Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-1119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-1119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Joseph Seitz
Department of Geography, Environment and Spatial Sciences, Michigan State University, 673 Auditorium Rd. East Lansing, MI 48824, USA
Department of Geography, Environment and Spatial Sciences, Michigan State University, 673 Auditorium Rd. East Lansing, MI 48824, USA
Joseph J. Charney
USDA Forest Service, Northern Research Station, 2601 Coolidge Rd., Suite 203, East Lansing, MI 48910, USA
Warren E. Heilman
USDA Forest Service, Northern Research Station, 2601 Coolidge Rd., Suite 203, East Lansing, MI 48910, USA
Kenneth L. Clark
USDA Forest Service, Northern Research Station, Silas Little Experimental Forest, 501 Four Mile Road, New Lisbon, NJ 08064, USA
Xindi Bian
USDA Forest Service, Northern Research Station, 2601 Coolidge Rd., Suite 203, East Lansing, MI 48910, USA
Nicholas S. Skowronski
USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, WV 26505, USA
Michael R. Gallagher
USDA Forest Service, Northern Research Station, Silas Little Experimental Forest, 501 Four Mile Road, New Lisbon, NJ 08064, USA
Matthew Patterson
USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, WV 26505, USA
Jason Cole
USDA Forest Service, Northern Research Station, 5 Moon Library, 1 Forestry Dr., Syracuse, NY 13210, USA
Michael T. Kiefer
Department of Geography, Environment and Spatial Sciences, Michigan State University, 673 Auditorium Rd. East Lansing, MI 48824, USA
Rory Hadden
Civil and Environmental Engineering, The University of Edinburgh, Edinburgh, EH9 3FB, UK
Eric Mueller
National Institutes of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
Related authors
Michael Kiefer, Shiyuan Zhong, Joseph Charney, Xindi Bian, Warren Heilman, Joseph Seitz, Nicholas Skowronski, Kenneth Clark, Michael Gallagher, Matthew Patterson, Jason Cole, Eric Mueller, and Xiaolin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5863, https://doi.org/10.5194/egusphere-2025-5863, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce a new modeling system that simulates how wildfire and forest canopies interact. Using data from a prescribed burn in the New Jersey Pine Barrens, we show that the system can reproduce fire spread and the resulting atmospheric changes. Our results demonstrate that fully dynamic fire representation improves our ability to understand and predict fire behavior in complex forest environments.
Michael Kiefer, Shiyuan Zhong, Joseph Charney, Xindi Bian, Warren Heilman, Joseph Seitz, Nicholas Skowronski, Kenneth Clark, Michael Gallagher, Matthew Patterson, Jason Cole, Eric Mueller, and Xiaolin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5863, https://doi.org/10.5194/egusphere-2025-5863, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce a new modeling system that simulates how wildfire and forest canopies interact. Using data from a prescribed burn in the New Jersey Pine Barrens, we show that the system can reproduce fire spread and the resulting atmospheric changes. Our results demonstrate that fully dynamic fire representation improves our ability to understand and predict fire behavior in complex forest environments.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2436, https://doi.org/10.5194/egusphere-2023-2436, 2023
Preprint archived
Short summary
Short summary
In contrary to the current understanding, there can be a strong connection between ENSO and the South Atlantic Subtropical Dipole (SASD). It is highly probable that the robust inverse correlation between ENSO and SASD will persist in the future. The ENSO-SASD correlation exhibits substantial multi-decadal variability over the course of a century. The change in the ENSO-SASD relation can be linked to changes in ENSO regime and convective activities over the central South Pacific Ocean.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023, https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Short summary
Previous studies have noted a significant relationship between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices, but little is known about the stability of their relationship. We found a significant positive correlation between the two indices prior to the year 2000 but an insignificant correlation afterwards.
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, Xindi Bian, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, John L. Hom, and Matthew Patterson
Geosci. Model Dev., 15, 1713–1734, https://doi.org/10.5194/gmd-15-1713-2022, https://doi.org/10.5194/gmd-15-1713-2022, 2022
Short summary
Short summary
We examine methods used to represent wildland fire sensible heat release in atmospheric models. A set of simulations are evaluated using observations from a low-intensity prescribed fire in the New Jersey Pine Barrens. The comparison is motivated by the need for guidance regarding the representation of low-intensity fire sensible heating in atmospheric models. Such fires are prevalent during prescribed fire operations and can impact the health and safety of fire personnel and the public.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Cited articles
Amaya, M. A. and Clements C. B.: Evolution of plume core structures and turbulence during a wildland fire experiment, Atmosphere, 11, 842, https://doi.org/10.3390/atmos11080842, 2020.
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., and Baxter, R.: Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland, Ecol. Model., 216, 47–59, 2008.
Billmire, M., Frenc, N. H. F., Loboda, T., Owen, R. C., and Tyner, M.: Santa Ana winds and predictors of wildfire progression in southern California, Int. J. Wildland Fire, 23, 1119–1129, 2014.
Calviño-Cancela, M, Chas-Amil, M. L., García-Martínez, E. D., and Touza, J.: Interacting effects of topography, vegetation, human activities and wildland-urban interfaces on wildfire ignition risk, Forest Ecol. Manag., 397, 10–17, 2017.
Campbell-Lochrie, Z. L., Walker-Ravena, C., Gallagher, M. R., Skowronski, N. S., Mueller, E. V., and Hadden, R. M.: Investigation of the role of bulk properties and in-bed structure in the flow regime of buoyancy-dominated flame spread in porous fuel bed, Fire Safety J., 120, 103035, https://doi.org/10.1016/j.firesaf.2020.103035, 2021.
Campbell-Lochrie, Z. J., Hadden, R. M., Mueller, E. V., Walker-Ravena, C., Gallagher, M. R., Clark, K. L., Hom, J. L., Kremens, R. L., Cole, J. A., Patterson, M. M., Everland, A. I., and Skowronski, N. S.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – Transportable Analyzer for Calorimetry Outside (TACO), Forest Service Research Data Archive, Fort Collins, CO, https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0082 (last access: 23 January 2024), 2022.
Carrier, G. F., Fendell, F. E., and Wolff, M. F.: Wind-aided fire spread across arrays of discrete fuel elements. I. Theory, Combust. Sci. Technol., 75, 31–51, 1991.
Clark, K. L., Heilman, W. E., Skowronski, N. S., Gallagher, M. R., Mueller, E., Hadden, R. M., and Simeoni, A.: Fire behavior, fuel consumption, and turbulence and energy exchange during prescribed fires in pitch pine forests, Atmosphere, 11, 242, https://doi.org/10.3390/atmos11030242, 2020.
Clark, K. L., Gallagher, M. R., Mueller, E. V., Hadden, R. M., Walker-Ravena, C., Campbell-Lochrie, Z. J., Cole, J. A., Patterson, M. M., Everland, A. I., and Skowronski, N. S.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – three-dimensional wind and temperature, Forest Service Research Data Archive, Fort Collins, CO, https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0095 (last access: 23 January 2024), 2022a.
Clark, K. L., Gallagher, M. R., Mueller, E. V., Hadden, R. M., Walker-Ravena, C., Campbell-Lochrie, Z. J., Cole, J. A., Patterson, M. M., Everland, A. I., and Skowronski, N. S.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – temperature profile, Forest Service Research Data Archive, Fort Collins, CO, https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0083 (last access: 23 January 2024), 2022b.
Clark, T. L., Jenkins, M. A., Coen, J. L., and Packham, D. R.: A coupled atmosphere-fire model: Role of the convective Froude number and dynamic fingering at the fireline, Int. J. Wildland Fire, 6, 177–190, 1996.
Clements, C. B. and Seto, D.: Observations of fire-atmosphere interactions and near-surface heat transport on a slope, Bound.-Lay. Meteorol., 154, 409–426, 2015.
Clements, C. B., Zhong, S., Goodrick, S., Li, J., Potter, B. E., Bian, X., Heilman, W. E., Charney, J. J., Perna, R., Jang, M., and Lee, D.: Observing the dynamics of wildland grass fires: FireFlux—A field validation experiment, B. Am. Meteorol. Soc., 88, 1369–1382, 2007.
Clements, C. B., Zhong, S., Bian, X., Heilman, W. E., and Byun, D. W.: First observations of turbulence generated by grass fires, J. Geophys. Res., 113, D22102, https://doi.org/10.1029/2008JD010014, 2008.
Clements, C. B., Kochanski, A. K., Seto, D., Davis, B., Camacho, C., Lareau, N. P., Contezac, J., Restaino, J., Heilman, W. E., Krueger, S. K., Butler, B., Ottmar, R. D., Vihnanek, R., Flynn, J., Filippi, J. B., Barboni, T., Hall, D. E., Mandel, J., Jenkins, M. A., O'Brien, J., Hornsby, B., and Teske, C.: The FireFlux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread, Int. J. Wildland Fire, 28, 308–326, 2019.
Di Cristina, G., Gallagher, M., Skowronski, N., Simeoni, A., Rangwana, A., and Im, S.-K.: Design and implementation of a portable large-scale wind tunnel for wildfire research, Fire Safety J., 131, 103607, https://doi.org/10.1016/j.firesaf.2022.103607, 2022.
Ebel, B. A.: Simulated unsaturated flow processes after wildfire and interactions with slope aspect, Water Resour. Res., 49, 8090–8107, 2013.
Finney, M. A., Cohen, J. D., Forthofer, J. M., McAllister, S. S., Golner, M. J., Gorham, D. J., Saito, K., Akafuah, N. K., Adam, B. A., and English, J. D.: Role of buoyant flame dynamics in wildfire spread, P. Nat. Acad. Sci. USA, 112, 9833–9838, 2015.
Forthofer, J. M., and Goodrick, S. L.: Review of vortices in wildland fire, J. Combustion, 2011, 984363, https://doi.org/10.1155/2011/984363, 2011.
Gallagher, M. R., Skowronski, N. S., Hadden, R. M., Mueller, E. V., Clark, K. L., Campbell-Lochrie, Z. J., Walker-Ravena, C., Kremens, R. L., Everland, A. I., Patterson, M. M., Cole, J. A., Heilman, W. E., Charney, J. J., Bian, X., Mell, W. E., Hom, J. L., Im, S.-K., Kiefer, M. T., Zhong, S., Simeoni, A. J., Rangwala, A., and Di Cristina, G.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – plot layout and documentation, Forest Service Research Data Archive [data set], https://doi.org/10.2737/RDS-2022-0079, 2022.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Heilman, W. E.: Atmospheric turbulence in wildland fire environments: implications for fire behavior and smoke dispersion, Fire Manag. Today, 79, 24–29, 2021.
Heilman, W. E. and Bian, X.: Climate variability of near surface turbulent kinetic energy over the United States: Implications for fire weather prediction, J. Appl. Meteorol. Clim., 52, 753–772, 2013.
Heilman, W. E., Clements, C. B., Seto, D., Clark, K. L., Skowonski, N. S., and Hom, L. J.: Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: Implications for smoke dispersion, Atmos. Sci. Lett., 16, 453–460, 2015.
Heilman, W. E., Bian, X., Clark, K. L., Skowronski, N. S., Hom, J. L., and Gallagher, M. R.: Atmospheric turbulence observations in the vicinity of surface fires in forested environments, J. Appl. Meteorol. Clim., 56, 3133–3150, 2017.
Heilman, W. E., Bian, X., Clark, K. L., and Zhong, S.: Observations of turbulent heat and momentum fluxes during wildland fires in forested environments. J. Appl. Meteorol. Clim., 58, 813–829, 2019.
Heilman, W. E., Barnerjee, T., Clements, C. B., Clark, K. L., Zhong, S., and Bian X.: Observations of sweep-ejection dynamics for heat and momentum fluxes during wildland fires in forested and grassland environments, J. Appl. Meteorol. Clim., 60, 185–199, 2021.
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, 2007.
Katul, G., Kuhn, G., Schieldge, J., and Hsieh, C.-I.: The ejection sweep character of scalar fluxes in the unstable surface layer, Bound.-Lay. Meteorol., 83, 1–26, 1997.
Katul, G., Poggi, D., Cava, D., and Finnigan, J.: The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer, Bound.-Lay. Meteorol., 120, 367–375, 2006.
Kitzberger, T., Falk, D. A., Westerling, A. L., and Swetnam T. W.: Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America, PLOS ONE, 12, e0188486, https://doi.org/10.1371/journal.pone.0188486, 2017.
Kremens, R. L., Gallagher, M. R.; Clark, K. L., Mueller, E. V., Hadden, R. M., Heilman, W. E., Charney, J. J., Hom, J. L., Campbell-Lochrie, Z. J., Walker-Ravena, C., Everland, A. I., Cole, J. A., Patterson, M. M., Skowronski, N. S.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – fire radiative power, Forest Service Research Data Archive, Fort Collins, CO, 2022.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., and Luce, C. H.: A review of the relationships between drought and forest fire in the United States, Glob. Change Biol., 22, 2353–2369, 2016.
Mueller, E. V., Skowronski, N. S., Clark, K. L., Gallagher, M. R., Kremens, R. L., Thomas, J. C., El Houssami, M., Filkov, A., Hadden, R. M., Mell, W., and Simeoni, A.: Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands, Fire Safety J., 91, 845–854, https://doi.org/10.1016/j.firesaf.2017.03.076, 2017.
Potter, B. E.: Atmospheric properties associated with large wildfires, Int. J. Wildland Fire, 6, 71–76, 1996.
Potter, B. E.: Atmospheric interactions with wildland fire behavior – I: Basic surface interactions, vertical profiles and synoptic structures, Int. J. Wildland Fire, 21, 779–801, 2012.
Povak, N. A., Hessburg, P. F., and Salter, R. B.: Evidence for scale-dependent topographic controls on wildfire spread, Ecosphere, 9, e02443, https://doi.org/10.1002/ecs2.2443, 2018.
Reback, J., jbrockmendel, McKinney, W., Van den Bossche, J., Roeschke, M., Augspurger, T., Hawkins, S., Cloud, P., Young, G. F., Hoefler, P., Sinhrks, Klein, A., Petersen, T., Tratner, J., She, C., Ayd, W., Shadrach, R., Naveh, S., Garcia, M., …, and Li, T.: pandas-dev/pandas: Pandas 1.4.4 (v1.4.4), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7037953, 2022.
Seto, D. and Clements, C. B.: Fire whirl evolution observed during a valley wind-sea breeze reversal, J. Combustion, 2011, 569475, https://doi.org/10.1155/2011/569475, 2011.
Seto, D., Clements, C. B., and Heilman, W. E.: Turbulence spectra measured during fire front passage, Agr. Forest Meteorol., 169, 195–210, 2013.
Seto, D., Strand, T. M., Clements, C. B., Thistle, H., and Mickler, R.: Wind and plume thermodynamic structures during low-intensity subcanopy fires, Agr. Forest Meteorol., 198–199, 53–61, 2014.
Sharples, J. J.: An overview of mountain meteorological effects relevant to fire behavior and bushfire risk, Int. J. Wildland Fire, 18, 737–754, 2009.
Sharples, J. J., McRae, R. H. D., and Wilkes, S. R.: Wind–terrain effects on the propagation of wildfires in rugged terrain: Fire channeling, Int. J. Wildland Fire, 21, 282–296, 2012.
Skowronski, N. S.: Multi-scale analysis of wildland fire combustion processes in open canopy forests using coupled iteratively informed laboratory-, field- and mode-based approach, Final Technical Report, SERDP Project RC-2641, https://serdp-estcp.mil/projects/details/a4a4642d-f2be-4e52-b678-454fe06afbc2/rc-2641-project-overview (last access: 19 January 2024), 2021.
Skowronski, N. S., Charney, J. J., Clark, K. L., Gallagher, M. R., Hadden, R. M., Heilman, W. E., Hom, J. L., Kremens, R. L., Cole, J. A., Campbell-Lochrie, Z. J., Walker-Ravena, C., Mueller, E. V., Everland, A. I., Patterson, M. M.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – infrared data, Forest Service Research Data Archive, Fort Collins, CO, https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0076 (last access: 19 January 2024), 2022a.
Skowronski, N. S., Charney, J. J., Clark, K. L., Gallagher, M. R., Hadden, R. M., Heilman, W. E., Hom, J. L., Kremens, R. L., Cole, J. A., Campbell-Lochrie, Z. J., Walker-Ravena, C., Mueller, E. V., Everland, A. I., Patterson, M. M.: Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments – terrestrial laser scans, Forest Service Research Data Archive, Fort Collins, CO, https://www.fs.usda.gov/rds/archive/catalog/RDS-2022-0084 (last access: 19 January 2024), 2022b.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 1–670, ISBN 978-90-277-2769-5, 1988.
Viegas, D. X., and Neto, L. P.: Wall shear stress as a parameter to correlate the rate of spread of a wind-induced forest fire, Int. J. Wildland Fire, 1, 177–188, 1991.
Werth, P. A., Potter, B. E., Clements, C. B., Finney, M. A., Goodrick, S. L., Alexander, M. E., Cruz, M. G., Forthofer, J. A., and McAllister, S. S.: Synthesis of knowledge of extreme fire behavior: For fire managers, General Technical Report PNW-GTR-854, Vol. I, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 144, 2011.
Short summary
Atmospheric turbulence affects wildland fire behaviors and heat and smoke transfer. Turbulence data collected during an experimental fire on a 10 m x 10 m densely instrumented burn plot are analyzed, and the results reveal substantial heterogeneity in fire-induced turbulence characteristics across the small plot, which highlights the necessity for coupled atmosphere–fire behavior models to have 1–2 m grid spacing so that adequate simulations of fire behavior and smoke transfer can be achieved.
Atmospheric turbulence affects wildland fire behaviors and heat and smoke transfer. Turbulence...
Altmetrics
Final-revised paper
Preprint