Articles | Volume 13, issue 6
Atmos. Chem. Phys., 13, 3423–3443, 2013
https://doi.org/10.5194/acp-13-3423-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: The Pan European Gas-Aerosols Climate Interaction Study...
Research article 26 Mar 2013
Research article | 26 Mar 2013
Response of fine particulate matter concentrations to changes of emissions and temperature in Europe
A. G. Megaritis et al.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
Size-resolved aerosol pH over Europe during summer
Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: evolution of the aerosol optical properties in Siberian wildfire plumes
Global modeling of heterogeneous hydroxymethanesulfonate chemistry
Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational constraints on anthropogenic emission controls
Historical and future changes in air pollutants from CMIP6 models
Evaluating trends and seasonality in modeled PM2.5 concentrations using empirical mode decomposition
Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US
Model bias in simulating major chemical components of PM2.5 in China
Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain
Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 2015–2017
Effects of global ship emissions on European air pollution levels
Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations
Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques
Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory
Improving regional air quality predictions in the Indo-Gangetic Plain-Case study of an intensive pollution episode in November 2017
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
Shipping emissions in the Iberian Peninsula and the impacts on air quality
The effect of biological particles and their ageing processes on aerosol radiative properties: Model sensitivity studies
Modelling of the public health costs of fine particulate matter and results for Finland in 2015
Global modelling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air quality forecasting and diagnose model deficiencies
Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations
Comparison of Chemical Lateral Boundary Conditions for Air Quality Predictions over the Contiguous United States during Intrusion Events
Trends and spatial shifts in lightning fires and smoke concentrations in response to 21st century climate over the national forests and parks of the western United States
Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
Recommendations on benchmarks for photochemical grid model applications in China: Part I – PM2.5 and chemical species
Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) under the shared socioeconomic pathways: the importance of explicit chemistry
The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions
Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III
Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 in the Arctic
Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China
Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014
Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data – Part 1: Formulation and sensitivity analysis
Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period
Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A
Modeling organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitivity to secondary organic compound properties and IVOC (intermediate-volatility organic compound) emissions
The acidity of atmospheric particles and clouds
Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models
Soccer games and record-breaking PM2.5 pollution events in Santiago, Chile
Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds
Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability
A predictive group-contribution model for the viscosity of aqueous organic aerosol
Local and remote mean and extreme temperature response to regional aerosol emissions reductions
How much does traffic contribute to benzene and polycyclic aromatic hydrocarbon air pollution? Results from a high-resolution North American air quality model centred on Toronto, Canada
Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission
An evaluation of global organic aerosol schemes using airborne observations
MICS-Asia III: overview of model intercomparison and evaluation of acid deposition over Asia
Trends and source apportionment of aerosols in Europe during 1980–2018
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Stylianos Kakavas, David Patoulias, Maria Zakoura, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, https://doi.org/10.5194/acp-21-799-2021, 2021
Short summary
Short summary
The dependence of aerosol acidity on particle size, location, and altitude over Europe during a summertime period is investigated. Differences of up to 1–4 pH units are predicted between sub- and supermicron particles in northern and southern Europe. Particles of all sizes become increasingly acidic with altitude (0.5–2.5 pH units decrease over 2.5 km). The size-dependent pH differences carry important implications for pH-sensitive processes in the aerosol.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021, https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Short summary
A lack of consistent observational constraints on the atmospheric evolution of the optical properties of biomass burning (BB) aerosol limits the accuracy of assessments of the aerosol radiative and climate effects. We show that useful insights into the evolution of the BB aerosol optical properties can be inferred from a combination of satellite observations and 3D modeling. We report major changes that occurred in the optical properties of Siberian BB aerosol during its long-range transport.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Huiying Luo, Marina Astitha, Christian Hogrefe, Rohit Mathur, and S. Trivikrama Rao
Atmos. Chem. Phys., 20, 13801–13815, https://doi.org/10.5194/acp-20-13801-2020, https://doi.org/10.5194/acp-20-13801-2020, 2020
Short summary
Short summary
A new method is introduced to evaluate nonlinear, nonstationary modeled PM2.5 time series by decomposing decadal PM2.5 concentrations and its species onto various timescales. It does not require preselection of temporal scales and assumptions of linearity and stationarity. It provides a unique opportunity to assess the influence of each species on total PM2.5. The results reveal a phase shift in modeled EC/OC concentrations, indicating the need for improved model treatment of organic aerosols.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Ruqian Miao, Qi Chen, Yan Zheng, Xi Cheng, Yele Sun, Paul I. Palmer, Manish Shrivastava, Jianping Guo, Qiang Zhang, Yuhan Liu, Zhaofeng Tan, Xuefei Ma, Shiyi Chen, Limin Zeng, Keding Lu, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 12265–12284, https://doi.org/10.5194/acp-20-12265-2020, https://doi.org/10.5194/acp-20-12265-2020, 2020
Short summary
Short summary
In this study we evaluated the model performances for simulating secondary inorganic aerosol (SIA) and organic aerosol (OA) in PM2.5 in China against comprehensive datasets. The potential biases from factors related to meteorology, emission, chemistry, and atmospheric removal are systematically investigated. This study provides a comprehensive understanding of modeling PM2.5, which is important for studies on the effectiveness of emission control strategies.
Wei Tao, Hang Su, Guangjie Zheng, Jiandong Wang, Chao Wei, Lixia Liu, Nan Ma, Meng Li, Qiang Zhang, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, https://doi.org/10.5194/acp-20-11729-2020, 2020
Short summary
Short summary
We simulated the thermodynamic and multiphase reactions in aerosol water during a wintertime haze event over the North China Plain. It was found that aerosol pH exhibited a strong spatiotemporal variability, and multiple oxidation pathways were predominant for particulate sulfate formation in different locations. Sensitivity tests further showed that ammonia, crustal particles, and dissolved transition metal ions were important factors for multiphase chemistry during haze episodes.
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Hyun Cheol Kim, Tianfeng Chai, Ariel Stein, and Shobha Kondragunta
Atmos. Chem. Phys., 20, 10259–10277, https://doi.org/10.5194/acp-20-10259-2020, https://doi.org/10.5194/acp-20-10259-2020, 2020
Short summary
Short summary
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires, that estimates wildfire emissions from the transport and dispersion of smoke plumes as measured by satellite observations. Using NOAA HYSPLIT and GOES Aerosol/Smoke Product (GASP), the system resolves smoke source strength as a function of time and vertical level and outperforms current operational system.
Satoru Chatani, Hikari Shimadera, Syuichi Itahashi, and Kazuyo Yamaji
Atmos. Chem. Phys., 20, 10311–10329, https://doi.org/10.5194/acp-20-10311-2020, https://doi.org/10.5194/acp-20-10311-2020, 2020
Short summary
Short summary
Source sensitivities and apportionments of PM2.5 and ozone concentrations over Japan for 2016 were evaluated using multiple numerical techniques including BFM, HDDM, and ISAM, embedded in regional chemical transport models. Influences of stringent emission controls recently implemented in Asian countries were reflected. Differences between sensitivities and apportionments greatly helped distinguish various direct and indirect effects of emission sources on PM2.5 and ozone concentrations.
Xiao Han, Lingyun Zhu, Mingxu Liu, Yu Song, and Meigen Zhang
Atmos. Chem. Phys., 20, 9979–9996, https://doi.org/10.5194/acp-20-9979-2020, https://doi.org/10.5194/acp-20-9979-2020, 2020
Short summary
Short summary
China is one of the largest agricultural countries in the world. Some of the major PM2.5 particles that cause the atmospheric haze and impact the climate change were converted from agricultural NH3 emission. This paper applied the numerical modeling system, coupled with a high-resolution agricultural NH3 emissions inventory, to investigate the contribution of agricultural NH3 to PM2.5 mass burden in China and obtained some interesting results.
Behrooz Roozitalab, Gregory R. Carmichael, and Sarath K. Guttikunda
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-744, https://doi.org/10.5194/acp-2020-744, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
We used air quality modeling to study an extreme pollution episode in November 2017 in India. We found both local and regional emissions contribute to high pollution levels. The extreme pollution values were the result of agricultural fires in the north west of India. Ozone concentrations were also high during this period. Ozone should be considered in future air quality management strategies.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Rafael A. O. Nunes, Maria C. M. Alvim-Ferraz, Fernando G. Martins, Fátima Calderay-Cayetano, Vanessa Durán-Grados, Juan Moreno-Gutiérrez, Jukka-Pekka Jalkanen, Hanna Hannuniemi, and Sofia I. V. Sousa
Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, https://doi.org/10.5194/acp-20-9473-2020, 2020
Short summary
Short summary
The central position of the Iberian Peninsula with ship traffic between the Americas, Africa, and Europe, combined with the known adverse effects of this sector on air quality, emphasises the relevance of a more detailed study of these impacts in this region. Results showed increased levels of SO2 and NO2 near port areas, as well as of O3, sulfate, PM2.5, and PM10 over the Iberian Peninsula coastline due to shipping emissions. To study mitigation measures, application is crucial.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-781, https://doi.org/10.5194/acp-2020-781, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Biological aerosol particles (BAP) represent a small fraction of total atmospheric aerosol burden. They attracted attention due to their role for climate and public health. Our study summarizes which BAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Jaakko Kukkonen, Mikko Savolahti, Yuliia Palamarchuk, Timo Lanki, Väinö Nurmi, Ville-Veikko Paunu, Leena Kangas, Mikhail Sofiev, Ari Karppinen, Androniki Maragkidou, Pekka Tiittanen, and Niko Karvosenoja
Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020, https://doi.org/10.5194/acp-20-9371-2020, 2020
Short summary
Short summary
We have developed a mathematical model that can be used to analyse the benefits that could be achieved by implementing alternative air quality abatement measures, policies or strategies. The model was applied to determine pollution sources in the whole of Finland in 2015. Clearly the most economically effective measures were the reduction in emissions from low-level sources in urban areas. Such sources include road transport, non-road vehicles and machinery, and residential wood combustion.
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-677, https://doi.org/10.5194/acp-2020-677, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Using the Community Earth System Model, we simulate the surface aerosols lifted to the Asian tropopause (the ATAL layer), its composition and trend, covering a long-term period (2000–2015). We identify a
double-peakaerosols vertical profile, that we attribute to
dryand
convectivecloud-borne aerosols. We find that natural aerosol (mineral dust) is the dominant aerosol type and has no long-term trend. ATAL's anthropogenic fraction, on the contrary, shows a marked positive trend.
Wei Sun, Zhiquan Liu, Dan Chen, Pusheng Zhao, and Min Chen
Atmos. Chem. Phys., 20, 9311–9329, https://doi.org/10.5194/acp-20-9311-2020, https://doi.org/10.5194/acp-20-9311-2020, 2020
Short summary
Short summary
A new aerosol and gas pollutant assimilation capability is developed within the WRFDA system with the 3D variational algorithm and MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol scheme. By assimilating surface PM2.5, PM10, SO2, NO2, O3, and CO, it improves 24 h air quality forecasting. Based on this system, model deficiencies are explored. Parameterization in the newly added inorganic aerosol heterogeneous reactions should be adjusted and verified by data assimilation.
Alexander Ukhov, Suleiman Mostamandi, Arlindo da Silva, Johannes Flemming, Yasser Alshehri, Illia Shevchenko, and Georgiy Stenchikov
Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020, https://doi.org/10.5194/acp-20-9281-2020, 2020
Short summary
Short summary
The data assimilation products MERRA2 and CAMS are tested over the Middle East (ME) against in situ and satellite observations. For the first time, we compared the new MODIS aerosol optical depth (AOD) retrieval, MAIAC, with the Deep Blue and Dark Target MODIS AOD. We conducted 2-year high-resolution WRF-Chem simulations with the most accurate OMI-HTAP SO2 emissions to estimate the contribution of natural and anthropogenic aerosols to the PM pollution in the ME.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jefferey McQueen, and Ivanka Stajner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-587, https://doi.org/10.5194/acp-2020-587, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The impact of chemical lateral boundary condition (CLBC) is essential for regional air quality prediction, especially during intrusion events. We developed the method of mapping GEOS chemical species to CMAQ CB05-Aero6. The CLBCs' influences depended on not only the distance from the inflow boundary, but also species and their regional characteristics. We also demonstrated a method using satellite retrieved aerosol optical thickness to derive new CLBC and achieve reasonable prediction.
Yang Li, Loretta J. Mickley, Pengfei Liu, and Jed O. Kaplan
Atmos. Chem. Phys., 20, 8827–8838, https://doi.org/10.5194/acp-20-8827-2020, https://doi.org/10.5194/acp-20-8827-2020, 2020
Short summary
Short summary
Using a coupled vegetation–fire–climate modeling framework, we show a northward shift in forests and increased lightning fire activity in northern US states, including Idaho, Montana, and Wyoming. Our findings suggest a large climate penalty on ecosystem, air quality, visibility, and human health in a region valued for its national forests and parks. The fine-scale smoke PM predictions provided in this study should prove useful to human health and environmental assessments.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Ling Huang, Yangjun Wang, Hehe Zhai, Shuhui Xue, Tianyi Zhu, Yun Shao, Ziyi Liu, Chris Emery, Joshua Fu, Kun Zhang, Greg Yarwood, and Li Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-237, https://doi.org/10.5194/acp-2020-237, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Photochemical grid models (PGMs) are being applied extensively to address diverse scientific and regulatory compliance associated with deteriorated air quality in China. For any PGM applications, model performance evaluation is a critical step that guarantees the robustness and reliability of the baseline modeling results and subsequent applications. We provided benchmarks for model performance evaluation of PGM applications in China to demonstrate model robustness.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-543, https://doi.org/10.5194/acp-2020-543, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX-SOA concentration changes. The explicit chemistry predicted substantial changes of IEPOX-SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physico-chemical dependencies in future SOA prediction.
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for 2012 with coupled regional and city-scale chemistry transport models. The results show that contributions of shipping to exposure and health impacts from particulate matter and NO2 are significant and that shipping-related exposure to PM is dominated by emissions from regional shipping outside the city domain and is larger than exposure related to emissions from local road traffic.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Yanhong Zhu, Andreas Tilgner, Erik Hans Hoffmann, Hartmut Herrmann, Kimitaka Kawamura, Lingxiao Yang, Likun Xue, and Wenxing Wang
Atmos. Chem. Phys., 20, 6725–6747, https://doi.org/10.5194/acp-20-6725-2020, https://doi.org/10.5194/acp-20-6725-2020, 2020
Short summary
Short summary
The formation and processing of secondary inorganic and organic compounds at Mt. Tai, the highest mountain on the North China Plain, are modeled using a multiphase chemical model. The concentrations of key radical and non-radical oxidations in the formation processes are investigated. Sensitivity tests assess the impacts of emission data and glyoxal partitioning constants on modeled results. The key precursors of secondary organic compounds are also identified.
Yi Wang, Jun Wang, Xiaoguang Xu, Daven K. Henze, Zhen Qu, and Kai Yang
Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020, https://doi.org/10.5194/acp-20-6631-2020, 2020
Short summary
Short summary
The use of OMPS satellite observations to inverse-model SO2 and NO2 emissions is presented through the GEOS-Chem adjoint modeling framework. The work is illustrated over China. The robustness of the results is studied through separate and joint inversions of SO2 and NO2 and the consideration of NH3 uncertainty. Independent validation is performed with OMI SO2 and NO2 data. It is shown that simultaneous inversion of NO2 and SO2 from OMPS provides an effective way to rapidly update emissions.
Soyoung Ha, Zhiquan Liu, Wei Sun, Yonghee Lee, and Limseok Chang
Atmos. Chem. Phys., 20, 6015–6036, https://doi.org/10.5194/acp-20-6015-2020, https://doi.org/10.5194/acp-20-6015-2020, 2020
Short summary
Short summary
This study examines the effect of aerosol optical depth (AOD) retrieved from the Korean Geostationary Ocean Color Imager (GOCI) sensors on surface PM2.5 forecasts using the online coupled WRF-Chem forecasting model and the GSI 3D-Var analysis system. During the KORUS-AQ campaign period, the assimilation of GOCI AOD retrieved at the 550 nm wavelength greatly improved air quality forecasting up to 24 h when assimilated with surface PM2.5 observations, particularly for heavy pollution events.
Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard Aumont, Marie Camredon, David Gurarie, Jose-Luis Jimenez, Donald H. Lenschow, Scot T. Martin, Janaina Nascimento, John J. Orlando, Brett B. Palm, John E. Shilling, Manish Shrivastava, and Sasha Madronich
Atmos. Chem. Phys., 20, 5995–6014, https://doi.org/10.5194/acp-20-5995-2020, https://doi.org/10.5194/acp-20-5995-2020, 2020
Short summary
Short summary
The GoAmazon 2014/5 field campaign took place near the city of Manaus, Brazil, isolated in the Amazon rainforest, to study the impacts of urban pollution on natural air masses. We simulated this campaign with an extremely detailed organic chemistry model to understand how the city would affect the growth and composition of natural aerosol particles. Discrepancies between the model and the measurements indicate that the chemistry of naturally emitted organic compounds is still poorly understood.
Victor Lannuque, Florian Couvidat, Marie Camredon, Bernard Aumont, and Bertrand Bessagnet
Atmos. Chem. Phys., 20, 4905–4931, https://doi.org/10.5194/acp-20-4905-2020, https://doi.org/10.5194/acp-20-4905-2020, 2020
Short summary
Short summary
Large uncertainties remain in modeling secondary organic aerosol (SOA) and evolution and properties in air quality models. In this article, the recently developed VBS-GECKO parameterization for SOA formation has been implemented in the air quality model CHIMERE. Simulations have been driven to identify the main SOA sources and to evaluate the sensitivity of simulated SOA concentrations to (i) secondary organic compound properties and (ii) emissions from traffic and transportation sources.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 20, 4681–4694, https://doi.org/10.5194/acp-20-4681-2020, https://doi.org/10.5194/acp-20-4681-2020, 2020
Short summary
Short summary
Based on measurements and modeling, this study shows that recent record-breaking peak events of fine particles in Santiago, Chile, can be traced back to massive barbecue cooking by its inhabitants during international soccer games. Decontamination plans in Santiago focus on decreasing emissions of pollutants from traffic, industry, and residential heating. This study implies that cultural habits such as barbecue cooking also need to be taken into account.
Quanyang Lu, Benjamin N. Murphy, Momei Qin, Peter J. Adams, Yunliang Zhao, Havala O. T. Pye, Christos Efstathiou, Chris Allen, and Allen L. Robinson
Atmos. Chem. Phys., 20, 4313–4332, https://doi.org/10.5194/acp-20-4313-2020, https://doi.org/10.5194/acp-20-4313-2020, 2020
Short summary
Short summary
This research work investigates organic aerosol formation in California during the CalNex study. We update the chemical transport model with the most recent mobile-source emission data and introduce a simple parameterization for secondary organic aerosol formed from intermediate-volatility organic compounds. Our results highlight the important contribution of IVOCs to SOA production in the Los Angeles region but underscore that other uncertainties must be addressed to close the SOA mass balance.
Athanasios Nenes, Spyros N. Pandis, Rodney J. Weber, and Armistead Russell
Atmos. Chem. Phys., 20, 3249–3258, https://doi.org/10.5194/acp-20-3249-2020, https://doi.org/10.5194/acp-20-3249-2020, 2020
Short summary
Short summary
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously ignored parameters that drive particulate matter formation in the atmosphere, and its sensitivity to emissions of ammonia and nitric acid. The simple framework presented is easily applied to ambient measurements or model output, and it provides the
chemical regimeof PM sensitivity to ammonia and nitric acid availability.
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Daniel M. Westervelt, Nora R. Mascioli, Arlene M. Fiore, Andrew J. Conley, Jean-François Lamarque, Drew T. Shindell, Greg Faluvegi, Michael Previdi, Gustavo Correa, and Larry W. Horowitz
Atmos. Chem. Phys., 20, 3009–3027, https://doi.org/10.5194/acp-20-3009-2020, https://doi.org/10.5194/acp-20-3009-2020, 2020
Short summary
Short summary
We use three Earth system models to estimate the impact of regional air pollutant emissions reductions on global and regional surface temperature. We find that removing human-caused air pollutant emissions from certain world regions (such as the USA) results in warming of up to 0.15 °C. We use our model output to calculate simple climate metrics that will allow for regional-scale climate impact estimates without the use of computationally demanding computer models.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Yang Yang, Sijia Lou, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 20, 2579–2590, https://doi.org/10.5194/acp-20-2579-2020, https://doi.org/10.5194/acp-20-2579-2020, 2020
Short summary
Short summary
Aerosol concentration decreased in Europe during 1980–2018, of which 7 % was induced by the changes in non-European emissions. Aerosols transported from other source regions are increasingly important to air quality in Europe. Contributions to the sulfate radiative forcing over Europe from both European and non-European emissions should decrease at a comparable rate in the next three decades. Future changes in non-European emissions are important in causing regional climate change in Europe.
Cited articles
Aksoyoglu, S., Keller, J., Barmpadimos, I., Oderbolz, D., Lanz, V. A., Prévôt, A. S. H., and Baltensperger, U.: Aerosol modelling in Europe with a focus on Switzerland during summer and winter episodes, Atmos. Chem. Phys., 11, 7355–7373, https://doi.org/10.5194/acp-11-7355-2011, 2011.
Ansari, A. S. and Pandis, S. N.: Response of inorganic PM2.5 to precursor concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998.
Argueso, D, Hidalgo-Munoz, J. M., Gamiz-Fortis, S. R., and Esteban-Parra, M. J.: Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization, J. Climate, 24, 5633–5651, 2011.
Berglen, T. F., Myhre, G., Isaksen, I. S. A., Vestreng, V., and Smith, S. J.: Sulphate trends in Europe: are we able to model the recently observed decrease?, Tellus, 59, 773–786, 2007.
Blanchard, C. L. and Stoeckenius, T.: Ozone response to precursor controls: Comparison of data analysis methods with the predictions of photochemical air quality simulation models, Atmos. Environ., 35, 1203–1215, 2001.
Blanchard, C. L., Tanenbaum, S., and Hidy, G. M.: Effects of sulfur dioxide and oxides of nitrogen emission reductions on fine particulate matter mass concentrations: Regional comparisons, J. Air Waste Manage., 57, 1337–1350, 2007.
Burtraw, D., Krupnick, A., Mansur, E., Austin, D., and Farell, D.: Costs and benefits of reducing air pollutants related to acid rain, Contemp. Econ. Policy, 16, 379–400, https://doi.org/10.1111/j.1465-7287.1998.tb00527.x, 2007.
Capaldo, K. P., Pilinis, C., and Pandis, S. N.: A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617–3627, 2000.
Carter, W. P. L.: Programs and Files Implementing the SAPRC-99 Mechanism and its Associates Emissions Processing Procedures for Models-3 and Other Regional Models: http://www.cert.ucr.edu/ carter/SAPRC99/, last access: March 2013.
Carvalho, A., Monteiro, A., Solman, S., Miranda, A. I., and Borrego, C.: Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal, Environ. Sci. Policy, 13, 445–458, 2010.
Chock, D. P., Chang, T. Y., Winkler, S. L., and Nance, B. I.: The impact of an 8h ozone air quality standard on ROG and NOx controls in Southern California, Atmos. Environ., 33, 2471–2485, 1999.
Constable, J. V. H., Guenther, A. B., Schimel, D. S., and Monson, R. K.: Modeling changes in VOC emissions in response to climate change in the continental United States, Global Change Biol., 5, 791–806, 1999.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Day, M. C. and Pandis, S. N.: Predicted changes in summertime organic aerosol concentrations due to increased temperature, Atmos. Environ., 45, 6546–6556, 2011.
Dall'Osto, M., Ceburnis, D., Martucci, G., Bialek, J., Dupuy, R., Jennings, S. G., Berresheim, H., Wenger, J., Healy, R., Facchini, M. C., Rinaldi, M., Giulianelli, L., Finessi, E., Worsnop, D., Ehn, M., Mikkilä, J., Kulmala, M., and O'Dowd, C. D.: Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview, Atmos. Chem. Phys., 10, 8413–8435, https://doi.org/10.5194/acp-10-8413-2010, 2010.
de Meij, A., Thunis, P., Bessagnet, B., and Cuvelier, C.: The sensitivity of the CHIMERE model to emissions reduction scenarios on air quality in Northern Italy, Atmos. Environ., 43, 1897–1907, 2009a.
de Meij, A., Gzella, A., Cuvelier, C., Thunis, P., Bessagnet, B., Vinuesa, J. F., Menut, L., and Kelder, H. M.: The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations, Atmos. Chem. Phys., 9, 6611–6632, https://doi.org/10.5194/acp-9-6611-2009, 2009b.
Denier van der Gon, H. A. C, Visschedijk, A., van der Brugh, H., and Droge, R.: A high resolution European emission data base for the year 2005, TNO report TNO-034-UT-2010-01895 RPT-ML, Utrecht, the Netherlands, 2010.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 2635–2643, 2006.
ENVIRON: User's Guide to the Comprehensive Air Quality Model with Extensions (CAMx), Version 4.02, Report, ENVIRON Int. Corp., Novato, Calif. Available at: http://www.camx.com, 2003.
Erisman, J. W., Grennfelt, P., and Sutton, M.: The European perspective on nitrogen emission and deposition, Environ. Int., 29, 311–325, 2003.
EUCAARI deliverable D42: D42 Pan – European Carbonaceous aerosol inventory, EUCAARI deliverable report, Netherlands, TNO Built Environment and Geosciences, 2009.
Fagerli, H. and Wenche, A.: Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980–2003, Environ. Pollut., 154, 448–461, 2008.
Fahey, K. and Pandis, S. N.: Optimizing model performance: variable size resolution in cloud chemistry modeling, Atmos. Environ., 35, 4471–4478, 2001.
Forkel, R. and Knoche, R.: Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional chemistry-climate model, J. Geophys. Res., 111, D12302, https://doi.org/10.1029/2005JD006748, 2006.
Forkel, R. and Knoche, R.: Nested regional climate–chemistry simulations for central Europe, C. R. Geosci., 339, 734–746, 2007.
Fountoukis, C., Racherla, P. N., Denier van der Gon, H. A. C., Polymeneas, P., Charalampidis, P. E., Pilinis, C., Wiedensohler, A., Dall'Osto, M., O'Dowd, C., and Pandis, S. N.: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331–10347, https://doi.org/10.5194/acp-11-10331-2011, 2011.
Freney, E. J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J. M., Colomb, A., Prévôt, A. S. H., and Laj, P.: Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France, Atmos. Chem. Phys., 11, 13047–13059, https://doi.org/10.5194/acp-11-13047-2011, 2011.
Ganor, E., Foner, H. A., Bingemer, H. G., Udisti, R., and Setter, I: Biogenic sulphate generation in the Mediterranean Sea and its contribution to the sulphate anomaly in the aerosol over Israel and the Eastern Mediterranean, Atmos. Environ., 36, 929–938, 2000.
Garcia-Diez, M., Fernandez, J., Fita, L., and Yague, C.: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe, Q. J. Roy. Meteor. Soc., 139, 501–514, https://doi.org/10.1002/qj.1976, 2012.
Gaydos, T., Koo, B., and Pandis, S. N.: Development and application of an efficient moving sectional approach for the solution of the atmospheric aerosol condensation/evaporation equations, Atmos. Environ., 37, 3303–3316, 2003.
Giorgi, F. and Meleux, F.: Modeling the regional effects of climate change on air quality, C. R. Geosci., 339, 721–733, 2007.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hamburger, T., McMeeking, G., Minikin, A., Birmili, W., Dall'Osto, M., O'Dowd, C., Flentje, H., Henzing, B., Junninen, H., Kristensson, A., de Leeuw, G., Stohl, A., Burkhart, J. F., Coe, H., Krejci, R., and Petzold, A.: Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign, Atmos. Chem. Phys., 11, 1065–1082, https://doi.org/10.5194/acp-11-1065-2011, 2011.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F., Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and Fung, I.: Predicted change in global secondary aerosol concentrations in response to future climate, emissions and land use change, J. Geophys. Res., 113, D05211, https://doi.org/10.1029/2007JD009092, 2008.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., and Geron, C.: Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US, Atmos. Environ., 40, 4150–4157, 2006.
Hildebrandt, L., Engelhart, G. J., Mohr, C., Kostenidou, E., Lanz, V. A., Bougiatioti, A., DeCarlo, P. F., Prevot, A. S. H., Baltensperger, U., Mihalopoulos, N., Donahue, N. M., and Pandis, S. N.: Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008, Atmos. Chem. Phys., 10, 4167–4186, https://doi.org/10.5194/acp-10-4167-2010, 2010a.
Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Worsnop, D. R., Donahue, N. M., and Pandis, S. N.: Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments, Geophys. Res. Lett., 37, L23801, https://doi.org/10.1029/2010GL045193, 2010b.
Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys., 10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010.
Im, U., Markakis, K., Unal, A., Kindap, T., Poupkou, A., Incecik, S., Yenigun, O., Melas, D., Theodosi, C., and Mihalopoulos, N.: Study of a winter PM episode in Istanbul using the high resolution WRF/CMAQ modeling system, Atmos. Environ., 44, 3085–3094, 2010.
Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report: Summary for Policymakers, 2007.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality, Atmos. Environ., 43, 51–63, 2009.
Jiang, W., Singleton, D. L., Hedley, M., and McLaren, R: Sensitivity of Ozone concentrations to VOC and NOx emissions in the Canadian lower Fraser Valley, Atmos. Environ., 31, 627–638, 1996.
Jimenez-Guerrero, P., Jorba, O., Baldasano, J. M., and Gasso, S.: The use of a modelling system as a tool for air quality management: Annual high-resolution simulations and evaluation, Sci. Total Environ., 390, 323–340, 2008.
Jonson, J. E., Sundet, J. K., and Tarrasón, L.: Model calculations of present and future levels of ozone and ozone precursors with a global and a regional model, Atmos. Environ., 35, 525–537, 2001.
Jonson, J. E., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem. Phys., 6, 51–66, https://doi.org/10.5194/acp-6-51-2006, 2006.
Karydis, V. A., Tsimpidi, A. P., Fountoukis, C., Nenes, A., Zavala, M., Lei, W., Molina, L. T., and Pandis, S. N.: Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity, Atmos. Environ., 44, 608–620, 2010.
Kleeman, M. J., Ying, Q., and Kaduwela, A.: Control strategies for the reduction of air borne particulate nitrate in California's San Joaquin Valley, Atmos. Environ., 39, 5325–5341, 2005.
Konovalov, I. B., Beekmann, M., Burrows, J. P., and Richter, A.: Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions, Atmos. Chem. Phys., 8, 2623–2641, https://doi.org/10.5194/acp-8-2623-2008, 2008.
Koo, B., Pandis, S. N., and Ansari, A.: Integrated approaches to modeling the organic and inorganic atmospheric aerosol components, Atmos. Environ., 37, 4757–4768, 2003.
Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L., Facchini, M. C., Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H. A. C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhart, J. F., Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R., Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T., Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J., Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X. J., Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J. Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J. P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D. R., van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen, V.-M., S Carslaw, K., and Pandis, S. N.: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13061–13143, https://doi.org/10.5194/acp-11-13061-2011, 2011.
Kumar, N., Lurmann, F. W., Wexler, A. S., Pandis, S., and Seinfeld, J. H.: Development and application of a three dimensional aerosol model. Presented at the AWMA Specialty Conference on Computing in Environmental Resource Management, Research Triangle Park, NC, 2–4 December, 1996.
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439–7451, 2008a.
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Effect of NOx on secondary organic aerosol concentrations, Environ. Sci. Technol., 42, 6022–6027, 2008b.
Langner, J., Bergström, R., and Foltescu, V.: Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe, Atmos. Environ., 39, 1129–1141, 2005.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.: Global air pollution crossroads over the Mediterranean, Science, 298, 794–799, 2002.
Lövblad, G., Tarrasón, L., Tørseth, K., and Dutchak, S.: EMEP Assessment Part I: European Perspective. Norwegian Meteorological Institute, P.O. Box 43, N-313 Oslo, Norway, 2004.
Makar, P. A., Moran, M. D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier, L.-P., and Bouchet, V. S.: Modelling the impacts of ammonia emissions reductions on North American air quality, Atmos. Chem. Phys., 9, 7183–7212, https://doi.org/10.5194/acp-9-7183-2009, 2009.
Meleux, F., Solmon, F., and Giorgi, F.: Increase in summer European ozone amounts due to climate change, Atmos. Environ., 41, 7577–7587, 2007.
Meng, Z., Dadub, D., and Seinfeld, J. H.: Chemical coupling between atmospheric ozone and particulate matter, Science, 277, 116–119, 1997.
Mensah, A. A., Holzinger, R., Otjes, R., Trimborn, A., Mentel, Th. F., ten Brink, H., Henzing, B., and Kiendler-Scharr, A.: Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009, Atmos. Chem. Phys., 12, 4723–4742, https://doi.org/10.5194/acp-12-4723-2012, 2012.
Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S., and Bousquet, P.: Tropospheric aerosol ionic composition in the Eastern Mediterranean region, Tellus B, 49, 314–326, 1997.
Morgan, W. T., Allan, J. D., Bower, K. N., Highwood, E. J., Liu, D., McMeeking, G. R., Northway, M. J., Williams, P. I., Krejci, R., and Coe, H.: Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction, Atmos. Chem. Phys., 10, 4065–4083, https://doi.org/10.5194/acp-10-4065-2010, 2010.
Mueller, S. F., Bailey, E. M., and Kelsoe, J. J: Geographic sensitivity of fine particle mass to emissions of SO2 and NOx, Environ. Sci. Technol., 38, 570–580, 2004.
Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model, Environ. Sci. Technol., 43, 4722–4728, 2009.
Murphy, B. N. and Pandis, S. N.: Exploring summertime organic aerosol formation in the eastern United States using a regiona-scale budget approach and ambient measurements, J. Geophys. Res., 115, D24216, https://doi.org/10.1029/2010JD014418, 2010.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.
Nguyen, K. and Dabdub, D.: NOx and VOC control and its effects on the formation of aerosols, Aerosol Sci. Tech., 36, 560–572, 2002.
Odman, M. T., Hu, Y., Russell, A. G., Hanedar, A., Boylan, J. W., and Brewer, P. F.: Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States, J. Environ. Manage., 90, 3155–3168, 2009.
O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and Facchini, M. C.: A Combined Organic-Inorganic Sea-Spray Source Function, Geophys. Res. Lett., 35, L01801, https://doi.org/10.1029/2007GL030331, 2008.
Ordóñez, C., Mathis, H., Furger, M., Henne, S., Hüglin, C., Staehelin, J., and Prévôt, A. S. H.: Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003, Atmos. Chem. Phys., 5, 1187–1203, https://doi.org/10.5194/acp-5-1187-2005, 2005.
Pandis, S. N. and Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94, 1105–1126, 1989.
Pandis, S. N., Wexler, A. S., and Seinfeld, J. H.: Secondary organic aerosol formation and transport. 2. Predicting the ambient secondary organic aerosol size distribution, Atmos. Environ., 27A, 2403–2416, 1993.
Pikridas, M., Bougiatioti, A., Hildebrandt, L., Engelhart, G. J., Kostenidou, E., Mohr, C., Prévôt, A. S. H., Kouvarakis, G., Zarmpas, P., Burkhart, J. F., Lee, B.-H., Psichoudaki, M., Mihalopoulos, N., Pilinis, C., Stohl, A., Baltensperger, U., Kulmala, M., and Pandis, S. N.: The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview, Atmos. Chem. Phys., 10, 6793–6806, https://doi.org/10.5194/acp-10-6793-2010, 2010.
Pilinis, C., Capaldo, K. P., Nenes, A., and Pandis, S. N.: MADM – a new multicomponent aerosol dynamics model, Aerosol Sci. Tech., 32, 482–502, 2000.
Pinder, R. W., Adams, P. J., and Pandis, S. N.: Ammonia emission controls as a costeffective strategy for reducing atmospheric particulate matter in the eastern United States, Environ. Sci. Technol., 41, 380–386, 2007.
Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11, 12579–12599, https://doi.org/10.5194/acp-11-12579-2011, 2011.
Pun, B. K. and Seigneur, C.: Sensitivity of particulate matter nitrate formation to precursor emissions in the California San Joaquin Valley, Environ. Sci. Technol., 35, 2979–2987, 2001.
Pun, B. K., Seigneur, C., Bailey, E. M., Gautney, L. L., Douglas, S. G., Haney, J. L., and Kumar, N.: Response of atmospheric particulate matter to changes in precursor emissions: a comparison of three air quality models, Environ. Sci. Technol., 42, 831–837, 2008.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosol: semivolatile emissions and photochemical aging, Science, 315, 1259–1262, 2007.
Russell, A. G., McRae, G. J., and Cass, G.: Verification of a mathematical model for aerosol nitrate and nitric acid formation and its use for control measure, Atmos. Environ., 20, 2001–2026, 1986.
Schaap, M., Roemer, M., Sauter, F., Boersen, G., Timmermans, R., and Builtjes, P. J. H.: LOTOS-EUROS Documentation, TNO report B{&}O 2005/297, TNO, Apeldoorn, the Netherlands, 2005.
Sciare, J., Bardouki, H., Moulin, C., and Mihalopoulos, N.: Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime, Atmos. Chem. Phys., 3, 291–302, https://doi.org/10.5194/acp-3-291-2003, 2003.
Sehmel, G. A.: Particle and gas deposition: A review, Atmos. Environ., 14, 983–1011, 1967.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change. 2nd ed.; John Wiley and Sons, Hoboken, NJ, 2006.
Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of gas-particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations, J. Geophys. Res., 113, D18301, https://doi.org/10.1029/2007JD009735, 2008.
Sillman, S., Vautard, R., Menut, L., and Kley, D.: O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris: Results from models and Atmospheric Pollution Over the Paris Area (ESQUIF) measurements, J. Geophys. Res., 108, 8563, https://doi.org/10.1029/2002JD001561, 2003.
Simpson, D.: Biogenic emissions in Europe 2. Implications for ozone control strategies, J. Geophys. Res., 100, 22891–22906, 1995.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2. NCAR Technical Note (http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf), 2005.
Slinn, S. A. and Slinn, W. G. N.: Predictions for particle deposition on natural waters, Atmos. Environ., 24, 1013–1016, 1980.
Sofiev, M., Vankevich, R., Lanne, M., Koskinen, J., and Kukkonen, J.: On integration of a Fire Assimilation System and a chemical transport model for near-real-time monitoring of the impact of wild-land fires on atmospheric composition and air quality, Modelling, Monitoring and Management of Forest Fires, WIT Trans. Ecol. Envir., 119, 343–351, 2008a.
Sofiev, M., Lanne, M., Vankevich, R., Prank, M., Karppinen, A., and Kukkonen, J.: Impact of wild-land fires on European air quality in 2006–2008, Modelling, Monitoring and Management of Forest Fires, WIT Trans. Ecol. Envir., 119, 353–361, 2008b.
Stanier, C. O., Donahue, N. M., and Pandis, S. N.: Parameterization of secondary organic aerosol mass fraction from smog chamber data, Atmos. Environ., 42, 2276–2299, 2008.
Stein, A. F. and Lamb, D.: The sensitivity of sulfur wet deposition to atmospheric oxidants, Atmos. Environ., 34, 1681–1690, 2000.
Stein, A. F. and Lamb, D.: Chemical indicators of sulfate sensitivity to nitrogen oxides and volatile organic compounds; J. Geophys. Res., 107, 4449, https://doi.org/10.1029/2001JD001088, 2002.
Stelson, A. W. and Seinfeld, J. H.: Thermodynamic prediction of the water activity, NH4NO3 dissociation constant, density and refractive index for the NH4NO3-(NH4)2SO4-H2O System at 25 °C, Atmos. Environ., 16, 2507–2514, 1986.
Stockwell, W. R. and Calvert, J. G.: The mechanism of the HO-SO2 reaction, Atmos. Environ., 17, 2231–2235, 1983.
Sutton, M. A., Asman, W. A. H., Ellermann, T., Van Jaarsveld, J. A., Acker, K., Aneja, V., Duyzer, J., Horvath, L., Paramonov, S., Mitosinkova, M., Tang, Y. S., Achermann, B., Gauger, T., Bartniki, J., Neftel, A., and Erisman, J. W.: Establishing the link between ammonia emission control and measurements of reduced nitrogen concentrations and deposition, Environ. Monit. Assess., 82, 149–185, 2003.
Szopa, S., Hauglustaine, D., Vautard, R., and Menut, L.: Evolution of the tropospheric composition in 2030: impact on European air quality, Geophys. Res. Lett. 33, L14805, https://doi.org/10.1029/2006GL025860, 2006.
Thunis, P., Rouil, L., Cuvelier, C., Stern, R., Kerschbaumer, A., Bessagnet, B., Schaap, M., Builtjes, P., Tarrasón, L., Douros, J., Moussiopoulos, N., Pirovano, G., and Bedogni, M.: Analysis of model responses to emission-reduction scenarios within the CityDelta project, Atmos. Environ., 41, 208–220, 2007.
Tonnesen, G. S.: Effects of uncertainty in the reaction of the hydroxyl radical with nitrogen dioxide on model-simulated ozone control strategies, Atmos. Environ., 33, 1587–1598, 1998.
Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of inorganic fine particulate matters to emission changes of SO2 and NH3: the Eastern United States as a case study, J. Air Waste Manage., 57, 1489–1498, 2007.
Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the Eastern United States, J. Air Waste Manage., 58, 1463–1473, 2008.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Bei, N., Molina, L., and Pandis, S. N.: Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements during MILAGRO, Atmos. Chem. Phys., 11, 5153–5168, https://doi.org/10.5194/acp-11-5153-2011, 2011.
Tuovinen, J.-P., Simpson, D., Mayerhofer, P., Lindfors, V., and Laurila, T.: Surface ozone exposures in Northern Europe in changing environmental conditions, in: A Changing Atmosphere: Proceedings of the Eighth European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, edited by: Hjorth, J., Raes, F., and Angeletti, G., European Commission, DG Research, Joint Research Centre, CD-ROM, Paper AP61, 6 pp., 2002.
Van Loon, M., Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, K., Graf, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L., and Wind, P.: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble average. Atmos. Environ., 41, 2083–2097, 2007.
Vautard, R., Szopa, S., Beekmann, M., Menut, L., Hauglustaine, D. A., Rouil, L., and Roemer, M.: Are decadal anthropogenic emission reductions in Europe consistent with surface ozone observations?, Geophys. Res. Lett., 33, L13810, https://doi.org/10.1029/2006GL026080, 2006.
Visschedijk, A. J. H., Zandveld, P., and Denier van der Gon, H. A. C.: TNO Report 2007 A-R0233/B: A high resolution gridded European emission database for the EU integrated project GEMS, Netherlands, Organization for Applied Scientific Research, 2007.
Wesely, M. L.: Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models, Atmos. Environ., 23, 1293–1304, 1989.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., De-Carlo, P., Salcedo, D., Onasch, T. B., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, N., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Weimer, S., Demerjian, K. L., Williams, P. I., Bower, K. N., Bahreini, R., Cottrell, L., Griffin, R. J., Rautianen, J., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
Altmetrics
Final-revised paper
Preprint