Articles | Volume 13, issue 21
https://doi.org/10.5194/acp-13-10907-2013
https://doi.org/10.5194/acp-13-10907-2013
Research article
 | 
07 Nov 2013
Research article |  | 07 Nov 2013

A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions

A. Chudnovsky, C. Tang, A. Lyapustin, Y. Wang, J. Schwartz, and P. Koutrakis

Related authors

Global Spatial Variation in the PM2.5 to AOD Relationship Strongly Influenced by Aerosol Composition
Haihui Zhu, Randall Martin, Aaron van Donkelaar, Melanie Hammer, Chi Li, Jun Meng, Christopher Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
EGUsphere, https://doi.org/10.5194/egusphere-2024-950,https://doi.org/10.5194/egusphere-2024-950, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023,https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
AnisoVeg: anisotropy and nadir-normalized MODIS multi-angle implementation atmospheric correction (MAIAC) datasets for satellite vegetation studies in South America
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023,https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022,https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022,https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024,https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024,https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Opinion: Aerosol remote sensing over the next 20 years
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024,https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024,https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Thermal infrared observations of a western United States biomass burning aerosol plume
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024,https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary

Cited articles

Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Barnaba, F., Putaud, J. P., Gruening, C., dell'Acqua, A., and Dos Santos, S.: Annual cycle in co-located in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): Implications for ground-level particulate matter mass concentration estimation from remote sensing, J. Geophys. Res., 115, D19209, https://doi.org/10.1029/2009JD013002, 2010.
Bell, M., Ebisu, K., and Peng, R.: Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research, J. Expo. Sci. Env. Epid., 21, 372–384, https://doi.org/10.1038/jes.2010.24, 2011.
Christopher, S. and Gupta, P.: Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem, J. Air Waste Manage., 60, 596–602, https://doi.org/10.3155/1047-3289.60.5.596, 2010.
Chudnovsky, A., Lee, H.-J., Kostinski, A., Kotlov, T., and Koutrakis, P.: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite, J. Air Waste Manage., 62, 1022–1031, https://doi.org/10.1080/10962247.2012.695321, 2012.
Download
Altmetrics
Final-revised paper
Preprint