: Observations of solar irradiance variability, Science, 211, 700–702, https://doi.org/10.1126/science.211.4483.700, 1981.
WMO: Global Ozone Research and Monitoring Project Report No. 52, in: Scientific Assessment of Ozone Depletion: 2010, p. 516, World Meteorological Organisation, Geneva, Switzerland, 2011.
Woods, T.: Solar Irradiance Variability: Comparisons of Observations over Solar Cycles 21–24, in: EGU General Assembly Conference Abstracts, edited by: Abbasi, A. and Giesen, N., vol. 14 of EGU General Assembly Conference Abstracts\/, p. 1520, 2012.
Woods, T. N. and Rottman, G. J.: Solar Ultraviolet Variability Over Time Periods of Aeronomic Interest, in: Atmospheres in the Solar System: Comparative Aeronomy, edited by: Mendillo, M., Nagy, A., and Waite, J. H., vol. 130 of AGU Monographs, p. 221, AGU, Washington DC, https://doi.org/10.1029/130GM14, 2002.
Woods, T. N., Prinz, D. K., Rottman, G. J., London, J., Crane, P. C., Cebula, R. P., Hilsenrath, E., Brueckner, G. E., Andrews, M. D., White, O. R., VanHoosier, M. E., Floyd, L. E., Herring, L. C., Knapp, B. G., Pankratz, C. K., and Reiser, P. A.: Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res., 101, 9541–9570, https://doi.org/10.1029/96JD00225, 1996.
Woods, T. N., Tobiska, W. K., Rottman, G. J., and Worden, J. R.: Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations, J. Geophys. Res., 105, 27195–27216, https://doi.org/10.1029/2000JA000051, 2000.
Zhong, W., Osprey, S. M., Gray, L. J., and Haigh, J. D.: Influence of the prescribed solar spectrum on calculations of atmospheric temperature, Geophys. Res. Lett., 35, L22813, https://doi.org/10.1029/2008GL035993, 2008.
Altmetrics
Final-revised paper
Preprint