Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-9365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the development of clouds within marine cold-air outbreaks
Rebecca J. Murray-Watson
CORRESPONDING AUTHOR
Space and Atmospheric Physics Group, Department of Physics, Imperial College London, London, SW7 2BX, UK
Edward Gryspeerdt
Space and Atmospheric Physics Group, Department of Physics, Imperial College London, London, SW7 2BX, UK
Tom Goren
Department of Geography and Environment, Bar-Ilan University, Ramat Gan 52900, Israel
Institute for Meteorology, Leipzig University, Stephanstr. 3, 04103 Leipzig, Germany
Related authors
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Anna Tippett, Paul R. Field, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3877, https://doi.org/10.5194/egusphere-2025-3877, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Clouds and their interactions with tiny particles in the air (aerosols) are a large source of uncertainty in climate models. To study Marine Cloud Brightening (MCB), we use ship tracks (changes to clouds from ship pollution). Comparing real ship track data with model results, we find the model struggles under rainy conditions and overestimates effects at high pollution levels, suggesting it needs improvement for reliable MCB simulations.
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2025-2737, https://doi.org/10.5194/egusphere-2025-2737, 2025
Short summary
Short summary
Contrails are ice clouds caused by planes. In humid (ice supersaturated) regions ice crystals are stable, and clouds persist. Contrails have a warming effect, so it is important to model them. However, weather model data is unable to represent ice supersaturated regions well enough. We demonstrate that ice supersaturation modelling is structured by North Atlantic storm systems. We link the bias to underling processes being modelled, and gain insight into how the existing data could be used.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025, https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary
Short summary
This work tracks the life cycle of thin cirrus clouds that flow out of tropical convective storms. These cirrus clouds are found to have a warming effect on the atmosphere over their whole lifetime. Thin cirrus that originate from land origin convection warm more than those of ocean origin. Moreover, if the lifetime of these cirrus clouds increase, the warming they exert over their whole lifetime also increases. These results help us understand how these clouds might change in a future climate.
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
Atmos. Chem. Phys., 25, 3841–3856, https://doi.org/10.5194/acp-25-3841-2025, https://doi.org/10.5194/acp-25-3841-2025, 2025
Short summary
Short summary
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth. Accurate global measurements of these particles are crucial for estimating this cooling effect. This study compares and harmonizes two newly developed global aerosol datasets, offering insights for their future use and refinement. We identify pristine oceans as a significant source of uncertainty in the datasets and, therefore, in quantifying the role of aerosols in Earth's climate.
Tom Goren, Goutam Choudhury, Jan Kretzschmar, and Isabel McCoy
Atmos. Chem. Phys., 25, 3413–3423, https://doi.org/10.5194/acp-25-3413-2025, https://doi.org/10.5194/acp-25-3413-2025, 2025
Short summary
Short summary
Many studies have identified an inverted-V relationship between the liquid water path (LWP) and droplet concentration (Nd), where LWP increases and then decreases with Nd. Using satellite observations and meteorological data, we demonstrate that the inverted V primarily reflects co-variability between LWP and Nd. We suggest taking a holistic approach that considers this co-variability when assessing the climatological sensitivity of LWP to anthropogenic aerosols.
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025, https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary
Short summary
Contrails (clouds caused by planes) play a large role in the climate warming caused by aviation. Satellites are a good tool to validate modelled impact estimates. Many contrails are either too narrow or too disperse to detect. This work shows that only around half of contrails are observable but that the most climatically important are easier to detect. It supports the use of satellites for contrail observation but highlights the need for observability considerations for specific applications.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025, https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
Short summary
The radiative forcing due to contrails is of the same order of magnitude as aviation CO2 emissions but has a higher uncertainty. Observations are vital to improve our understanding of the contrail lifecycle, improve models, and measure the effect of mitigation action. Here, we use ground-based cameras combined with flight telemetry to track visible contrails and measure their lifetime and width. We evaluate model predictions and demonstrate the capability of this approach.
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024, https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Short summary
Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research and that, when we account for this bias, the LWP response to aerosols is much weaker than previously reported.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023, https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Hailing Jia, Johannes Quaas, Edward Gryspeerdt, Christoph Böhm, and Odran Sourdeval
Atmos. Chem. Phys., 22, 7353–7372, https://doi.org/10.5194/acp-22-7353-2022, https://doi.org/10.5194/acp-22-7353-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Graham Feingold, Tom Goren, and Takanobu Yamaguchi
Atmos. Chem. Phys., 22, 3303–3319, https://doi.org/10.5194/acp-22-3303-2022, https://doi.org/10.5194/acp-22-3303-2022, 2022
Short summary
Short summary
The evaluation of radiative forcing associated with aerosol–cloud interactions remains a significant source of uncertainty in future climate projections. Using high-resolution numerical model output, we mimic typical satellite retrieval methodologies to show that data aggregation can introduce significant error (hundreds of percent) in the cloud albedo susceptibility metric. Spatial aggregation errors tend to be countered by temporal aggregation errors.
Jianhao Zhang, Xiaoli Zhou, Tom Goren, and Graham Feingold
Atmos. Chem. Phys., 22, 861–880, https://doi.org/10.5194/acp-22-861-2022, https://doi.org/10.5194/acp-22-861-2022, 2022
Short summary
Short summary
Oceanic liquid-form clouds are effective sunlight reflectors. Their brightness is highly sensitive to changes in the amount of aerosol particles in the atmosphere and the state of the atmosphere they reside in. This study quantifies this sensitivity using long-term satellite observations and finds an overall cloud brightening (a cooling effect) potential and an essential role of the covarying meteorological conditions in governing this sensitivity for northeastern Pacific stratocumulus.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Short summary
Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state. This temporal development should be considered when constraining aerosol–cloud interactions with observations.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Abel, S. J., Boutle, I. A., Waite, K., Fox, S., Brown, P. R. A., Cotton, R.,
Lloyd, G., Choularton, T. W., and Bower, K. N.: The Role of Precipitation
in Controlling the Transition from Stratocumulus to Cumulus Clouds
in a Northern Hemisphere Cold-Air Outbreak, J.
Atmos. Sci., 74, 2293–2314, https://doi.org/10.1175/JAS-D-16-0362.1, 2017. a, b, c, d, e, f, g, h, i, j, k
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Bender, F. A.-M., Charlson, R. J., Ekman, A. M. L., and Leahy, L. V.:
Quantification of Monthly Mean Regional-Scale Albedo of Marine Stratiform
Clouds in Satellite Observations and GCMs, J. Appl. Meteorol.
Climatol., 50, 2139–2148, https://doi.org/10.1175/JAMC-D-11-049.1, 2011. a
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number
concentration from satellite, J. Geophys. Res.-Atmos.,
112, D02201, https://doi.org/10.1029/2006JD007547, 2007. a
Bigg, E. K. and Leck, C.: Cloud-active particles over the central Arctic Ocean,
J. Geophys. Res.-Atmos., 106, 32155–32166,
https://doi.org/10.1029/1999JD901152, 2001. a
Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V., and Ringer, M. A.: Cloud
liquid water path and radiative feedbacks over the Southern Ocean,
Geophys. Res. Lett., 43, 10938–10946,
https://doi.org/10.1002/2016GL070770, 2016. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in:
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., 571–657, Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Brenguier, J.-L., Pawlowska, H., Schüller, L., Preusker, R., Fischer, J., and
Fouquart, Y.: Radiative Properties of Boundary Layer Clouds: Droplet
Effective Radius versus Number Concentration, J. Atmos.
Sci., 57, 803–821,
https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2, 2000. a
Bretherton, C. S. and Wyant, M. C.: Moisture Transport, Lower-Tropospheric
Stability, and Decoupling of Cloud-Topped Boundary Layers, J.
Atmos. Sci., 54, 148–167,
https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2, 1997. a
Brümmer, B.: Boundary-layer modification in wintertime cold-air outbreaks
from the Arctic sea ice, Bound.-Lay. Meteorol., 80, 109–125,
https://doi.org/10.1007/BF00119014, 1996. a
Brümmer, B.: Roll and Cell Convection in Wintertime Arctic Cold-Air Outbreaks,
J. Atmos. Sci., 56, 2613–2636,
https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2, 1999. a
Bühl, J., Ansmann, A., Seifert, P., Baars, H., and Engelmann, R.: Toward a
quantitative characterization of heterogeneous ice formation with
lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations,
Geophys. Res. Lett., 40, 4404–4408,
https://doi.org/10.1002/grl.50792, 2013. a
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and
Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud
classification and its comparison to airborne radar-lidar observations,
J. Geophys. Res.-Atmos., 118, 7962–7981,
https://doi.org/10.1002/jgrd.50579, 2013. a
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.:
Ubiquitous low-level liquid-containing Arctic clouds: New observations and
climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett.,
39, L20804, https://doi.org/10.1029/2012GL053385, 2012. a
Cesana, G. V., Khadir, T., Chepfer, H., and Chiriaco, M.: Southern Ocean Solar
Reflection Biases in CMIP6 Models Linked to Cloud Phase and Vertical
Structure Representations, Geophys. Res. Lett., 49, e2022GL099777,
https://doi.org/10.1029/2022GL099777, 2022. a
Chan, M. A. and Comiso, J. C.: Arctic Cloud Characteristics as Derived from
MODIS, CALIPSO, and CloudSat, J. Clim., 26, 3285–3306,
https://doi.org/10.1175/JCLI-D-12-00204.1, 2013. a
Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D.,
Fieldsend, J., De Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick,
S., Grosvenor, D., Field, P., and Lohmann, U.: Machine learning reveals
climate forcing from aerosols is dominated by increased cloud cover, Nat.
Geosci., 15, 609–614, https://doi.org/10.1038/s41561-022-00991-6, 2022. a
Chen, Y.-C., Christensen, M., Stephens, G., and Seinfeld, J.: Satellite-based
estimate of global aerosol–cloud radiative forcing by marine warm clouds,
Nat. Geosci., 7, 643–646,
https://doi.org/10.1038/ngeo2214, 2014. a
Choi, Y.-S., Kim, B.-M., Hur, S.-K., Kim, S.-J., Kim, J.-H., and Ho, C.-H.:
Connecting early summer cloud-controlled sunlight and late summer sea ice in
the Arctic, J. Geophys. Res.-Atmos., 119,
11087–11099, https://doi.org/10.1002/2014JD022013, 2014. a
Christensen, M. W., Jones, W. K., and Stier, P.: Aerosols enhance cloud
lifetime and brightness along the stratus-to-cumulus transition, P. Natl. Acad. Sci. USA, 117,
17591–17598, https://doi.org/10.1073/pnas.1921231117, 2020. a, b, c
Creamean, J. M., Barry, K., Hill, T. C. J., Hume, C., DeMott, P. J., Shupe,
M. D., Dahlke, S., Willmes, S., Schmale, J., Beck, I., Hoppe, C. J. M., Fong,
A., Chamberlain, E., Bowman, J., Scharien, R., and Persson, O.: Annual cycle
observations of aerosols capable of ice formation in central Arctic clouds,
Nat. Commun., 13, 3537, https://doi.org/10.1038/s41467-022-31182-x, 2022. a
Curry, J. A. and Ebert, E. E.: Annual Cycle of Radiation Fluxes over the Arctic
Ocean: Sensitivity to Cloud Optical Properties, J. Clim., 5, 1267–1280, https://doi.org/10.1175/1520-0442(1992)005<1267:ACORFO>2.0.CO;2, 1992. a
Dadashazar, H., Painemal, D., Alipanah, M., Brunke, M., Chellappan, S., Corral,
A. F., Crosbie, E., Kirschler, S., Liu, H., Moore, R. H., Robinson, C.,
Scarino, A. J., Shook, M., Sinclair, K., Thornhill, K. L., Voigt, C., Wang,
H., Winstead, E., Zeng, X., Ziemba, L., Zuidema, P., and Sorooshian, A.:
Cloud drop number concentrations over the western North Atlantic Ocean:
seasonal cycle, aerosol interrelationships, and other influential factors,
Atmos. Chem. Phys., 21, 10499–10526,
https://doi.org/10.5194/acp-21-10499-2021, 2021. a
de Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic Mixed-Phase Stratiform
Cloud Properties from Multiple Years of Surface-Based Measurements at Two
High-Latitude Locations, J. Atmos. Sci., 66, 2874–2887, https://doi.org/10.1175/2009JAS3029.1, 2009. a
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of
the properties of ice clouds, J. Geophys. Res.-Atmos.,
115,
D00H29,
https://doi.org/10.1029/2009JD012346, 2010. a
DiGirolamo, N., Parkinson, C. L., D. J. Cavalieri, P. G., and Zwally., H. J.:
Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive
Microwave Data, Version 2, https://doi.org/10.5067/MPYG15WAA4WX, 2022. a, b
Engström, A. and Ekman, A. M. L.: Impact of meteorological factors on the
correlation between aerosol optical depth and cloud fraction, Geophys. Res. Lett., 37, L18814, https://doi.org/10.1029/2010GL044361, 2010. a
Field, P. R., Cotton, R. J., McBeath, K., Lock, A. P., Webster, S., and Allan,
R. P.: Improving a convection-permitting model simulation of a cold air
outbreak, Q. J. Roy. Meteor. Soc., 140,
124–138, https://doi.org/10.1002/qj.2116, 2014. a
Field, P. R., Broz̆ková, R., Chen, M., Dudhia, J., Lac, C., Hara, T.,
Honnert, R., Olson, J., Siebesma, P., de Roode, S., Tomassini, L., Hill, A.,
and McTaggart-Cowan, R.: Exploring the convective grey zone with regional
simulations of a cold air outbreak, Q. J. Roy.
Meteor. Soc., 143, 2537–2555,
https://doi.org/10.1002/qj.3105, 2017. a
Geerts, B., Giangrande, S. E., McFarquhar, G. M., Xue, L., Abel, S. J.,
Comstock, J. M., Crewell, S., DeMott, P. J., Ebell, K., Field, P., Hill, T.
C. J., Hunzinger, A., Jensen, M. P., Johnson, K. L., Juliano, T. W., Kollias,
P., Kosovic, B., Lackner, C., Luke, E., Lüpkes, C., Matthews, A. A.,
Neggers, R., Ovchinnikov, M., Powers, H., Shupe, M. D., Spengler, T.,
Swanson, B. E., Tjernström, M., Theisen, A. K., Wales, N. A., Wang, Y.,
Wendisch, M., and Wu, P.: The COMBLE campaign: a study of marine
boundary-layer clouds in Arctic cold-air outbreaks, Bull.
Am. Meteorol. Soc., 1, E1371–E1389, https://doi.org/10.1175/BAMS-D-21-0044.1, 2022. a
Goren, T., Kazil, J., Hoffmann, F., Yamaguchi, T., and Feingold, G.:
Anthropogenic Air Pollution Delays Marine Stratocumulus Breakup to Open
Cells, Geophys. Res. Lett., 46, 14135–14144,
https://doi.org/10.1029/2019GL085412, 2019. a, b
Goren, T., Feingold, G., Gryspeerdt, E., Kazil, J., Kretzschmar, J., Jia, H.,
and Quaas, J.: Projecting Stratocumulus Transitions on the Albedo – Cloud
Fraction Relationship Reveals Linearity of Albedo to Droplet Concentrations,
Geophys. Res. Lett., 49, e2022GL101169,
https://doi.org/10.1029/2022GL101169, 2022. a
Grosvenor, D. P. and Wood, R.: The effect of solar zenith angle on MODIS cloud
optical and microphysical retrievals within marine liquid water clouds,
Atmos. Chem. Phys., 14, 7291–7321,
https://doi.org/10.5194/acp-14-7291-2014, 2014. a, b, c, d
Gryspeerdt, E., Stier, P., and Partridge, D. G.: Satellite observations of
cloud regime development: the role of aerosol processes, Atmos.
Chem. Phys., 14, 1141–1158, https://doi.org/10.5194/acp-14-1141-2014, 2014. a, b
Gryspeerdt, E., Quaas, J., and Bellouin, N.: Constraining the aerosol influence
on cloud fraction, J. Geophys. Res.-Atmos., 121,
3566–3583, https://doi.org/10.1002/2015JD023744, 2016. a, b
Gryspeerdt, E., Goren, T., Sourdeval, O., Quaas, J., Mülmenstädt, J., Dipu,
S., Unglaub, C., Gettelman, A., and Christensen, M.: Constraining the aerosol
influence on cloud liquid water path, Atmos. Chem. Phys., 19,
5331–5347, https://doi.org/10.5194/acp-19-5331-2019, 2019a. a
Gryspeerdt, E., Smith, T. W. P., O'Keeffe, E., Christensen, M. W., and
Goldsworth, F. W.: The Impact of Ship Emission Controls Recorded by Cloud
Properties, Geophys. Res. Lett., 46, 12547–12555,
https://doi.org/10.1029/2019GL084700, 2019b. a
Gryspeerdt, E., Goren, T., and Smith, T. W. P.: Observing the timescales of
aerosol–cloud interactions in snapshot satellite images, Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, 2021. a
Hartmann, J., Kottmeier, C., and Raasch, S.: Roll Vortices and Boundary-Layer
Development during a Cold Air Outbreak, Bound.-Lay. Meteorol., 84,
45–65, https://doi.org/10.1023/A:1000392931768, 1997. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Horner, G. A. and Gryspeerdt, E.: The evolution of deep convective systems and their associated cirrus outflows, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-755, in review, 2022. a
Huang, Y., Dong, X., Xi, B., Dolinar, E. K., and Stanfield, R. E.: The
footprints of 16 year trends of Arctic springtime cloud and radiation
properties on September sea ice retreat, J. Geophys. Res.-Atmos., 122, 2179–2193, https://doi.org/10.1002/2016JD026020,
2017. a
Huang, Y., Taylor, P. C., Rose, F. G., Rutan, D. A., Shupe, M. D., Webster,
M. A., and Smith, M. M.: Toward a more realistic representation of surface
albedo in NASA CERES-derived surface radiative fluxes: A comparison with the
MOSAiC field campaign: Comparison of CERES and MOSAiC surface radiation
fluxes, Elementa, 10, 1,
https://doi.org/10.1525/elementa.2022.00013, 00013, 2022. a
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A.,
Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J.,
Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch,
V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS
reanalysis of atmospheric composition, Atmos. Chem. Phys., 19,
3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019. a, b
Jing, X. and Suzuki, K.: The Impact of Process-Based Warm Rain Constraints on
the Aerosol Indirect Effect, Geophys. Res. Lett., 45,
10729–10737, https://doi.org/10.1029/2018GL079956, 2018. a
Karalis, M., Sotiropoulou, G., Abel, S. J., Bossioli, E., Georgakaki, P.,
Methymaki, G., Nenes, A., and Tombrou, M.: Effects of secondary ice processes
on a stratocumulus to cumulus transition during a cold-air outbreak,
Atmos. Res., 277, 106302,
https://doi.org/10.1016/j.atmosres.2022.106302, 2022. a
Kato, S. and Marshak, A.: Solar zenith and viewing geometry-dependent errors in
satellite retrieved cloud optical thickness: Marine stratocumulus case,
J. Geophys. Res.-Atmos., 114, 4501–4527,
https://doi.org/10.1029/2008JD010579, 2009. a
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances
of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) Data Product, J. Clim., 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1, 2018. a
Kay, J., L'Ecuyer, T., Chepfer, H., Loeb, N., Morrison, A., and Cesana, G.:
Recent Advances in Arctic Cloud and Climate Research, Curr. Clim. Change
Rep., 2, 159–169, https://doi.org/10.1007/s40641-016-0051-9, 2016. a
Khanal, S. and Wang, Z.: Uncertainties in MODIS-Based Cloud Liquid Water Path
Retrievals at High Latitudes Due to Mixed-Phase Clouds and Cloud Top Height
Inhomogeneity, J. Geophys. Res.-Atmos., 123,
11154–11172, https://doi.org/10.1029/2018JD028558, 2018. a
Klein, S. A. and Hartmann, D. L.: The Seasonal Cycle of Low Stratiform Clouds,
J. Clim., 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993. a
Kolstad, E. W.: Higher ocean wind speeds during marine cold air outbreaks,
Q. J. Roy. Meteor. Soc., 143, 2084–2092,
https://doi.org/10.1002/qj.3068, 2017. a
Kolstad, E. W. and Bracegirdle, T. J.: Marine cold-air outbreaks in the future:
an assessment of IPCC AR4 model results for the Northern Hemisphere,
Clim. Dynam., 30, 871–885, https://doi.org/10.1007/s00382-007-0331-0, 2008. a, b, c, d
Landgren, O. A., Seierstad, I. A., and Iversen, T.: Projected future changes in
Marine Cold-Air Outbreaks associated with Polar Lows in the Northern
North-Atlantic Ocean, Clim. Dynam., 53, 2573–2585,
https://doi.org/10.1007/s00382-019-04642-2, 2019. a
Leck, C. and Persson, C.: The central Arctic Ocean as a source of dimethyl
sulfide Seasonal variability in relation to biological activity, Tellus B, 48, 156–177,
https://doi.org/10.3402/tellusb.v48i2.15834, 1996. a
Lloyd, G., Choularton, T. W., Bower, K. N., Gallagher, M. W., Crosier, J.,
O'Shea, S., Abel, S. J., Fox, S., Cotton, R., and Boutle, I. A.: In situ
measurements of cloud microphysical and aerosol properties during the
break-up of stratocumulus cloud layers in cold air outbreaks over the North
Atlantic, Atmos. Chem. Phys., 18, 17191–17206,
https://doi.org/10.5194/acp-18-17191-2018, 2018. a, b, c, d, e, f
Loeb, N. G., Wielicki, B. A., Rose, F. G., and Doelling, D. R.: Variability in
global top-of-atmosphere shortwave radiation between 2000 and 2005,
Geophys. Res. Lett., 34, L03704, https://doi.org/10.1029/2006GL028196,
2007. a, b
Maahn, M., Goren, T., Shupe, M. D., and de Boer, G.: Liquid Containing Clouds
at the North Slope of Alaska Demonstrate Sensitivity to Local Industrial
Aerosol Emissions, Geophys. Res. Lett., 48, e2021GL094307,
https://doi.org/10.1029/2021GL094307, 2021. a
Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.: MODIS
Collection 6 shortwave-derived cloud phase classification algorithm and
comparisons with CALIOP, Atmos. Meas. Tech., 9, 1587–1599,
https://doi.org/10.5194/amt-9-1587-2016, 2016. a
McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying Meteorological
Controls on Open and Closed Mesoscale Cellular Convection Associated with
Marine Cold Air Outbreaks, J. Geophys. Res.-Atmos., 122,
11678–11702, https://doi.org/10.1002/2017JD027031, 2017. a, b
McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D.,
Grosvenor, D. P., Mulcahy, J. P., Hu, Y., Bender, F. A.-M., Field, P. R.,
Carslaw, K. S., and Gordon, H.: The hemispheric contrast in cloud
microphysical properties constrains aerosol forcing, P.
Natl. Acad. Sci. USA, 117, 18998–19006,
https://doi.org/10.1073/pnas.1922502117, 2020. a
Michibata, T., Suzuki, K., Sato, Y., and Takemura, T.: The source of
discrepancies in aerosol–cloud–precipitation interactions between GCM and
A-Train retrievals, Atmos. Chem. Phys., 16, 15413–15424,
https://doi.org/10.5194/acp-16-15413-2016, 2016. a
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332, 2012. a
Murray-Watson, R. J. and Gryspeerdt, E.: Stability-dependent increases in
liquid water with droplet number in the Arctic, Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, 2022. a, b, c
NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface
Fluxes, Clouds and Aerosols 1-Hourly Terra-Aqua Edition4A,
https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A,
2017. a, b
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116, D24206,
https://doi.org/10.1029/2011JD016155, 2011. a, b
Papritz, L. and Spengler, T.: A Lagrangian Climatology of Wintertime Cold Air
Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air–Sea
Heat Fluxes, J. Clim., 30, 2717–2737,
https://doi.org/10.1175/JCLI-D-16-0605.1, 2017. a
Pawlowska, H. and Brenguier, J.-L.: An observational study of drizzle formation
in stratocumulus clouds for general circulation model (GCM)
parameterizations, J. Geophys. Res.-Atmos., 108, 8630,
https://doi.org/10.1029/2002JD002679, 2003. a
Peters, G. P., Nilssen, T. B., Lindholt, L., Eide, M. S., Glomsrød, S.,
Eide, L. I., and Fuglestvedt, J. S.: Future emissions from shipping and
petroleum activities in the Arctic, Atmos. Chem. Phys., 11,
5305–5320, https://doi.org/10.5194/acp-11-5305-2011, 2011. a
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A.
M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and Wendisch,
M.: Role of air-mass transformations in exchange between the Arctic and
mid-latitudes, Nat. Geosci., 11, 805–812, https://doi.org/10.1038/s41561-018-0234-1, 2018. a, b
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum,
B. A., Riedi, J. C., and Frey, R. A.: The MODIS cloud products:
algorithms and examples from Terra, IEEE Trans. Geosci.
Remote Sens., 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301, 2003. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE Trans.
Geosci. Remote Sens., 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b
Quaas, J., Boucher, O., and Lohmann, U.: Constraining the total aerosol
indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data,
Atmos. Chem. Phys., 6, 947–955, https://doi.org/10.5194/acp-6-947-2006,
2006. a, b
Riihelä, A., Key, J. R.., Meirink, J. F., Kuipers Munneke, P., Palo, T., and Karlsson, K.-G.: An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic, J. Geophys. Res.-Atmos., 122, 4829–4848, https://doi.org/10.1002/2016JD026443, 2017. a
Rosenfeld, D. and Gutman, G.: Retrieving microphysical properties near the tops
of potential rain clouds by multispectral analysis of AVHRR data, Atmos.
Res., 34, 259–283, https://doi.org/10.1016/0169-8095(94)90096-5, 1994. a
Ruiz-Donoso, E., Ehrlich, A., Schäfer, M., Jäkel, E., Schemann, V.,
Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and
Wendisch, M.: Small-scale structure of thermodynamic phase in Arctic
mixed-phase clouds observed by airborne remote sensing during a cold air
outbreak and a warm air advection event, Atmos. Chem. Phys.,
20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020, 2020. a
Sanchez, K. J., Zhang, B., Liu, H., Brown, M. D., Crosbie, E. C., Gallo, F.,
Hair, J. W., Hostetler, C. A., Jordan, C. E., Robinson, C. E., Scarino,
A. J., Shingler, T. J., Shook, M. A., Thornhill, K. L., Wiggins, E. B.,
Winstead, E. L., Ziemba, L. D., Saliba, G., Lewis, S. L., Russell, L. M.,
Quinn, P. K., Bates, T. S., Porter, J., Bell, T. G., Gaube, P., Saltzman,
E. S., Behrenfeld, M. J., and Moore, R. H.: North Atlantic Ocean
SST-gradient-driven variations in aerosol and cloud evolution along
Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, 2022. a
Sandu, I. and Stevens, B.: On the Factors Modulating the Stratocumulus to
Cumulus Transitions, J. Atmos. Sci., 68, 1865–1881,
https://doi.org/10.1175/2011JAS3614.1, 2011. a, b
Sarkar, M., Zuidema, P., Albrecht, B., Ghate, V., Jensen, J., Mohrmann, J., and
Wood, R.: Observations Pertaining to Precipitation within the Northeast
Pacific Stratocumulus-to-Cumulus Transition, Mon. Weather Rev., 148,
1251–1273, https://doi.org/10.1175/MWR-D-19-0235.1, 2020. a
Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson,
W. R., Mao, J., and Pratt, K. A.: Local Arctic Air Pollution: A Neglected but
Serious Problem, Earth's Future, 6, 1385–1412,
https://doi.org/10.1029/2018EF000952, 2018. a
Schmale, J., Zieger, P., and Ekman, A.: Aerosols in current and future Arctic
climate, Nat. Clim. Change, 11, 95–105,
https://doi.org/10.1038/s41558-020-00969-5, 2021. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification:
A research synthesis, Glob. Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shupe, M. D.: Clouds at Arctic Atmospheric Observatories. Part II:
Thermodynamic Phase Characteristics, J. Appl. Meteorol.
Climatol., 50, 645–661, https://doi.org/10.1175/2010JAMC2468.1,
2011. a, b
Shupe, M. D. and Intrieri, J. M.: Cloud Radiative Forcing of the Arctic
Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith
Angle, J. Clim., 17, 616–628,
https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2, 2004. a, b, c
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic Mixed-Phase Cloud
Properties Derived from Surface-Based Sensors at SHEBA, J. Atmos. Sci., 63, 697–711, https://doi.org/10.1175/JAS3659.1, 2006. a
Shupe, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal,
T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry,
J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R.,
Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J.,
Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K.,
Dütsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A.,
Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J.,
Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G.,
Helmig, D., Herber, A., Heuzé, C., Hofer, J., Houchens, T., Howard, D.,
Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G.,
King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T.,
Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B.,
Lüpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M.,
Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J.,
Pätzold, F., Perovich, D. K., Petäjä, T., Pilz, C., Pirazzini, R., Posman,
K., Powers, H., Pratt, K. A., Preußer, A., Quéléver, L., Radenz, M., Rabe,
B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A.,
Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J.,
Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M.,
Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC
expedition: Atmosphere, Elementa, 10, 00060,
https://doi.org/10.1525/elementa.2021.00060, 2022. a
Silber, I. and Shupe, M. D.: Insights on sources and formation mechanisms of
liquid-bearing clouds over MOSAiC examined from a Lagrangian framework,
Elementa, 10, 000071,
https://doi.org/10.1525/elementa.2021.000071, 2022. a
Sourdeval, O., C.-Labonnote, L., Baran, A. J., Mülmenstädt, J., and Brogniez,
G.: A methodology for simultaneous retrieval of ice and liquid water cloud
properties, Part 2: Near-global retrievals and evaluation against A-Train
products, Q. J. Roy. Meteor. Soc., 142,
3063–3081, https://doi.org/10.1002/qj.2889, 2016. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos.,
113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a
Stevens, B., Cotton, W. R., Feingold, G., and Moeng, C.-H.: Large-Eddy
Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary
Layers, J. Atmos. Sci., 55, 3616–3638,
https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2, 1998. a, b
Sun, W., Loeb, N. G., Davies, R., Loukachine, K., and Miller, W. F.: Comparison
of MISR and CERES top-of-atmosphere albedo, Geophys. Res. Lett., 33, L23810,
https://doi.org/10.1029/2006GL027958, 2006. a
Szczodrak, M., Austin, P. H., and Krummel, P. B.: Variability of Optical Depth
and Effective Radius in Marine Stratocumulus Clouds, J. Atmos. Sci., 58, 2912–2926,
https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2, 2001.
a
Tornow, F., Ackerman, A. S., Fridlind, A. M., Cairns, B., Crosbie, E. C.,
Kirschler, S., Moore, R. H., Painemal, D., Robinson, C. E., Seethala, C.,
Shook, M. A., Voigt, C., Winstead, E. L., Ziemba, L. D., Zuidema, P., and
Sorooshian, A.: Dilution of Boundary Layer Cloud Condensation Nucleus
Concentrations by Free Tropospheric Entrainment During Marine Cold Air
Outbreaks, Geophys. Res. Lett., 49, e2022GL098444,
https://doi.org/10.1029/2022GL098444, 2022. a, b, c, d
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Technol., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Wood, R. and Hartmann, D. L.: Spatial Variability of Liquid Water Path in
Marine Low Cloud: The Importance of Mesoscale Cellular Convection, J.
Clim., 19, 1748–1764, https://doi.org/10.1175/JCLI3702.1, 2006. a, b
Wu, P. and Ovchinnikov, M.: Cloud Morphology Evolution in Arctic Cold-Air
Outbreak: Two Cases During COMBLE Period, J. Geophys. Res.-Atmos., 127, e2021JD035966,
https://doi.org/10.1029/2021JD035966, 2022. a
Yamaguchi, T., Feingold, G., and Kazil, J.: Stratocumulus to Cumulus
Transition by Drizzle, J. Adv. Model. Earth Syst., 9,
2333–2349, https://doi.org/10.1002/2017MS001104, 2017. a, b
Young, G., Jones, H. M., Choularton, T. W., Crosier, J., Bower, K. N.,
Gallagher, M. W., Davies, R. S., Renfrew, I. A., Elvidge, A. D., Darbyshire,
E., Marenco, F., Brown, P. R. A., Ricketts, H. M. A., Connolly, P. J., Lloyd,
G., Williams, P. I., Allan, J. D., Taylor, J. W., Liu, D., and Flynn, M. J.:
Observed microphysical changes in Arctic mixed-phase clouds when
transitioning from sea ice to open ocean, Atmos. Chem. Phys.,
16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, 2016. a
Zeng, S., Riedi, J., Trepte, C. R., Winker, D. M., and Hu, Y.-X.: Study of
global cloud droplet number concentration with A-Train satellites,
Atmos. Chem. Phys., 14, 7125–7134,
https://doi.org/10.5194/acp-14-7125-2014, 2014. a
Zhang, Z. and Platnick, S.: An assessment of differences between cloud
effective particle radius retrievals for marine water clouds from three MODIS
spectral bands, J. Geophys. Res.-Atmos., 116, D20215,
https://doi.org/10.1029/2011JD016216, 2011. a
Short summary
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors controlling their transition from high-coverage to broken cloud fields are poorly understood. We use satellite and reanalysis data to study how these clouds develop in time and the different influences on their evolution. The aerosol concentration is correlated with cloud break-up; more aerosol is linked to prolonged coverage and a stronger cooling effect, with implications for a more polluted Arctic.
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors...
Altmetrics
Final-revised paper
Preprint