Articles | Volume 10, issue 16
https://doi.org/10.5194/acp-10-7669-2010
https://doi.org/10.5194/acp-10-7669-2010
18 Aug 2010
 | 18 Aug 2010

Cloud albedo increase from carbonaceous aerosol

W. R. Leaitch, U. Lohmann, L. M. Russell, T. Garrett, N. C. Shantz, D. Toom-Sauntry, J. W. Strapp, K. L. Hayden, J. Marshall, M. Wolde, D. R. Worsnop, and J. T. Jayne

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Observability of moisture transport divergence in Arctic atmospheric rivers by dropsondes
Henning Dorff, Heike Konow, Vera Schemann, and Felix Ament
Atmos. Chem. Phys., 24, 8771–8795, https://doi.org/10.5194/acp-24-8771-2024,https://doi.org/10.5194/acp-24-8771-2024, 2024
Short summary
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024,https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Environmental controls on isolated convection during the Amazonian wet season
Leandro Alex Moreira Viscardi, Giuseppe Torri, David K. Adams, and Henrique de Melo Jorge Barbosa
Atmos. Chem. Phys., 24, 8529–8548, https://doi.org/10.5194/acp-24-8529-2024,https://doi.org/10.5194/acp-24-8529-2024, 2024
Short summary

Cited articles

Allan, J. D., Jimenez, J. L., Coe, H., Bower, K. N., Williams, P. I., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, J. Geophys. Res., 108, 4090–4100, 2003.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res., 112, D10S33, https://doi.org/10.1029/2006JD007581, 2007.
Bahadur, R., Habib, G., and Russell, L. M.: Climatology of PM2.5 Organic Carbon Concentrations from a Review of Ground-Based Atmospheric Measurements by Evolved Gas Analysis, Atmos. Environ. 43, 1591–1602, 2009.
Baumgardner, D., Strapp, J. W., and Dye, J. E.: Evolution of the forward scattering spectrometer probe, part II: Corrections for coincidence and dead time errors, J. Atmos. Oceanic Technol., 2, 626–632, 1985.
Buset, K. C., Evans, G. J., Leaitch, W. R., Brook, J. R., and Toom-Sauntry, D.: Use of Advanced Receptor Modeling for Analysis of an Intensive 5-Week Aerosol Sampling Campaign, Atmos. Environ., 40, 482–499, 2006.
Download
Altmetrics
Final-revised paper
Preprint