Articles | Volume 10, issue 16
https://doi.org/10.5194/acp-10-7669-2010
https://doi.org/10.5194/acp-10-7669-2010
18 Aug 2010
 | 18 Aug 2010

Cloud albedo increase from carbonaceous aerosol

W. R. Leaitch, U. Lohmann, L. M. Russell, T. Garrett, N. C. Shantz, D. Toom-Sauntry, J. W. Strapp, K. L. Hayden, J. Marshall, M. Wolde, D. R. Worsnop, and J. T. Jayne

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023,https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023,https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023,https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Examination of aerosol indirect effects during cirrus cloud evolution
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023,https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
In situ microphysics observations of intense pyroconvection from a large wildfire
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023,https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary

Cited articles

Allan, J. D., Jimenez, J. L., Coe, H., Bower, K. N., Williams, P. I., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, J. Geophys. Res., 108, 4090–4100, 2003.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res., 112, D10S33, https://doi.org/10.1029/2006JD007581, 2007.
Bahadur, R., Habib, G., and Russell, L. M.: Climatology of PM2.5 Organic Carbon Concentrations from a Review of Ground-Based Atmospheric Measurements by Evolved Gas Analysis, Atmos. Environ. 43, 1591–1602, 2009.
Baumgardner, D., Strapp, J. W., and Dye, J. E.: Evolution of the forward scattering spectrometer probe, part II: Corrections for coincidence and dead time errors, J. Atmos. Oceanic Technol., 2, 626–632, 1985.
Buset, K. C., Evans, G. J., Leaitch, W. R., Brook, J. R., and Toom-Sauntry, D.: Use of Advanced Receptor Modeling for Analysis of an Intensive 5-Week Aerosol Sampling Campaign, Atmos. Environ., 40, 482–499, 2006.
Download
Altmetrics
Final-revised paper
Preprint