Articles | Volume 9, issue 17
https://doi.org/10.5194/acp-9-6581-2009
https://doi.org/10.5194/acp-9-6581-2009
10 Sep 2009
 | 10 Sep 2009

Microphysical and optical properties of Arctic mixed-phase clouds. The 9 April 2007 case study.

J.-F. Gayet, G. Mioche, A. Dörnbrack, A. Ehrlich, A. Lampert, and M. Wendisch

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023,https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023,https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023,https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Examination of aerosol indirect effects during cirrus cloud evolution
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023,https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
In situ microphysics observations of intense pyroconvection from a large wildfire
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023,https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary

Cited articles

Baker, B. and Lawson, R. P.: Improvement in Determination of Ice Water Content from Two-Dimensional Particle Imagery, Part I: Image-to-Mass Relationships, J. Appl. Meteorol. Clim., 45, 1282–1290, 2006.
Baumgardner, D., Gayet, J.-F., Gerber, H., Korolev, A. V., and Twohy, C.: Clouds/Measurement Techniques In Situ, in: Encyclopedia of Atmospheric Sciences, edited by: Holton, J. R., Curry, J. A., and Pyle, J., Academic Press, London, 4000 pp., 2002.
Beesley, J. A., Bretherton, C. S., Jakob, C., Andreas, E. L., Intrieri, J. M., and Uttal, T. A.: A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp, J. Geophys. Res., 105, 12 337–12 349, 2000.
Boudala, F. S., Isaac, G. A., and Hudak, D.: Ice water content and precipitation rate as a function of equivalent radar reflectivity and temperature based on in situ observations, J. Geophys. Res., 111, 1–13, 2006.
Cho, H.-M., Yang, P., Kattawar, G. W., Nasiri, S. L., Hu, Y., Minnis, P., Trepte, C., and Winker, D.: Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16(6), 3931–3948, 2008.
Download
Altmetrics
Final-revised paper
Preprint