Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-10901-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10901-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compilation of Henry's law constants (version 5.0.0) for water as solvent
Air Chemistry Department, Max Planck Institute of Chemistry,
P.O. Box 3060, 55020 Mainz, Germany
Related authors
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
This article is included in the Encyclopedia of Geosciences
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
This article is included in the Encyclopedia of Geosciences
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024, https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Short summary
The open-source software MEXPLORER 1.0.0 is presented here. The program can be used to analyze, reduce, and visualize complex chemical reaction mechanisms. The mathematics behind the tool is based on graph theory: chemical species are represented as vertices, and reactions as edges. MEXPLORER is a community model published under the GNU General Public License.
This article is included in the Encyclopedia of Geosciences
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
This article is included in the Encyclopedia of Geosciences
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
This article is included in the Encyclopedia of Geosciences
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021, https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Short summary
The Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented into the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), which is suitable for global model applications. Within a box-model study, we show that JAMOC yields reduced gas-phase concentrations of most OVOCs and oxidants, except for nitrogen oxides.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021, https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Short summary
In-cloud destruction of ozone depends on hydroperoxyl radicals in cloud droplets, where they are produced by oxygenated volatile organic compound (OVOC) oxygenation. Only rudimentary representations of these processes, if any, are currently available in global atmospheric models. By using a comprehensive atmospheric model that includes a complex in-cloud OVOC oxidation scheme, we show that atmospheric oxidants are reduced and models ignoring this process will underpredict clouds as ozone sinks.
This article is included in the Encyclopedia of Geosciences
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
This article is included in the Encyclopedia of Geosciences
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
This article is included in the Encyclopedia of Geosciences
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
This article is included in the Encyclopedia of Geosciences
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391–3407, https://doi.org/10.5194/gmd-11-3391-2018, https://doi.org/10.5194/gmd-11-3391-2018, 2018
Short summary
Short summary
Chemistry is an important component of the atmosphere that describes many important physical processes. However, atmospheric chemical mechanisms include hundreds of species and reactions, posing a significant computational load. In this work, we use a powerful reduction method in order to develop a computationally faster chemical mechanism from a detailed mechanism. This enables accelerated simulations, which can be used to examine a wider range of processes in increased detail.
This article is included in the Encyclopedia of Geosciences
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
This article is included in the Encyclopedia of Geosciences
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
This article is included in the Encyclopedia of Geosciences
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
This article is included in the Encyclopedia of Geosciences
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
This article is included in the Encyclopedia of Geosciences
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
This article is included in the Encyclopedia of Geosciences
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
This article is included in the Encyclopedia of Geosciences
R. Sander
Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, https://doi.org/10.5194/acp-15-4399-2015, 2015
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
Atmos. Chem. Phys., 14, 3397–3425, https://doi.org/10.5194/acp-14-3397-2014, https://doi.org/10.5194/acp-14-3397-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
R. Sander, A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young
Earth Syst. Sci. Data, 5, 385–392, https://doi.org/10.5194/essd-5-385-2013, https://doi.org/10.5194/essd-5-385-2013, 2013
H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen
Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, https://doi.org/10.5194/essd-5-365-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan
Geosci. Model Dev., 6, 255–262, https://doi.org/10.5194/gmd-6-255-2013, https://doi.org/10.5194/gmd-6-255-2013, 2013
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012, https://doi.org/10.5194/essd-4-215-2012, 2012
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
This article is included in the Encyclopedia of Geosciences
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
This article is included in the Encyclopedia of Geosciences
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024, https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Short summary
The open-source software MEXPLORER 1.0.0 is presented here. The program can be used to analyze, reduce, and visualize complex chemical reaction mechanisms. The mathematics behind the tool is based on graph theory: chemical species are represented as vertices, and reactions as edges. MEXPLORER is a community model published under the GNU General Public License.
This article is included in the Encyclopedia of Geosciences
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
This article is included in the Encyclopedia of Geosciences
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
This article is included in the Encyclopedia of Geosciences
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021, https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Short summary
The Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented into the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), which is suitable for global model applications. Within a box-model study, we show that JAMOC yields reduced gas-phase concentrations of most OVOCs and oxidants, except for nitrogen oxides.
This article is included in the Encyclopedia of Geosciences
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021, https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Short summary
In-cloud destruction of ozone depends on hydroperoxyl radicals in cloud droplets, where they are produced by oxygenated volatile organic compound (OVOC) oxygenation. Only rudimentary representations of these processes, if any, are currently available in global atmospheric models. By using a comprehensive atmospheric model that includes a complex in-cloud OVOC oxidation scheme, we show that atmospheric oxidants are reduced and models ignoring this process will underpredict clouds as ozone sinks.
This article is included in the Encyclopedia of Geosciences
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
This article is included in the Encyclopedia of Geosciences
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
This article is included in the Encyclopedia of Geosciences
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
This article is included in the Encyclopedia of Geosciences
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391–3407, https://doi.org/10.5194/gmd-11-3391-2018, https://doi.org/10.5194/gmd-11-3391-2018, 2018
Short summary
Short summary
Chemistry is an important component of the atmosphere that describes many important physical processes. However, atmospheric chemical mechanisms include hundreds of species and reactions, posing a significant computational load. In this work, we use a powerful reduction method in order to develop a computationally faster chemical mechanism from a detailed mechanism. This enables accelerated simulations, which can be used to examine a wider range of processes in increased detail.
This article is included in the Encyclopedia of Geosciences
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
This article is included in the Encyclopedia of Geosciences
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
This article is included in the Encyclopedia of Geosciences
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
This article is included in the Encyclopedia of Geosciences
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
This article is included in the Encyclopedia of Geosciences
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
This article is included in the Encyclopedia of Geosciences
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
This article is included in the Encyclopedia of Geosciences
R. Sander
Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, https://doi.org/10.5194/acp-15-4399-2015, 2015
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
Atmos. Chem. Phys., 14, 3397–3425, https://doi.org/10.5194/acp-14-3397-2014, https://doi.org/10.5194/acp-14-3397-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
R. Sander, A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young
Earth Syst. Sci. Data, 5, 385–392, https://doi.org/10.5194/essd-5-385-2013, https://doi.org/10.5194/essd-5-385-2013, 2013
H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen
Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, https://doi.org/10.5194/essd-5-365-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan
Geosci. Model Dev., 6, 255–262, https://doi.org/10.5194/gmd-6-255-2013, https://doi.org/10.5194/gmd-6-255-2013, 2013
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012, https://doi.org/10.5194/essd-4-215-2012, 2012
Related subject area
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Exploring HONO production from particulate nitrate photolysis in representative regions of China: characteristics, influencing factors, and environmental implications
Formation of reactive nitrogen species promoted by iron ions through the photochemistry of a neonicotinoid insecticide
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes determined by the relative-rate technique
Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
Mechanistic insight into the kinetic fragmentation of norpinonic acid in the gas phase: an experimental and density functional theory (DFT) study
Temperature-dependent rate coefficients for the reaction of OH radicals with selected alkanes, aromatic compounds and monoterpenes
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
On the potential use of highly oxygenated organic molecules (HOMs) as indicators for ozone formation sensitivity
Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance
Impact of temperature on the role of Criegee intermediates and peroxy radicals in dimer formation from β-pinene ozonolysis
Atmospheric impact of 2-methylpentanal emissions: kinetics, photochemistry, and formation of secondary pollutants
Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol
Technical note: Gas-phase nitrate radical generation via irradiation of aerated ceric ammonium nitrate mixtures
Direct probing of acylperoxy radicals during ozonolysis of α-pinene: constraints on radical chemistry and production of highly oxygenated organic molecules
Atmospheric photooxidation and ozonolysis of sabinene: reaction rate coefficients, product yields, and chemical budget of radicals
Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR
An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation
Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol
Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Evaluation of the daytime tropospheric loss of 2-methylbutanal
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China
NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical
Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: rate constants and product yields
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
Atmos. Chem. Phys., 24, 13183–13198, https://doi.org/10.5194/acp-24-13183-2024, https://doi.org/10.5194/acp-24-13183-2024, 2024
Short summary
Short summary
The photolysis rate constant of particulate nitrate for HONO production (JNO3−–HONO), derived from PM2.5 samples collected at five representative sites in China, exhibited a wide range of variation. A parameterization equation relating JNO3−–HONO to OC/NO3− has been established and can be used to estimate JNO3−–HONO in different environments. Our work provides an important reference for research in other regions of the world where aerosol samples have a high proportion of organic components.
This article is included in the Encyclopedia of Geosciences
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024, https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Short summary
We report enhanced formation of nitrous acid (HONO) and NOx (NO + NO2) triggered by iron ions during photolysis of neonicotinoid insecticides at the air–water interface. This novel previously overlooked source of atmospheric HONO and NOx may be an important contribution to the global nitrogen cycle and affects atmospheric oxidizing capacity and climate change.
This article is included in the Encyclopedia of Geosciences
Yanyan Xin, Chengtang Liu, Xiaoxiu Lun, Shuyang Xie, Junfeng Liu, and Yujing Mu
Atmos. Chem. Phys., 24, 11409–11429, https://doi.org/10.5194/acp-24-11409-2024, https://doi.org/10.5194/acp-24-11409-2024, 2024
Short summary
Short summary
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes were determined using the multivariate relative-rate technique. A total of 25 relative-rate coefficients at room temperature and 24 Arrhenius expressions in the temperature range of 273–323 K were obtained, which expanded the data available.
This article is included in the Encyclopedia of Geosciences
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024, https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Short summary
∆3-carene is abundantly emitted from vegetation, but its atmospheric oxidation chemistry has received limited attention. We explored highly oxygenated organic molecule (HOM) formation from ∆3-carene ozonolysis in chambers and investigated the impact of temperature and relative humidity on HOM formation. Our findings provide new insights into ∆3-carene oxidation pathways and their potential to impact atmospheric aerosols.
This article is included in the Encyclopedia of Geosciences
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
Atmos. Chem. Phys., 24, 9309–9322, https://doi.org/10.5194/acp-24-9309-2024, https://doi.org/10.5194/acp-24-9309-2024, 2024
Short summary
Short summary
This paper outlines a unique scientific strategy for studying the reactivity of atmospherically relevant norpinonic acid (NA). The publication offers a new toolbox, illustrating NA's fragmentation and pattern of kinetic degradation leading to the formation of new small molecules. Furthermore, the research strategy presented here demonstrates how a mass spectrometer can function as a gas-phase reactor and the quantum chemistry method can serve as a reaction model builder.
This article is included in the Encyclopedia of Geosciences
Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2614, https://doi.org/10.5194/egusphere-2024-2614, 2024
Short summary
Short summary
This study reports temperature dependent reaction rate constants of the reaction of atmospherically relevant hydrocarbons from biogenic sources (MVK, monoterpenes) and anthropogenic sources (alkanes, aromatics). Measurements were done at atmospheric conditions (ambient pressure, temperature range) in air.
This article is included in the Encyclopedia of Geosciences
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
This article is included in the Encyclopedia of Geosciences
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
This article is included in the Encyclopedia of Geosciences
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
This article is included in the Encyclopedia of Geosciences
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024, https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary
Short summary
Recent studies on DMS have provided new challenges to our mechanistic understanding. Here we synthesise a number of recent studies to further develop and extend a state-of-the-art mechanism. Our new mechanism is shown to outperform all existing mechanisms when compared over a wide set of conditions. The development of an improved DMS mechanism will help lead the way to better the understanding the climate impacts of DMS emissions in past, present, and future atmospheric conditions.
This article is included in the Encyclopedia of Geosciences
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024, https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary
Short summary
Due to the intrinsic connection between the formation pathways of O3 and HOMs, the ratio of HOM dimers or non-nitrate monomers to HOM organic nitrates could be used to determine O3 formation regimes. Owing to the fast formation and short lifetimes of HOMs, HOM-based indicating ratios can describe O3 formation in real time. Despite the success of our approach in this simple laboratory system, applicability to the much more complex atmosphere remains to be determined.
This article is included in the Encyclopedia of Geosciences
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Theodore K. Koenig, Yanli Ge, Tong Zhu, Chunxiang Ye, Xinghua Qiu, and Qi Chen
Atmos. Chem. Phys., 24, 2099–2112, https://doi.org/10.5194/acp-24-2099-2024, https://doi.org/10.5194/acp-24-2099-2024, 2024
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) on product distribution and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
This article is included in the Encyclopedia of Geosciences
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
This article is included in the Encyclopedia of Geosciences
María Asensio, Sergio Blázquez, María Antiñolo, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 23, 14115–14126, https://doi.org/10.5194/acp-23-14115-2023, https://doi.org/10.5194/acp-23-14115-2023, 2023
Short summary
Short summary
In this work, we focus on the atmospheric chemistry and consequences for air quality of 2-methylpentanal (2MP), which is widely used as a flavoring ingredient and as an intermediate in the synthesis of dyes, resins, and pharmaceuticals. Measurements are presented on how fast 2MP is degraded by sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms and what products are generated. We conclude that 2MP will be degraded in a few hours, affecting local air quality.
This article is included in the Encyclopedia of Geosciences
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
This article is included in the Encyclopedia of Geosciences
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
This article is included in the Encyclopedia of Geosciences
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
This article is included in the Encyclopedia of Geosciences
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
This article is included in the Encyclopedia of Geosciences
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
This article is included in the Encyclopedia of Geosciences
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
This article is included in the Encyclopedia of Geosciences
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
This article is included in the Encyclopedia of Geosciences
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
This article is included in the Encyclopedia of Geosciences
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
This article is included in the Encyclopedia of Geosciences
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023, https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Short summary
We observed a surprisingly similar set of oxidation product chemical formulas from limonene and α-pinene, including oligomers, formed under cool-flame (present experiments) and simulated atmospheric oxidation (literature). Data analysis indicated that a subset of chemical formulas is common to all experiments independently of experimental conditions. Also, this study indicates that many detected chemical formulas can be ascribed to an autooxidation reaction.
This article is included in the Encyclopedia of Geosciences
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
This article is included in the Encyclopedia of Geosciences
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
This article is included in the Encyclopedia of Geosciences
Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff
Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/acp-23-311-2023, https://doi.org/10.5194/acp-23-311-2023, 2023
Short summary
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
This article is included in the Encyclopedia of Geosciences
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
This article is included in the Encyclopedia of Geosciences
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
This article is included in the Encyclopedia of Geosciences
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
This article is included in the Encyclopedia of Geosciences
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
This article is included in the Encyclopedia of Geosciences
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
This article is included in the Encyclopedia of Geosciences
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
This article is included in the Encyclopedia of Geosciences
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
This article is included in the Encyclopedia of Geosciences
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
This article is included in the Encyclopedia of Geosciences
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
This article is included in the Encyclopedia of Geosciences
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
This article is included in the Encyclopedia of Geosciences
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022, https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary
Short summary
Landscape fires are a major source of greenhouse gases and aerosols, particularly in sub-tropical savannas. Stable carbon isotopes in emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to greenhouse gases and aerosols if the process is well understood. This helps us to link individual vegetation types to emissions, identify biomass burning emissions in the atmosphere, and improve the reconstruction of historic fire regimes.
This article is included in the Encyclopedia of Geosciences
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, https://doi.org/10.5194/acp-22-2689-2022, 2022
Short summary
Short summary
The diurnal atmospheric degradation of 2-methylbutanal, 2 MB, emitted by sources like vegetation or the poultry industry is evaluated in this work. Sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms initiate this degradation. Measurements of how fast 2 MB is degraded and what products are generated are presented. The lifetime of 2 MB is around 1 h at noon, when the OH reaction dominates. Thus, 2 MB will not be transported far, affecting only local air quality.
This article is included in the Encyclopedia of Geosciences
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
This article is included in the Encyclopedia of Geosciences
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
This article is included in the Encyclopedia of Geosciences
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
This article is included in the Encyclopedia of Geosciences
Mike J. Newland, Yangang Ren, Max R. McGillen, Lisa Michelat, Véronique Daële, and Abdelwahid Mellouki
Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, https://doi.org/10.5194/acp-22-1761-2022, 2022
Short summary
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
This article is included in the Encyclopedia of Geosciences
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
This article is included in the Encyclopedia of Geosciences
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
This article is included in the Encyclopedia of Geosciences
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
This article is included in the Encyclopedia of Geosciences
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
This article is included in the Encyclopedia of Geosciences
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
This article is included in the Encyclopedia of Geosciences
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
This article is included in the Encyclopedia of Geosciences
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abd-El-Bary, M. F., Hamoda, M. F., Tanisho, S., and Wakao, N.: Henry's
constants for phenol over its diluted aqueous solution, J. Chem. Eng. Data,
31, 229–230, https://doi.org/10.1021/JE00044A027, 1986.
Abney, C. A.: Predicting Henry's Law constants of volatile organic compounds
present in bourbon using molecular simulations, Master's thesis, University
of Louisville, Kentucky, USA, https://doi.org/10.18297/etd/3440, 2021.
Abou-Naccoul, R., Mokbel, I., Bassil, G., Saab, J., Stephan, K., and Jose, J.:
Aqueous solubility (in the range between 298.15 and 338.15 K), vapor
pressures (in the range between 10−5 and 80 Pa) and Henry's law constant
of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene, Chemosphere, 95,
41–49, https://doi.org/10.1016/J.CHEMOSPHERE.2013.08.010, 2014.
Abraham, M. A., Enomoto, K., Clarke, E. D., Rosés, M., Ràfols, C., and
Fuguet, E.: Henry's law constants or air to water partition coefficients for
1,3,5-triazines by an LFER method, J. Environ. Monit., 9, 234–239,
https://doi.org/10.1039/B617181H, 2007.
Abraham, M. H.: Free energies of solution of rare gases and alkanes in water
and nonaqueous solvents. A quantitative assessment of the hydrophobic effect,
J. Am. Chem. Soc., 101, 5477–5484, https://doi.org/10.1021/JA00513A004, 1979.
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in
water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181,
https://doi.org/10.1039/F19848000153, 1984.
Abraham, M. H.: The determination of air/water partition coefficients for alkyl
carboxylic acids by a new indirect method, J. Environ. Monit., 5, 747–752,
https://doi.org/10.1039/B308175C, 2003.
Abraham, M. H. and Acree, Jr., W. E.: Prediction of gas to water partition
coefficients from 273 to 373 K using predicted enthalpies and heat
capacities of hydration, Fluid Phase Equilib., 262, 97–110,
https://doi.org/10.1016/J.FLUID.2007.08.011, 2007.
Abraham, M. H. and Matteoli, E.: The temperature variation of the hydrophobic
effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000,
https://doi.org/10.1039/F19888401985, 1988.
Abraham, M. H. and Nasehzadeh, A.: Thermodynamics of solution of gaseous
tetramethyltin in 36 solvents. Comparison of experimental results with
cavity-theory calculations, J. Chem. Soc. Faraday Trans. 1, 77, 321–339,
https://doi.org/10.1039/F19817700321, 1981.
Abraham, M. H. and Weathersby, P. K.: Hydrogen bonding. 30. Solubility of gases
and vapors in biological liquids and tissues, J. Pharm. Sci., 83, 1450–1456,
https://doi.org/10.1002/JPS.2600831017, 1994.
Abraham, M. H., Whiting, G. S., Fuchs, R., and Chambers, E. J.: Thermodynamics
of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2,
291–300, https://doi.org/10.1039/P29900000291, 1990.
Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., Leo, A., and Taft, R. S.:
Hydrogen bonding. Part 34. The factors that influence the solubility of gases
and vapours in water at 298 K, and a new method for its
determination, J. Chem. Soc. Perkin Trans. 2, 1777–1791,
https://doi.org/10.1039/P29940001777, 1994a.
Abraham, M. H., Chadha, H. S., Whiting, G. S., and Mitchell, R.: Hydrogen
bonding. 32. An analysis of water-octanol and water-alkane partitioning and
the ΔlogP parameter of Seiler, J. Pharm. Sci., 83, 1085–1100,
https://doi.org/10.1002/JPS.2600830806, 1994b.
Abraham, M. H., Gil-Lostes, J., Acree, Jr., W. E., Cometto-Muñiz, J. E.,
and Cain, W. S.: Solvation parameters for mercury and mercury(II) compounds:
calculation of properties of environmental interest, J. Environ. Monit., 10,
435–442, https://doi.org/10.1039/B719685G, 2008.
Abraham, M. H., Acree Jr., W. E., Hoekman, D., Leo, A. J., and Medlin, M. L.:
A new method for the determination of Henry's law constants
(air–water-partition coefficients), Fluid Phase Equilib., 502, 112 300,
https://doi.org/10.1016/J.FLUID.2019.112300, 2019.
Abusallout, I., Holton, C., Wang, J., and Hanigan, D.: Henry's Law constants of
15 per- and polyfluoroalkyl substances determined by static headspace
analysis, J. Hazard. Mater. Lett., 3, 100 070,
https://doi.org/10.1016/J.HAZL.2022.100070, 2022.
Adams, F. W. and Edmonds, R. G.: Absorption of chlorine by water in a packed
tower, Ind. Eng. Chem., 29, 447–451, https://doi.org/10.1021/IE50328A021, 1937.
Addison, R. F., Paterson, S., and Mackay, D.: The predicted environmental
distribution of some PCB replacements, Chemosphere, 12, 827–834,
https://doi.org/10.1016/0045-6535(83)90148-0, 1983.
Aieta, E. M. and Roberts, P. V.: Henry constant of molecular chlorine in
aqueous solution, J. Chem. Eng. Data, 31, 51–53, https://doi.org/10.1021/JE00043A017,
1986.
Alaee, M., Whittal, R. M., and Strachan, W. M. J.: The effect of water
temperature and composition on Henry's law constant for various PAH's,
Chemosphere, 32, 1153–1164, https://doi.org/10.1016/0045-6535(96)00031-8, 1996.
Albanese, V., Milano, J. C., and Vernet, J. L.: Etude de l'evaporation de
quelques hydrocarbures halogenenes de faible masse moleculaire dissous a
l'etat de traces dans l'eau, Environ. Technol. Lett., 8, 657–668,
https://doi.org/10.1080/09593338709384529, 1987.
Allen, J. M., Balcavage, W. X., Ramachandran, B. R., and Shrout, A. L.:
Determination of Henry's Law constants by equilibrium partitioning in a
closed system using a new in situ optical absorbance method, Environ.
Toxicol. Chem., 17, 1216–1221, https://doi.org/10.1002/ETC.5620170704, 1998.
Allott, P. R., Steward, A., Flook, V., and Mapleson, W. W.: Variation with
temperature of the solubilities of inhaled anaesthestics in water, oil and
biological media, Br. J. Anaesth., 45, 294–300, https://doi.org/10.1093/BJA/45.3.294,
1973.
Allou, L., El Maimouni, L., and Le Calvé, S.: Henry's law constant
measurements for formaldehyde and benzaldehyde as a function of temperature
and water composition, Atmos. Environ., 45, 2991–2998,
https://doi.org/10.1016/J.ATMOSENV.2010.05.044, 2011.
Alton, M. W. and Browne, E. C.: Atmospheric degradation of cyclic volatile
methyl siloxanes: Radical chemistry and oxidation products, ACS Environ. Au,
2, 263–274, https://doi.org/10.1021/ACSENVIRONAU.1C00043, 2022.
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., and Piringer, O. G.:
Henry's law constants for a diverse set of organic chemicals: Experimental
determination and comparison of estimation methods, Chemosphere, 39,
1871–1887, https://doi.org/10.1016/S0045-6535(99)00082-X, 1999.
Amels, P., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Chapter
3.1: Kinetic investigation of the stability of peroxonitric acid and of its
reaction with sulfur(IV) in aqueous solution, in: Heterogeneous and
Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, 77–88,
Berlin, https://doi.org/10.1007/978-3-642-61445-3_3, 1996.
Ammari, A. and Schroen, K.: Effect of ethanol and temperature on partition
coefficients of ethyl acetate, isoamyl acetate, and isoamyl alcohol:
Instrumental and predictive investigation, J. Chem. Eng. Data, 64,
3224–3230, https://doi.org/10.1021/ACS.JCED.8B01125, 2019.
Amoore, J. E. and Buttery, R. G.: Partition coefficient and comparative
olfactometry, Chem. Senses Flavour, 3, 57–71, https://doi.org/10.1093/CHEMSE/3.1.57,
1978.
Anderson, G. K.: A thermodynamic study of the (difluoromethane + water) system,
J. Chem. Thermodyn., 43, 1331–1335, https://doi.org/10.1016/J.JCT.2011.03.020, 2011.
Anderson, M. A.: Influence of surfactants on vapor-liquid partitioning,
Environ. Sci. Technol., 26, 2186–2191, https://doi.org/10.1021/ES00035A017, 1992.
Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D.:
Determination of Henry's law constant for elemental mercury, Chemosphere, 73,
587–592, https://doi.org/10.1016/J.CHEMOSPHERE.2008.05.067, 2008.
Andon, R. J. L., Cox, J. D., and Herington, E. F. G.: Phase relationships in
the pyridine series. Part V. The thermodynamic properties of dilute solutions
of pyridine bases in water at 25 ° and 40 °, J.
Chem. Soc., 3188–3196, https://doi.org/10.1039/JR9540003188, 1954.
Andreozzi, R., Caprio, V., Ermellino, I., Insola, A., and Tufano, V.: Ozone
solubility in phosphate-buffered aqueous solutions: effect of temperature,
tert-butyl alcohol, and pH, Ind. Eng. Chem. Res., 35, 1467–1471,
https://doi.org/10.1021/IE940778R, 1996.
Andrew, S. P. S. and Hanson, D.: The dynamics of nitrous gas absorption, Chem.
Eng. Sci., 14, 105–113, https://doi.org/10.1016/0009-2509(61)85060-4, 1961.
Aprea, E., Biasioli, F., Märk, T. D., and Gasperi, F.: PTR-MS study of esters
in water and water/ethanol solutions: Fragmentation patterns and partition
coefficients, Int. J. Mass Spectrom., 262, 114–121,
https://doi.org/10.1016/J.IJMS.2006.10.016, 2007.
Arbuckle, W. B.: Estimating activity coefficients for use in calculating
environmental parameters, Environ. Sci. Technol., 17, 537–542,
https://doi.org/10.1021/ES00115A008, 1983.
Arijs, E. and Brasseur, G.: Acetonitrile in the stratosphere and implications
for positive ion composition, J. Geophys. Res., 91, 4003–4016,
https://doi.org/10.1029/JD091ID03P04003, 1986.
Arkadiev, V.: Solubility of chlorine in water, J. Russ. Phys. Chem. Soc., 50,
205–209, (in Russian), 1918.
Armbrust, K. L.: Pesticide hydroxyl radical rate constants: Measurements and
estimates of their importance in aquatic environments, Environ. Toxicol.
Chem., 19, 2175–2180, https://doi.org/10.1002/ETC.5620190905, 2000.
Armstrong, D. A., Huie, R. E., Koppenol, W. H., Lymar, S. V., Merényi, G.,
Neta, P., Ruscic, B., Stanbury, D. M., Steenken, S., and Wardman, P.:
Standard electrode potentials involving radicals in aqueous solution:
inorganic radicals (IUPAC Technical Report), Pure Appl. Chem., 87,
1139–1150, https://doi.org/10.1515/PAC-2014-0502, 2015.
Arnett, E. M. and Chawla, B.: Complete thermodynamic analysis of the hydration
of thirteen pyridines and pyridinium ions. The special case of
2,6-di-tert-butylpyridine, J. Am. Chem. Soc., 101, 7141–7146,
https://doi.org/10.1021/JA00518A001, 1979.
Arnett, E. M., Chawla, B., Bell, L., Taagepera, M., Hehre, W. J., and Taft,
R. W.: Solvation and hydrogen bonding of pyridinium ions, J. Am. Chem. Soc.,
99, 5729–5738, https://doi.org/10.1021/JA00459A034, 1977.
Arp, H. P. H. and Schmidt, T. C.: Air–water transfer of MTBE, its degradation
products, and alternative fuel oxygenates: the role of temperature, Environ.
Sci. Technol., 38, 5405–5412, https://doi.org/10.1021/ES049286O, 2004.
Arp, H. P. H., Niederer, C., and Goss, K. U.: Predicting the partitioning
behavior of various highly fluorinated compounds, Environ. Sci. Technol., 40,
7298–7304, https://doi.org/10.1021/ES060744Y, 2006.
Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., and Stickings, B. J.:
The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc.
A, 1793–1796, https://doi.org/10.1039/J19680001793, 1968.
Ashworth, R. A., Howe, G. B., Mullins, M. E., and Rogers, T. N.: Air–water
partitioning coefficients of organics in dilute aqueous solutions, J. Hazard.
Mater., 18, 25–36, https://doi.org/10.1016/0304-3894(88)85057-X, 1988.
Atlas, E., Foster, R., and Giam, C. S.: Air-sea exchange of high-molecular
weight organic pollutants: laboratory studies, Environ. Sci. Technol., 16,
283–286, https://doi.org/10.1021/ES00099A010, 1982.
Atlas, E., Velasco, A., Sullivan, K., and Giam, C. S.: A radiotracer study of
air–water exchange of synthetic organic compounds, Chemosphere, 12,
1251–1258, https://doi.org/10.1016/0045-6535(83)90130-3, 1983.
Ayers, G. P.: Equilibrium partial pressures over
(NH4)2SO4/H2SO4 mixtures, Aust. J. Chem., 36, 179–182,
https://doi.org/10.1071/CH9830179, 1983.
Ayers, G. P., Gillett, R. W., and Gras, J. L.: On the vapor pressure of
sulfuric acid, Geophys. Res. Lett., 7, 433–436,
https://doi.org/10.1029/GL007I006P00433, 1980.
Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., and Kline, A. A.: Henry's
law constants derived from equilibrium static cell measurements for dilute
organic-water mixtures, Fluid Phase Equilib., 185, 359–377,
https://doi.org/10.1016/S0378-3812(01)00484-8, 2001.
Bachofen, H. and Farhi, L. E.: Simple manometric apparatus for measuring
partition coefficients of highly soluble gases, J. Appl. Physiol., 30,
136–139, https://doi.org/10.1152/JAPPL.1971.30.1.136, 1971.
Badia, A., Reeves, C. E., Baker, A. R., Saiz-Lopez, A., Volkamer, R., Koenig,
T. K., Apel, E. C., Hornbrook, R. S., Carpenter, L. J., Andrews, S. J.,
Sherwen, T., and von Glasow, R.: Importance of reactive halogens in the
tropical marine atmosphere: a regional modelling study using WRF-Chem, Atmos.
Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/ACP-19-3161-2019, 2019.
Bagno, A., Lucchini, V., and Scorrano, G.: Thermodynamics of protonation of
ketones and esters and energies of hydration of their conjugate acids, J.
Phys. Chem., 95, 345–352, https://doi.org/10.1021/J100154A063, 1991.
Bakhuis Roozeboom, H. W.: Sur l'hydrate de chlore, Recl. Trav. Chim.
Pays-Bas, 3, 59–72, https://doi.org/10.1002/RECL.18840030203, 1884.
Bakierowska, A.-M. and Trzeszczyński, J.: Graphical method for the
determination of water/gas partition coefficients of volatile organic
compounds by a headspace gas chromatography technique, Fluid Phase Equilib.,
213, 139–146, https://doi.org/10.1016/S0378-3812(03)00286-3, 2003.
Balls, P. W.: Gas transfer across air–water interfaces, Ph.D. thesis,
University of East Anglia, Great Britain, 1980.
Ballschmiter, K. and Wittlinger, R.: Interhemisphere exchange of
hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere,
Environ. Sci. Technol., 25, 1103–1111, https://doi.org/10.1021/ES00018A014, 1991.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Temperature dependence of
Henry's law constants of thirteen polycyclic aromatic hydrocarbons between
4 °C and 31 °C, Environ. Toxicol. Chem., 18,
1905–1912, https://doi.org/10.1002/ETC.5620180906, 1999a.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Method for measuring the
temperature dependence of the Henry's law constant of selected polycyclic
aromatic hydrocarbons, Polycyclic Aromat. Compd., 14, 11–22,
https://doi.org/10.1080/10406639908019107, 1999b.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Henry's law constants of
polychlorinated biphenyl congeners and their variation with temperature, J.
Chem. Eng. Data, 45, 1069–1074, https://doi.org/10.1021/JE0000266, 2000.
Bamford, H. A., Poster, D. L., Huie, R. E., and Baker, J. E.: Using
extrathermodynamic relationships to model the temperature dependence of
Henry's law constants of 209 PCB congeners, Environ. Sci. Technol., 36,
4395–4402, https://doi.org/10.1021/ES020599Y, 2002.
Barcellos da Rosa, M., Behnke, W., and Zetzsch, C.: Study of the
heterogeneous reaction of O3 with CH3SCH3 using the
wetted-wall flowtube technique, Atmos. Chem. Phys., 3, 1665–1673,
https://doi.org/10.5194/ACP-3-1665-2003, 2003.
Barcelo, D. and Hennion, M. C.: Trace Determination of Pesticides and Their
Degradation Products in Water, Elsevier Science, Amsterdam, ISBN
9780444818423, 1997.
Barr, R. S. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of
water and chlorinated hydrocarbons. Part I. Experimental results, Fluid Phase
Equilib., 35, 189–205, https://doi.org/10.1016/0378-3812(87)80012-2, 1987.
Barrett, T. J., Anderson, G. M., and Lugowski, J.: The solubility of hydrogen
sulphide in 0–5 m NaCl solutions at 25 °-95 °C
and one atmosphere, Geochim. Cosmochim. Acta, 52, 807–811,
https://doi.org/10.1016/0016-7037(88)90352-3, 1988.
Bartelt-Hunt, S. L., Knappe, D. R. U., and Barlaz, M. A.: A review of chemical
warfare agent simulants for the study of environmental behavior, Crit. Rev.
Environ. Sci. Technol., 38, 112–136, https://doi.org/10.1080/10643380701643650, 2008.
Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's
law constant and the aqueous phase dissociation constant of bromine chloride,
Environ. Sci. Technol., 33, 3410–3414, https://doi.org/10.1021/ES990300K, 1999.
Battino, R.: IUPAC Solubility Data Series, Vol. 7, Oxygen and Ozone, Pergamon
Press, Oxford, https://doi.org/10.1016/C2013-0-03145-3, 1981.
Battino, R.: IUPAC Solubility Data Series, Vol. 10, Nitrogen and Air,
Pergamon Press, Oxford, ISBN 0080239226, 1982.
Battino, R. and Clever, H. L.: The solubility of gases in liquids, Chem. Rev.,
66, 395–463, https://doi.org/10.1021/CR60242A003, 1966.
Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of oxygen and
ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178,
https://doi.org/10.1063/1.555680, 1983.
Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of nitrogen and
air in liquids, J. Phys. Chem. Ref. Data, 13, 563–600,
https://doi.org/10.1063/1.555713, 1984.
Battino, R., Rettich, T. R., and Wilhelm, E.: Gas solubilities in liquid water
near the temperature of the density maximum, Tmax(H2O) =
277.13 K, Monatsh. Chem. – Chem. Mon., 149, 219–230,
https://doi.org/10.1007/S00706-017-2097-3, 2018.
Bebahani, G. R. R., Hogan, P., and Waghorne, W. E.: Ostwald concentration
coefficients of acetonitrile in aqueous mixed solvents: a new, rapid method
for measuring the solubilities of volatile solutes, J. Chem. Eng. Data, 47,
1290–1292, https://doi.org/10.1021/JE0200665, 2002.
Becker, K. H., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility of
nitrous acid (HONO) in sulfuric acid solutions, J. Phys. Chem., 100,
14 984–14 990, https://doi.org/10.1021/JP961140R, 1996.
Becker, K. H., Kleffmann, J., Negri, R. M., and Wiesen, P.: Solubility of
nitrous acid (HONO) in ammonium sulfate solutions, J. Chem. Soc.
Faraday Trans., 94, 1583–1586, https://doi.org/10.1039/A800458G, 1998.
Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of
ClNO2 from the reaction of gaseous N2O5 with NaCl
solution: Bulk and aerosol experiments, J. Geophys. Res., 102, 3795–3804,
https://doi.org/10.1029/96JD03057, 1997.
Beilke, S. and Gravenhorst, G.: Heterogeneous SO2-oxidation in the
droplet phase, Atmos. Environ., 12, 231–239,
https://doi.org/10.1016/0004-6981(78)90203-2, 1978.
Bell, R. P.: The reversible hydration of carbonyl compounds, Adv. Phys. Org.
Chem., 4, 1–29, https://doi.org/10.1016/S0065-3160(08)60351-2, 1966.
Ben-Naim, A. and Battino, R.: Solubilization of methane, ethane, propane and
n-butane in aqueous solutions of sodium dodecylsulfate, J. Solution Chem.,
14, 245–253, https://doi.org/10.1007/BF00644456, 1985.
Ben-Naim, A. and Wilf, J.: Solubilities and hydrophobic interactions in aqueous
solutions of monoalkylbenzene molecules, J. Phys. Chem., 84, 583–586,
https://doi.org/10.1021/J100443A004, 1980.
Beneš, M. and Dohnal, V.: Limiting activity coefficients of some aromatic
and aliphatic nitro compounds in water, J. Chem. Eng. Data, 44, 1097–1102,
https://doi.org/10.1021/JE9900326, 1999.
Benkelberg, H.-J., Hamm, S., and Warneck, P.: Henry's law coefficients for
aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium
constants for the addition compounds of acetone and acetaldehyde with
bisulfite, J. Atmos. Chem., 20, 17–34, https://doi.org/10.1007/BF01099916, 1995.
Benson, B. B., Krause, Jr., D., and Peterson, M. A.: The solubility and
isotopic fractionation of gases in dilute aqueous solution. I. oxygen, J.
Solution Chem., 8, 655–690, https://doi.org/10.1007/BF01033696, 1979.
Berdnikov, V. M. and Bazhin, N. M.: Oxidation-reduction potentials of certain
inorganic radicals in aqueous solutions, Russ. J. Phys. Chem., 44, 395–398,
1970.
Bernauer, M. and Dohnal, V.: Temperature dependence of air–water partitioning
of N-methylated (C1 and C2) fatty acid amides, J. Chem.
Eng. Data, 53, 2622–2631, https://doi.org/10.1021/JE800517R, 2008.
Bernauer, M. and Dohnal, V.: Temperature dependences of limiting activity
coefficients and Henry's law constants for N-methylpyrrolidone, pyridine, and
piperidine in water, Fluid Phase Equilib., 282, 100–107,
https://doi.org/10.1016/J.FLUID.2009.05.005, 2009.
Bernauer, M., Dohnal, V., Roux, A. H., Roux-Desgranges, G., and Majer, V.:
Temperature dependences of limiting activity coefficients and Henry's law
constants for nitrobenzene, aniline, and cyclohexylamine in water, J. Chem.
Eng. Data, 51, 1678–1685, https://doi.org/10.1021/JE060136Y, 2006.
Betterton, E. A.: The partitioning of ketones between the gas and aqueous
phases, Atmos. Environ., 25A, 1473–1477, https://doi.org/10.1016/0960-1686(91)90006-S,
1991.
Betterton, E. A.: Henry's law constants of soluble and moderately soluble
organic gases: Effects on aqueous phase chemistry, Adv. Environ. Sci.
Technol., 24, 1–50, 1992.
Betterton, E. A. and Hoffmann, M. R.: Henry's law constants of some
environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418,
https://doi.org/10.1021/ES00177A004, 1988.
Betterton, E. A. and Robinson, J. L.: Henry's law coefficient of hydrazoic
acid, J. Air Waste Manage. Assoc., 47, 1216–1219,
https://doi.org/10.1080/10473289.1997.10464060, 1997.
Bhangare, R. C., Ajmal, P. Y., Rathod, T. D., Tiwari, M., and Sahu, S. K.:
Experimental and theoretical determination of Henry's law constant for
polychlorinated biphenyls: its dependence on solubility and degree of
chlorination, Arch. Environ. Contam. Toxicol., 76, 142–152,
https://doi.org/10.1007/S00244-018-0577-Z, 2019.
Bierwagen, B. G. and Keller, A. A.: Measurement of Henry's law constant for
methyl tert-butyl ether using solid-phase microextraction, Environ.
Toxicol. Chem., 20, 1625–1629, https://doi.org/10.1002/ETC.5620200802, 2001.
Bigorgne, M.: Formation de chlorites à partir de peroxyde de chlore et de
métaux, C. R. Hebd. Séances Acad. Sci., 225, 527–529, 1947.
Billitzer, J.: Über die saure Natur des Acetylens, Z. Phys. Chem., 40,
535–544, https://doi.org/10.1515/ZPCH-1902-4026, 1902.
Biń, A. K.: Ozone solubility in liquids, Ozone: Sci. Eng., 28, 67–75,
https://doi.org/10.1080/01919510600558635, 2005.
Bissonette, E. M., Westrick, J. J., and Morand, J. M.: Determination of Henry's
coefficient for volatile organic compounds in dilute aqueous systems, in:
Proceedings of the Annual Conference of the American Water Works Association,
Cincinnati, OH, 17–21 June, 1913–1922, 1990.
Blair, E. W. and Ledbury, W.: The partial formaldehyde vapour pressures of
aqueous solutions of formaldehyde. Part I, J. Chem. Soc., 127, 26–40,
https://doi.org/10.1039/CT9252700026, 1925.
Blatchley, III, E. R., Johnson, R. W., Alleman, J. E., and McCoy, W. F.:
Effective Henry's law constants for free chlorine and free bromine, Wat.
Res., 26, 99–106, https://doi.org/10.1016/0043-1354(92)90117-M, 1992.
Bobadilla, R., Huybrechts, T., Dewulf, J., and van Langenhove, H.:
Determination of the Henry's constant of volatile and semi-volatile organic
componuds of environmental concern by the bas (batch air stripping)
technique: a new mathematical approach, J. Chilean Chem. Soc., 48,
https://doi.org/10.4067/S0717-97072003000300001, 2003.
Bobra, A., Shiu, W. Y., and Mackay, D.: Quantitative structure-activity
relationships for the acute toxicity of chlorobenzenes to daphnia magna,
Environ. Toxicol. Chem., 4, 297–305, https://doi.org/10.1002/ETC.5620040305, 1985.
Boggs, J. E. and Buck, Jr., A. E.: The solubility of some chloromethanes in
water, J. Phys. Chem., 62, 1459–1461, https://doi.org/10.1021/J150569A031, 1958.
Böhme, A., Paschke, A., Vrbka, P., Dohnal, V., and Schüürmann, G.:
Determination of temperature-dependent Henry's law constant of four
oxygenated solutes in water using headspace solid-phase microextraction
technique, J. Chem. Eng. Data, 53, 2873–2877, https://doi.org/10.1021/JE800623X, 2008.
Bohon, R. J. and Claussen, W. F.: The solubility of aromatic hydrocarbons in
water, J. Am. Chem. Soc., 73, 1571–1578, https://doi.org/10.1021/JA01148A047, 1951.
Bohr, C.: Definition und Methode zur Bestimmung der Invasions- und
Evasionscoefficienten bei der Auflösung von Gasen in Flüssigkeiten.
Werthe der genannten Constanten sowie der Absorptionscoefficienten der
Kohlensäure bei Auflösung in Wasser und in Chlornatriumlösungen, Wied.
Ann., 68, 500–525, https://doi.org/10.1002/ANDP.18993040707, 1899.
Bohr, C. and Bock, J.: Bestimmung der Absorption einiger Gase in Wasser bei den
Temperaturen zwischen 0 und 100°, Ann. Phys., 280, 318–343,
https://doi.org/10.1002/ANDP.18912801010, 1891.
Bone, R., Cullis, P., and Wolfenden, R.: Solvent effects on equilibria of
addition of nucleophiles to acetaldehyde and the hydrophilic character of
diols, J. Am. Chem. Soc., 105, 1339–1343, https://doi.org/10.1021/JA00343A044, 1983.
Bonifácio, R. P., Pádua, A. A. H., and Costa Gomes, M. F.:
Perfluoroalkanes in water: experimental Henry's law coefficients for
hexafluoroethane and computer simulations for tetrafluoromethane and
hexafluoroethane, J. Phys. Chem. B, 105, 8403–8409, https://doi.org/10.1021/JP010597K,
2001.
Booth, N. and Jolley, L. J.: The removal of organic sulphur compounds from
gases, J. Soc. Chem. Ind., 62, 87–88, https://doi.org/10.1002/JCTB.5000620603, 1943.
Bopp, R. F.: Revised parameters for modeling the transport of PCB components
across an air water interface, J. Geophys. Res., 88, 2521–2529,
https://doi.org/10.1029/JC088IC04P02521, 1983.
Borduas, N., Place, B., Wentworth, G. R., Abbatt, J. P. D., and Murphy, J. G.:
Solubility and reactivity of HNCO in water: insights into HNCO's fate in the
atmosphere, Atmos. Chem. Phys., 16, 703–714, https://doi.org/10.5194/ACP-16-703-2016,
2016.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of
trifluoroacetic acid and its partitioning into liquid water in the
atmosphere, Chemosphere, 32, 405–420, https://doi.org/10.1016/0045-6535(95)00330-4,
1996.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constants of
the haloacetic acids, J. Atmos. Chem., 29, 85–107,
https://doi.org/10.1023/A:1005899813756, 1998a.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of
trichloroacetic acid, Water Air Soil Pollut., 101, 197–215,
https://doi.org/10.1023/A:1004966126770, 1998b.
Brandsch, R., Gruber, L., and Santl, H.: Experimental determination of Henry's
law constant for some dioxins, Organohalogen Compd., 12, 369–372, 1993.
Braun, H. and Dransfeld, P.: Abscheidung von Quecksilber, GVC/VDI-Tagung
“Entsorgung von Sonderabfällen durch Verbrennung”, Baden-Baden, 4–6 Dec
1989, 1989.
Braun, L.: Über die Absorption von Stickstoff und von Wasserstoff in
wässerigen Lösungen verschieden dissociierter Stoffe, Z. Phys. Chem.,
33U, 721–739, https://doi.org/10.1515/ZPCH-1900-3349, 1900.
Breiter, W. A., Baker, J. M., and Koskinen, W. C.: Direct measurement of
Henry's constant for S-ethyl N,N-di-n-propylthiocarbamate, J. Agric. Food
Chem., 46, 1624–1629, https://doi.org/10.1021/JF980042V, 1998.
Brennan, R. A., Nirmalakhandan, N., and Speece, R. E.: Comparison of predictive
methods for Henrys law coefficients of organic chemicals, Wat. Res., 32,
1901–1911, https://doi.org/10.1016/S0043-1354(97)00402-8, 1998.
Brian, P. L. T., Vivian, J. E., and Habib, A. G.: The effect of the hydrolysis
reaction upon the rate of absorption of chlorine into water, AIChE J., 8,
205–209, https://doi.org/10.1002/AIC.690080215, 1962.
Brimblecombe, P.: Air Composition & Chemistry, Cambridge University Press,
Cambridge, ISBN 0521459729, 1986.
Brimblecombe, P. and Clegg, S. L.: The solubility and behaviour of acid gases
in the marine aerosol, J. Atmos. Chem., 7, 1–18, https://doi.org/10.1007/BF00048251,
1988.
Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95,
https://doi.org/10.1007/BF00053818, 1989.
Brimblecombe, P., Clegg, S. L., and Khan, I.: Thermodynamic properties of
carboxylic acids relevant to their solubility in aqueous solutions, J.
Aerosol Sci., 23, S901–S904, https://doi.org/10.1016/0021-8502(92)90557-C, 1992.
Briner, E. and Perrottet, E.: Détermination des solubilités de l'ozone dans
l'eau et dans une solution aqueuse de chlorure de sodium; calcul des
solubilités de l'ozone atmosphérique dans les eaux, Helv. Chim. Acta, 22,
397–404, https://doi.org/10.1002/HLCA.19390220151, 1939.
Brockbank, S. A., Russon, J. L., Giles, N. F., Rowley, R. L., and Wilding,
W. V.: Infinite dilution activity coefficients and Henry's law constants of
compounds in water using the inert gas stripping method, Fluid Phase
Equilib., 348, 45–51, https://doi.org/10.1016/J.FLUID.2013.03.023, 2013.
Brody, A. W., Lyons, K. P., Kurowski, J. L., McGill, J. J., and Weaver, M. J.:
Analysis and solubility of dimethyl and diethyl ether in water, saline, oils,
and blood, J. Appl. Physiol., 31, 125–131,
https://doi.org/10.1152/JAPPL.1971.31.1.125, 1971.
Brown, R. L. and Wasik, S. P.: A method of measuring the solubilities of
hydrocarbons in aqueous solutions, J. Res. Natl. Bureau Standards A: Phys.
Chem., 78A, 453–460, https://doi.org/10.6028/JRES.078A.028, 1974.
Brownawell, B. J.: The role of colloidal organic matter in the marine
geochemistry of PCBs, Ph.D. thesis, Massachusetts Institute of Technology and
the Woods Hole Oceanographic Institution, https://doi.org/10.1575/1912/3932, 1986.
Bruneel, J., Walgraeve, C., Van Huffel, K., and Van Langenhove, H.:
Determination of the gas-to-liquid partitioning coefficients using a new
dynamic absorption method (DynAb method), Chem. Eng. J., 283, 544–552,
https://doi.org/10.1016/J.CEJ.2015.07.053, 2016.
Brunner, S., Hornung, E., Santl, H., Wolff, E., Piringer, O. G., Altschuh, J.,
and Brüggemann, R.: Henry's law constants for polychlorinated biphenyls:
Experimental determination and structure-property relationships, Environ.
Sci. Technol., 24, 1751–1754, https://doi.org/10.1021/ES00081A021, 1990.
Bu, X. and Warner, M. J.: Solubility of chlorofluorocarbon 113 in water and
seawater, Deep-Sea Res. I, 42, 1151–1161,
https://doi.org/10.1016/0967-0637(95)00052-8, 1995.
Buck, A. L.: New equations for computing vapor pressure and enhancement factor,
J. Appl. Meteorol. Clim., 20, 1527–1532,
https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981.
Bullister, J. L. and Wisegarver, D. P.: The solubility of carbon tetrachloride
in water and seawater, Deep-Sea Res. I, 45, 1285–1302,
https://doi.org/10.1016/S0967-0637(98)00017-X, 1998.
Bullister, J. L., Wisegarver, D. P., and Menzia, F. A.: The solubility of
sulfur hexafluoride in water and seawater, Deep-Sea Res. I, 49, 175–187,
https://doi.org/10.1016/S0967-0637(01)00051-6, 2002.
Bunsen, R.: Ueber das Gesetz der Gasabsorption, Liebigs Ann. Chem., 93, 1–50,
https://doi.org/10.1002/JLAC.18550930102, 1855a.
Bunsen, R.: XV. On the law of absorption of gases, Philos. Mag., 9, 116–130,
https://doi.org/10.1080/14786445508641836, 1855b.
Bunsen, R.: XXVII. On the law of absorption of gases, Philos. Mag., 9,
181–201, https://doi.org/10.1080/14786445508641851, 1855c.
Burkhard, L. P., Armstrong, D. E., and Andren, A. W.: Henry's law constants for
the polychlorinated biphenyls, Environ. Sci. Technol., 19, 590–596,
https://doi.org/10.1021/ES00137A002, 1985.
Burkhard, N. and Guth, J. A.: Rate of volatilisation of pesticides from soil
surfaces; comparison of calculated results with those determined in a
laboratory model system, Pestic. Sci., 12, 37–44,
https://doi.org/10.1002/PS.2780120106, 1981.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb,
C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory,
Pasadena, (last access: 19 September 2023), 2015.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C.,
Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J.,
Orkin, V. L., Percival, C. J., Wilmouth, D. M., and Wine, P. H.: Chemical
Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation
No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena,
(last access: 19 September 2023), 2019.
Burnett, M. G.: Determination of partition coefficients at infinite dilution by
the gas chromatographic analysis of the vapor above dilute solutions, Anal.
Chem., 35, 1567–1570, https://doi.org/10.1021/AC60204A007, 1963.
Butler, J. A. V. and Ramchandani, C. N.: The solubility of non-electrolytes.
Part II. The influence of the polar group on the free energy of hydration of
aliphatic compounds, J. Chem. Soc., 952–955, https://doi.org/10.1039/JR9350000952,
1935.
Butler, J. A. V., Thomson, D. W., and Maclennan, W. H.: The free energy of the
normal aliphatic alcohols in aqueous solution. Part I. The partial vapour
pressures of aqueous solutions of methyl, n-propyl, and n-butyl alcohols.
Part II. The solubilities of some normal aliphatic alcohols in water. Part
III. The theory of binary solutions, and its application to aqueous-alcoholic
solutions, J. Chem. Soc., 674–686, https://doi.org/10.1039/JR9330000674, 1933.
Butler, J. A. V., Ramchandani, C. N., and Thomson, D. W.: The solubility of
non-electrolytes. Part I. The free energy of hydration of some aliphatic
alcohols, J. Chem. Soc., 280–285, https://doi.org/10.1039/JR9350000280, 1935.
Buttery, R. G., Guadagni, D. G., and Okano, S.: Air–water partition
coefficients of some aldehydes, J. Sci. Food Agric., 16, 691–692,
https://doi.org/10.1002/JSFA.2740161110, 1965.
Buttery, R. G., Ling, L. C., and Guadagni, D. G.: Volatilities of aldehydes,
ketones, and esters in dilute water solutions, J. Agric. Food Chem., 17,
385–389, https://doi.org/10.1021/JF60162A025, 1969.
Buttery, R. G., Bomben, J. L., Guadagni, D. G., and Ling, L. C.: Some
considerations of volatilities of organic flavor compounds in foods, J.
Agric. Food Chem., 19, 1045–1048, https://doi.org/10.1021/JF60178A004, 1971.
Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute
solutions of organic compounds. Part 1. – Cyclic amines, Trans. Faraday
Soc., 67, 1933–1942, https://doi.org/10.1039/TF9716701933, 1971a.
Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute
solutions of organic compounds. Part 2. – Cyclic ethers, Trans. Faraday
Soc., 67, 1943–1950, https://doi.org/10.1039/TF9716701943, 1971b.
Cabani, S., Conti, G., Giannessi, D., and Lepori, L.: Thermodynamic study of
aqueous dilute solutions of organic compounds. Part 3. – Morpholines and
piperazines, J. Chem. Soc. Faraday Trans. 1, 71, 1154–1160,
https://doi.org/10.1039/F19757101154, 1975a.
Cabani, S., Conti, G., Mollica, V., and Lepori, L.: Thermodynamic study of
dilute aqueous solutions of organic compounds. Part 4. – Cyclic and straight
chain secondary alcohols, J. Chem. Soc. Faraday Trans. 1, 71, 1943–1952,
https://doi.org/10.1039/F19757101943, 1975b.
Cabani, S., Mollica, V., and Lepori, L.: Thermodynamic study of dilute aqueous
solutions of organic compounds. Part 5. – Open-chain saturated bifunctional
compounds, J. Chem. Soc. Faraday Trans. 1, 74, 2667–2671,
https://doi.org/10.1039/F19787402667, 1978.
Cabani, S., Gianni, P., Mollica, V., and Lepori, L.: Group contributions to the
thermodynamic properties of non-ionic organic solutes in dilute aqueous
solution, J. Solution Chem., 10, 563–595, https://doi.org/10.1007/BF00646936, 1981.
Cady, G. H. and Misra, S.: Hydrolysis of sulfuryl fluoride, Inorg. Chem., 13,
837–841, https://doi.org/10.1021/IC50134A016, 1974.
Cady, H. P., Elsey, H. M., and Berger, E. V.: The solubility of helium in
water, J. Am. Chem. Soc., 44, 1456–1461, https://doi.org/10.1021/JA01428A009, 1922.
Calamari, D., Bacci, E., Focardi, S., Gaggi, C., Morosini, M., and Vighi, M.:
Role of plant biomass in the global environmental partitioning of chlorinated
hydrocarbons, Environ. Sci. Technol., 25, 1489–1495,
https://doi.org/10.1021/ES00020A020, 1991.
Cargill, R. W.: IUPAC Solubility Data Series, Vol. 43, Carbon Monoxide,
Pergamon Press, Oxford, https://doi.org/10.1016/C2009-0-01228-8, 1990.
Carius, L.: Absorptiometrische Untersuchungen, Liebigs Ann. Chem., 94,
129–166, https://doi.org/10.1002/JLAC.18550940202, 1855.
Caron, G., Suffet, I. H., and Belton, T.: Effect of dissolved organic carbon on
the environmental distribution of nonpolar organic compounds, Chemosphere,
14, 993–1000, https://doi.org/10.1016/0045-6535(85)90020-7, 1985.
Carpenter, J. H.: New measurements of oxygen solubility in pure and natural
water, Limnol. Oceanogr., 11, 264–277, https://doi.org/10.4319/LO.1966.11.2.0264,
1966.
Carroll, J. J. and Mather, A. E.: The solubility of hydrogen sulphide in water
from 0 to 90 °C and pressures to 1 MPa, Geochim.
Cosmochim. Acta, 53, 1163–1170, https://doi.org/10.1016/0016-7037(89)90053-7, 1989.
Carroll, J. J., Slupsky, J. D., and Mather, A. E.: The solubility of carbon
dioxide in water at low pressure, J. Phys. Chem. Ref. Data, 20, 1201–1209,
https://doi.org/10.1063/1.555900, 1991.
Carroll, J. J., Jou, F.-Y., and Mather, A. E.: Fluid phase equilibria in the
system n-butane + water, Fluid Phase Equilib., 140, 157–169,
https://doi.org/10.1016/S0378-3812(97)00199-4, 1997.
Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A thermodynamic model of
the system HCl-HNO3-H2SO4-H2O, including
solubilities of HBr, from < 200 to 328 K, J. Phys. Chem., 99,
11 557–11 574, https://doi.org/10.1021/J100029A039, 1995.
Carter, G. B., McIver, M. C., and Miller, G. J.: Evidence for the formation of
a hexahydrotriazine in the condensation of acetaldehyde with methylamine, J.
Chem. Soc. C, 2591–2592, https://doi.org/10.1039/J39680002591, 1968.
Cetin, B. and Odabasi, M.: Measurement of Henry's law constants of seven
polybrominated diphenyl ether (PBDE) congeners as a function of temperature,
Atmos. Environ., 39, 5273–5280, https://doi.org/10.1016/J.ATMOSENV.2005.05.029, 2005.
Cetin, B., Ozer, S., Sofuoglu, A., and Odabasi, M.: Determination of Henry's
law constants of organochlorine pesticides in deionized and saline water as a
function of temperature, Atmos. Environ., 40, 4538–4546,
https://doi.org/10.1016/J.ATMOSENV.2006.04.009, 2006.
Chai, X.-S., Falabella, J. B., and Teja, A. S.: A relative headspace method for
Henry's constants of volatile organic compounds, Fluid Phase Equilib., 231,
239–245, https://doi.org/10.1016/J.FLUID.2005.02.006, 2005.
Chaintreau, A., Grade, A., and Muñoz-Box, R.: Determination of partition
coefficients and quantitation of headspace volatile compounds, Anal. Chem.,
67, 3300–3304, https://doi.org/10.1021/AC00114A029, 1995.
Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J.
Geophys. Res., 89, 4739–4755, https://doi.org/10.1029/JD089ID03P04739, 1984.
Chameides, W. L.: Reply, J. Geophys. Res., 91, 14 571–14 572,
https://doi.org/10.1029/JD091ID13P14571, 1986.
Chameides, W. L. and Stelson, A. W.: Aqueous phase chemical processes in
deliquescent sea-salt aerosols: A mechanism that couples the atmospheric
cycles of S and sea salt, J. Geophys. Res., 97, 20 565–20 580,
https://doi.org/10.1029/92JD01923, 1992.
Chan, M. N., Surratt, J. D., Claeys, M., Edgerton, E. S., Tanner, R. L., Shaw,
S. L., Zheng, M., Knipping, E. M., Eddingsaas, N. C., Wennberg, P. O., and
Seinfeld, J. H.: Characterization and quantification of isoprene-derived
epoxydiols in ambient aerosol in the southeastern United States, Environ.
Sci. Technol., 44, 4590–4596, https://doi.org/10.1021/ES100596B, 2010.
Chancel, G. and Parmentier, F.: Sur la solubilité du sulfure de carbone et
sur celle du chloroforme, C. R. Hebd. Séances Acad. Sci., 100, 773–776,
1885.
Chang, W.-K. and Criddle, C. S.: Biotransformation of HCFC-22, HCFC-142b,
HCFC-123, and HFC-134a by methanotrophic mixed culture MM1, Biodegrad., 6,
1–9, https://doi.org/10.1007/BF00702293, 1995.
Chao, H.-P., Lee, J.-F., and Chiou, C. T.: Determination of the Henry's law
constants of low-volatility compounds via the measured air-phase transfer
coefficients, Wat. Res., 120, 238–244, https://doi.org/10.1016/J.WATRES.2017.04.074,
2017.
Chapoy, A., Mokraoui, S., Valtz, A., Richon, D., Mohammadi, A. H., and Tohidi,
B.: Solubility measurement and modeling for the system propane-water from
277.62 to 368.16 K, Fluid Phase Equilib., 226, 213–220,
https://doi.org/10.1016/J.FLUID.2004.08.040, 2004.
Chapoy, A., Mohammadi, A. H., Tohidi, B., Valtz, A., and Richon, D.:
Experimental measurement and phase behavior modeling of hydrogen
sulfide-water binary system, Ind. Eng. Chem. Res., 44, 7567–7574,
https://doi.org/10.1021/IE050201H, 2005.
Charles, M. J. and Destaillats, H.: Experimental determinations of Henry's law
constants of polybrominated diphenyl ethers (PBDEs) to evaluate exposure to
aquatic biota, technical completion report, University of California Water
Resources Center, UC Berkeley,
(last access: 19 September 2023), 2005.
Chen, C.-C., Britt, H. I., Boston, J. F., and Evans, L. B.: Extension and
application of the Pitzer equation for vapor-liquid equlibrium of aqueous
electrolyte systems with molecular solutes, AIChE J., 25, 820–831,
https://doi.org/10.1002/AIC.690250510, 1979.
Chen, F., Freedman, D. L., Falta, R. W., and Murdoch, L. C.: Henry's law
constants of chlorinated solvents at elevated temperatures, Chemosphere, 86,
156–165, https://doi.org/10.1016/J.CHEMOSPHERE.2011.10.004, 2012.
Chen, L., Takenaka, N., Bandow, H., and Maeda, Y.: Henry's law constants for
C2-C3 fluorinated alcohols and their wet deposition in the
atmosphere, Atmos. Environ., 37, 4817–4822,
https://doi.org/10.1016/J.ATMOSENV.2003.08.002, 2003.
Cheng, W.-H., Chu, F.-S., and Liou, J.-J.: Air–water interface equilibrium
partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37,
4807–4815, https://doi.org/10.1016/J.ATMOSENV.2003.08.012, 2003.
Cheng, W.-H., Chou, M.-S., Perng, C.-H., and Chu, F.-S.: Determining the
equilibrium partitioning coefficients of volatile organic compounds at an
air–water interface, Chemosphere, 54, 935–942,
https://doi.org/10.1016/J.CHEMOSPHERE.2003.08.038, 2004.
Chesters, G., Simsiman, G. V., Levy, J., Alhajjar, B. J., Fathulla, R. N., and
Harkin, J. M.: Environmental fate of alachlor and metolachlor, Rev. Environ.
Contam. Toxicol., 110, 1–74, https://doi.org/10.1007/978-1-4684-7092-5_1, 1989.
Cheung, J. L., Li, Y. Q., Boniface, J., Shi, Q., Davidovits, P., Worsnop,
D. R., Jayne, J. T., and Kolb, C. E.: Heterogeneous interactions of
NO2 with aqueous surfaces, J. Phys. Chem. A, 104, 2655–2662,
https://doi.org/10.1021/JP992929F, 2000.
Chiang, P.-C., Hung, C.-H., Mar, J. C., and Chang, E. E.: Henry's constants and
mass transfer coefficients of halogenated organic pollutants in an air
stripping packed column, Wat. Sci. Tech., 38, 287–294, 1998.
Chiou, C. T., Freed, V. H., Peters, L. J., and Kohnert, R. L.: Evaporation of
solutes from water, Environ. Int., 3, 231–236,
https://doi.org/10.1016/0160-4120(80)90123-3, 1980.
Christie, A. O. and Crisp, D. J.: Activity coefficients on the n-primary,
secondary and tertiary aliphatic amines in aqueous solution, J. Appl. Chem.,
17, 11–14, https://doi.org/10.1002/JCTB.5010170103, 1967.
Cimetiere, N. and de Laat, J.: Henry's law constant of
N,N-dichloromethylamine: Application to the contamination of the atmosphere
of indoor swimming pools, Chemosphere, 77, 465–470,
https://doi.org/10.1016/J.CHEMOSPHERE.2009.07.056, 2009.
Clarke, E. C. W. and Glew, D. N.: Aqueous nonelectrolyte solutions. Part VIII.
Deuterium and hydrogen sulfides solubilities in deuterium oxide and water,
Can. J. Chem., 49, 691–698, https://doi.org/10.1139/V71-116, 1971.
Clarke, G. A., Williams, T. R., and Taft, R. W.: A manometric determination of
the solvolysis rate of gaseous t-butyl chloride in aqueous solution, J. Am.
Chem. Soc., 84, 2292–2295, https://doi.org/10.1021/JA00871A004, 1962.
Clegg, S. L. and Brimblecombe, P.: The dissociation constant and Henry's law
constant of HCl in aqueous solution, Atmos. Environ., 20, 2483–2485,
https://doi.org/10.1016/0004-6981(86)90079-X, 1986.
Clegg, S. L. and Brimblecombe, P.: Solubility of ammonia in pure aqueous and
multicomponent solutions, J. Phys. Chem., 93, 7237–7248,
https://doi.org/10.1021/J100357A041, 1989.
Clegg, S. L. and Brimblecombe, P.: Equilibrium partial pressures and mean
activity and osmotic coefficients of 0–100 % nitric acid as a function of
temperature, J. Phys. Chem., 94, 5369–5380, https://doi.org/10.1021/J100376A038, 1990.
Clegg, S. L., Brimblecombe, P., and Khan, I.: The Henry's law constant of
oxalic acid and its partitioning into in the atmospheric aerosol,
Idöjárás, 100, 51–68, 1996.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the
system H+-NH4+-SO42−-NO3−-H2O at
tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154,
https://doi.org/10.1021/JP973042R, 1998.
Clever, H. L.: IUPAC Solubility Data Series, Vol. 1, Helium and Neon,
Pergamon Press, Oxford, ISBN 0080223516, 1979a.
Clever, H. L.: IUPAC Solubility Data Series, Vol. 2, Krypton, Xenon and
Radon, Pergamon Press, Oxford, ISBN 0080223524, 1979b.
Clever, H. L.: IUPAC Solubility Data Series, Vol. 4, Argon, Pergamon Press,
Oxford, ISBN 0080223532, 1980.
Clever, H. L.: IUPAC Solubility Data Series, Vol. 29, Mercury in Liquids,
Compressed Gases, Molten Salts and Other Elements, Pergamon Press, Oxford,
https://doi.org/10.1016/C2009-0-01263-X, 1987.
Clever, H. L. and Young, C. L.: IUPAC Solubility Data Series, Vol. 27/28,
Methane, Pergamon Press, Oxford, https://doi.org/10.1016/C2009-0-00752-1, 1987.
Clever, H. L., Johnson, S. A., and Derrick, M. E.: The solubility of mercury
and some sparingly soluble mercury salts in water and aqueous-electrolyte
solutions, J. Phys. Chem. Ref. Data, 14, 631–681, https://doi.org/10.1063/1.555732,
1985.
Clever, H. L., Battino, R., Jaselskis, B., Yampol'skii, Y. P., Jaselskis, B.,
Scharlin, P., and Young, C. L.: IUPAC-NIST solubility data series. 80.
Gaseous fluorides of boron, nitrogen, sulfur, carbon, and silicon and solid
xenon fluorides in all solvents, J. Phys. Chem. Ref. Data, 34, 201–438,
https://doi.org/10.1063/1.1794762, 2005.
Clever, H. L., Battino, R., Miyamoto, H., Yampolski, Y., and Young, C. L.:
IUPAC-NIST solubility data series. 103. Oxygen and ozone in water, aqueous
solutions, and organic liquids (supplement to solubility data series volume
7), J. Phys. Chem. Ref. Data, 43, 033 102, https://doi.org/10.1063/1.4883876, 2014.
Cline, J. D. and Bates, T. S.: Dimethyl sulfide in the equatorial Pacific
Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett., 10,
949–952, https://doi.org/10.1029/GL010I010P00949, 1983.
Compernolle, S. and Müller, J.-F.: Henry's law constants of diacids and
hydroxy polyacids: recommended values, Atmos. Chem. Phys., 14, 2699–2712,
https://doi.org/10.5194/ACP-14-2699-2014, 2014a.
Compernolle, S. and Müller, J.-F.: Henry's law constants of polyols, Atmos.
Chem. Phys., 14, 12 815–12 837, https://doi.org/10.5194/ACP-14-12815-2014,
2014b.
Conway, R. A., Waggy, G. T., Spiegel, M. H., and Berglund, R. L.: Environmental
fate and effects of ethylene oxide, Environ. Sci. Technol., 17, 107–112,
https://doi.org/10.1021/ES00108A009, 1983.
Cooling, M. R., Khalfaoui, B., and Newsham, D. M. T.: Phase equilibria in very
dilute mixtures of water and unsaturated chlorinated hydrocarbons and of
water and benzene, Fluid Phase Equilib., 81, 217–229,
https://doi.org/10.1016/0378-3812(92)85153-Y, 1992.
Copolovici, L. and Niinemets, U.: Salting-in and salting-out effects of ionic
and neutral osmotica on limonene and linalool Henry's law constants and
octanol/water partition coefficients, Chemosphere, 69, 621–629,
https://doi.org/10.1016/J.CHEMOSPHERE.2007.02.066, 2007.
Copolovici, L. and Niinemets, U.: Temperature dependencies of Henry's law
constants for different plant sesquiterpenes, Chemosphere, 138, 751–757,
https://doi.org/10.1016/J.CHEMOSPHERE.2015.07.075, 2015.
Copolovici, L. O. and Niinemets, U.: Temperature dependencies of Henry's law
constants and octanol/water partition coefficients for key plant volatile
monoterpenoids, Chemosphere, 61, 1390–1400,
https://doi.org/10.1016/J.CHEMOSPHERE.2005.05.003, 2005.
Coquelet, C. and Richon, D.: Measurement of Henry's law constants and infinite
dilution activity coefficients of propyl mercaptan, butyl mercaptan, and
dimethyl sulfide in methyldiethanolamine (1) + water (2) with w1 = 0.50
using a gas stripping technique, J. Chem. Eng. Data, 50, 2053–2057,
https://doi.org/10.1021/JE050268B, 2005.
Cosgrove, B. A. and Walkley, J.: Solubilities of gases in H2O and
2H2O, J. Chromatogr., 216, 161–167,
https://doi.org/10.1016/S0021-9673(00)82344-4, 1981.
Cotham, W. E. and Bidleman, T. F.: Degradation of malathion, endosulfan, and
fenvalerate in seawater and seawater/sediment microcosms, J. Agric. Food
Chem., 37, 824–828, https://doi.org/10.1021/JF00087A055, 1989.
Cousins, I. and Mackay, D.: Correlating the physical-chemical properties of
phthalate esters using the `three solubility' approach, Chemosphere, 41,
1389–1399, https://doi.org/10.1016/S0045-6535(00)00005-9, 2000.
Cramer, S. D.: The solubility of oxygen in brines from 0 to 300 °C, Ind. Eng. Chem. Process Des. Dev., 19, 300–305,
https://doi.org/10.1021/I260074A018, 1980.
Crovetto, R.: Evaluation of solubility data for the system
CO2-H2O from 273 K to the critical point of water, J.
Phys. Chem. Ref. Data, 20, 575–589, https://doi.org/10.1063/1.555905, 1991.
Crovetto, R., Fernández-Prini, R., and Japas, M. L.: Solubilities of inert
gases and methane in H2O and in D2O in the temperature range
of 300 to 600 K, J. Chem. Phys., 76, 1077–1086,
https://doi.org/10.1063/1.443074, 1982.
Crozier, T. E. and Yamamoto, S.: Solubility of hydrogen in water, seawater and
NaCl-solutions, J. Chem. Eng. Data, 19, 242–244, https://doi.org/10.1021/JE60062A007,
1974.
Cruzeiro, V. W. D., Galib, M., Limmer, D. T., and Götz, A. W.: Uptake of
N2O5 by aqueous aerosol unveiled using chemically accurate many-body
potentials, Nature Commun., 13, 1266, https://doi.org/10.1038/S41467-022-28697-8, 2022.
da Silva, A. M., Formosinho, S. J., and Martins, C. T.: Gas chromatographic
determination of the solubility of gases in liquids at low pressures, J.
Chromatogr. Sci., 18, 180–182, https://doi.org/10.1093/CHROMSCI/18.4.180, 1980.
Dacey, J. W. H., Wakeham, S. G., and Howes, B. L.: Henry's law constants for
dimethylsulfide in freshwater and seawater, Geophys. Res. Lett., 11,
991–994, https://doi.org/10.1029/GL011I010P00991, 1984.
Dallos, A., Ország, I., and Ratkovics, F.: Liquid-liquid and vapour-liquid
equilibrium data and calculations for the system aniline + water in the
presence of NaCl, NaI, NH4Cl and NH4I, Fluid
Phase Equilib., 11, 91–102, https://doi.org/10.1016/0378-3812(83)85008-0, 1983.
Dasgupta, P. G. and Dong, S.: Solubility of ammonia in liquid water and
generation of trace levels of standard gaseous ammonia, Atmos. Environ., 20,
565–570, https://doi.org/10.1016/0004-6981(86)90099-5, 1986.
David, M. D., Fendinger, N. J., and Hand, V. C.: Determination of Henry's law
constants for organosilicones in actual and simulated wastewater, Environ.
Sci. Technol., 34, 4554–4559, https://doi.org/10.1021/ES991204M, 2000.
De Bruyn, W. J. and Saltzman, E. S.: The solubility of methyl bromide in pure
water, 35‰ sodium chloride and seawater, Mar. Chem., 56,
51–57, https://doi.org/10.1016/S0304-4203(96)00089-8, 1997.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser,
M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic
acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J.
Geophys. Res., 99, 16 927–16 932, https://doi.org/10.1029/94JD00684, 1994.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser,
M. S., and Kolb, C. E.: Uptake of haloacetyl and carbonyl halides by water
surfaces, Environ. Sci. Technol., 29, 1179–1185, https://doi.org/10.1021/ES00005A007,
1995a.
De Bruyn, W. J., Swartz, E., Hu, J. H., Shorter, J. A., Davidovits, P.,
Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Henry's law solubilities
and Śetchenow coefficients for biogenic reduced sulfur species obtained
from gas-liquid uptake measurements, J. Geophys. Res., 100, 7245–7251,
https://doi.org/10.1029/95JD00217, 1995b.
De Maagd, P. G.-J., Ten Hulscher, D. T. E. M., van den Heuvel, H.,
Opperhuizen, A., and Sijm, D. T. H. M.: Physicochemical properties of
polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water
partition coefficients, and Henry's law constants, Environ. Toxicol. Chem.,
17, 251–257, https://doi.org/10.1002/ETC.5620170216, 1998.
de Wolf, W. and Lieder, P. H.: A novel method to determine uptake and
elimination kinetics of volatile chemicals in fish, Chemosphere, 36,
1713–1724, https://doi.org/10.1016/S0045-6535(97)10062-5, 1998.
Dean, C. R. S., Finch, A., and Gardner, P. J.: The aqueous solubilities of
nitrogen trifluoride and dinitrogen tetrafluoride, J. Chem. Soc. Dalton
Trans., 2722–2725, https://doi.org/10.1039/DT9730002722, 1973.
Dean, J. A. and Lange, N. A.: Lange's Handbook of Chemistry, 15th Edn.,
McGraw-Hill, Inc., ISBN 9780070163843, 1999.
Delgado, E. J. and Alderete, J.: On the calculation of Henry's law constants of
chlorinated benzenes in water from semiempirical quantum chemical methods, J.
Chem. Inf. Comput. Sci., 42, 559–563, https://doi.org/10.1021/CI0101206, 2002.
Delgado, E. J. and Alderete, J. B.: Prediction of Henry's law constants of
triazine derived herbicides from quantum chemical continuum solvation models,
J. Chem. Inf. Comput. Sci., 43, 1226–1230, https://doi.org/10.1021/CI0256485, 2003.
Della Gatta, G., Stradella, L., and Venturello, P.: Enthalpies of solvation
in cyclohexane and in water for homologous aliphatic ketones and esters, J.
Solution Chem., 10, 209–220, https://doi.org/10.1007/BF00653098, 1981.
Deno, N. C. and Berkheimer, H. E.: Activity coefficients as a functon of
structure and media, J. Chem. Eng. Data, 5, 1–5, https://doi.org/10.1021/JE60005A001,
1960.
Destaillats, H. and Charles, M. J.: Henry's law constants of
carbonyl-pentafluorobenzyl hydroxylamine (PFBHA) derivatives in aqueous
solution, J. Chem. Eng. Data, 47, 1481–1487, https://doi.org/10.1021/JE025545I, 2002.
Dewulf, J., Drijvers, D., and van Langenhove, H.: Measurement of Henry's law
constant as function of temperature and salinity for the low temperature
range, Atmos. Environ., 29, 323–331, https://doi.org/10.1016/1352-2310(94)00256-K,
1995.
Dewulf, J., van Langenhove, H., and Everaert, P.: Determination of Henry's
law coefficients by combination of the equilibrium partitioning in closed
systems and solid-phase microextraction techniques, J. Chromatogr. A, 830,
353–363, https://doi.org/10.1016/S0021-9673(98)00877-2, 1999.
Diaz, A., Ventura, F., and Galceran, M. T.: Determination of odorous mixed
chloro-bromoanisoles in water by solid-phase micro-extraction and gas
chromatography-mass detection, J. Chromatogr. A, 1064, 97–106,
https://doi.org/10.1016/J.CHROMA.2004.12.027, 2005.
Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro
methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous
solutions. Comparisons with theoretical predictions, Environ. Sci. Technol.,
11, 405–409, https://doi.org/10.1021/ES60127A009, 1977.
Dilling, W. L., Tefertiller, N. B., and Kallos, G. J.: Evaporation rates and
reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane,
trichloroethylene, tetrachloroethylene, and other chlorinated compounds in
dilute aqueous solutions, Environ. Sci. Technol., 9, 833–838,
https://doi.org/10.1021/ES60107A008, 1975.
Disselkamp, R. S., Chapman, E. G., Barchet, W. R., Colson, S. D., and Howd,
C. D.: BrCl production in
NaBr/NaCl/HNO3/O3 solutions representative of
sea-salt aerosols in the marine boundary layer, Geophys. Res. Lett., 26,
2183–2186, https://doi.org/10.1029/1999GL900251, 1999.
Djerki, R. A. and Laub, R. J.: Solute retention in column liquid
chromatography. X. Determination of solute infinite-dilution activity
coefficients in methanol, water, and their mixtures, by combined gas-liquid
and liquid-liquid chromatography, J. Liq. Chromatogr., 11, 585–612,
https://doi.org/10.1080/01483918808068333, 1988.
Dohányosová, P., Sarraute, S., Dohnal, V., Majer, V., and Costa Gomes,
M.: Aqueous solubility and related thermodynamic functions of nonaromatic
hydrocarbons as a function of molecular structure, Ind. Eng. Chem. Res., 43,
2805–2815, https://doi.org/10.1021/IE030800T, 2004.
Dohnal, V. and Fenclová, D.: Air–water partitioning and aqueous solubility
of phenols, J. Chem. Eng. Data, 40, 478–483, https://doi.org/10.1021/JE00018A027,
1995.
Dohnal, V. and Hovorka, Š.: Exponential saturator: a novel gas-liquid
partitioning technique for measurement of large limiting activity
coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, https://doi.org/10.1021/IE980743H,
1999.
Dohnal, V., Fenclová, D., and Vrbka, P.: Temperature dependences of limiting
activity coefficients, Henry's law constants, and derivative infinite
dilution properties of lower (C1-C5) 1-alkanols in water.
critical compilation, correlation, and recommended data, J. Phys. Chem. Ref.
Data, 35, 1621–1651, https://doi.org/10.1063/1.2203355, 2006.
Dohnal, V., Vrbka, P., Řehák, K., Böhme, A., and Paschke, A.: Activity
coefficients and partial molar excess enthalpies at infinite dilution for
four esters in water, Fluid Phase Equilib., 295, 194–200,
https://doi.org/10.1016/J.FLUID.2010.05.010, 2010.
Donahue, N. M. and Prinn, R. G.: In situ nonmethane hydrocarbon measurements on
SAGA 3, J. Geophys. Res., 98, 16 915–16 932, https://doi.org/10.1029/93JD01780,
1993.
Dong, S. and Dasgupta, P. G.: Solubility of gaseous formaldehyde in liquid
water and generation of trace standard gaseous formaldehyde, Environ. Sci.
Technol., 20, 637–640, https://doi.org/10.1021/ES00148A016, 1986.
D'Orazio, L. A. and Wood, R. H.: The thermodynamics of the solution of polar
gases in water; the heat, free energy, and entropy of solution of hydrazoic
acid, J. Phys. Chem., 67, 1435–1438, https://doi.org/10.1021/J100801A007, 1963.
Douglas, E.: Carbon monoxide solubilities in sea water, J. Phys. Chem., 71,
1931–1933, https://doi.org/10.1021/J100865A064, 1967.
Drouillard, K. G., Tomy, G. T., Muir, D. C. G., and Friesen, K. J.: Volatility
of chlorinated n-alkanes (C10-C12): Vapor pressures and
Henry's law constants, Environ. Toxicol. Chem., 17, 1252–1260,
https://doi.org/10.1002/ETC.5620170709, 1998.
Druaux, C., Le Thanh, M., Seuvre, A.-M., and Voilley, A.: Application of
headspace analysis to the study of aroma compounds-lipids interactions, J.
Am. Oil Chem. Soc., 75, 127–130, https://doi.org/10.1007/S11746-998-0022-Y, 1998.
Du, Y., Yuan, Y., and Rochelle, G. T.: Volatility of amines for CO2
capture, Int. J. Greenhouse Gas Control, 58, 1–9,
https://doi.org/10.1016/J.IJGGC.2017.01.001, 2017.
Dubik, N. A., Titova, G. M., and Loshakova, E. I.: Partition coefficients of
bromine and bromine chloride between air and natural brines, Issled. v Obl.
Poluch. Magniya, Ioda, Broma i ikh Soed., M., 53–57, 1987 (in Russian, see
also Chem. Abstr., 109, 213154j).
Dubowski, K. M.: Breath-alcohol simulators: Scientific basis and actual
performance, J. Anal. Technol., 3, 177–182, https://doi.org/10.1093/JAT/3.5.177, 1979.
Duchowicz, P. R., Aranda, J. F., Bacelo, D. E., and Fioressi, S. E.: QSPR study
of the Henry's law constant for heterogeneous compounds, Chem. Eng. Res.
Des., 154, 115–121, https://doi.org/10.1016/J.CHERD.2019.12.009, 2020.
Dunnivant, F. M. and Elzerman, A. W.: Aqueous solubility and Henry's law
constant data for PCB congeners for evaluation of quantitative
structure-property relationships (QSPRs), Chemosphere, 17, 525–541,
https://doi.org/10.1016/0045-6535(88)90028-8, 1988.
Dunnivant, F. M., Coates, J. T., and Elzerman, A. W.: Experimentally determined
Henry's law constants for 17 polychlorobiphenyl congeners, Environ. Sci.
Technol., 22, 448–453, https://doi.org/10.1021/ES00169A013, 1988.
Dunnivant, F. M., Elzerman, A. W., Jurs, P. C., and Hasan, M. N.: Quantitative
structure-property relationships for aqueous solubilities and Henry's law
constants of polychlorinated biphenyls, Environ. Sci. Technol., 26,
1567–1573, https://doi.org/10.1021/ES00032A012, 1992.
Dupeux, T., Gaudin, T., Marteau-Roussy, C., Aubry, J.-M., and Nardello-Rataj,
V.: COSMO-RS as an effective tool for predicting the physicochemical
properties of fragrance raw materials, Flavour Fragrance J., 37, 106–120,
https://doi.org/10.1002/FFJ.3690, 2022.
Durham, J. L., Overton, Jr., J. H., and Aneja, V. P.: Influence of gaseous
nitric acid on sulfate production and acidity in rain, Atmos. Environ., 15,
1059–1068, https://doi.org/10.1016/0004-6981(81)90106-2, 1981.
Eastcott, L., Shiu, W. Y., and Mackay, D.: Environmentally relevant
physical-chemical properties of hydrocarbons: A review of data and
development of simple correlations, Oil Chem. Pollut., 4, 191–216,
https://doi.org/10.1016/S0269-8579(88)80020-0, 1988.
Easterbrook, K. D., Vona, M. A., Nayebi-Astaneh, K., Miller, A. M., and
Osthoff, H. D.: Measurement of Henry's law and liquid-phase loss rate
constants of peroxypropionic nitric anhydride (PPN) in deionized water and in
n-octanol, Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/ACP-23-311-2023,
2023.
Ebert, R.-U., Kühne, R., and Schüürmann, G.: Henry's law constant – a
general-purpose fragment model to predict log Kaw from molecular
structure, Environ. Sci. Technol., 57, 160–167,
https://doi.org/10.1021/ACS.EST.2C05623, 2023.
Eddingsaas, N. C., VanderVelde, D. G., and Wennberg, P. O.: Kinetics and
products of the acid-catalyzed ring-opening of atmospherically relevant butyl
epoxy alcohols, J. Phys. Chem. A, 114, 8106–8113, https://doi.org/10.1021/JP103907C,
2010.
Edelist, G., Singer, M. M., and Eger, E. I., I.: Solubility coefficients of
teflurane in various biological media, Anesthesiology, 25, 223–225,
https://doi.org/10.1097/00000542-196403000-00015, 1964.
Edwards, T. J., Newman, J., and Prausnitz, J. M.: Thermodynamics of aqueous
solutions containing volatile weak electrolytes, AIChE J., 21, 248–259,
https://doi.org/10.1002/AIC.690210205, 1975.
Edwards, T. J., Maurer, G., Newman, J., and Prausnitz, J. M.: Vapor-liquid
equilibria in multicomponent aqueous solutions of volatile weak electrolytes,
AIChE J., 24, 966–976, https://doi.org/10.1002/AIC.690240605, 1978.
Eger, E. I., Shargel, R., and Merkel, G.: Solubility of diethyl ether in water,
blood and oil, Anesthesiology, 24, 676–678,
https://doi.org/10.1097/00000542-196309000-00017, 1963.
Eger, II, E. I., Ionescu, P., Laster, M. J., Gong, D., Hudlicky, T., Kendig,
J. J., Harris, R. A., Trudell, J. R., and Pohorille, A.: Minimum alveolar
anesthetic concentration of fluorinated alkanols in rats: relevance to
theories of narcosis, Anesth. Analg., 88, 867–876,
https://doi.org/10.1213/00000539-199904000-00035, 1999.
Eguchi, W., Adachi, M., and Yoneda, M.: Dependency of partition equilibrium of
iodine between air and aqueous solution containing sodium hydroxide upon
temperature and concentration, J. Chem. Eng. Jpn., 6, 389–396,
https://doi.org/10.1252/JCEJ.6.389, 1973.
Elliott, S.: The solubility of carbon disulfide vapor in natural aqueous
systems, Atmos. Environ., 23, 1977–1980, https://doi.org/10.1016/0004-6981(89)90523-4,
1989.
Elliott, S. and Rowland, F. S.: Nucleophilic substitution rates and
solubilities for methyl halides in seawater, Geophys. Res. Lett., 20,
1043–1046, https://doi.org/10.1029/93GL01081, 1993.
Emel'yanenko, V. N., Dabrowska, A., Verevkin, S. P., Hertel, M. O., Scheuren,
H., and Sommer, K.: Vapor pressures, enthalpies of vaporization, and limiting
activity coefficients in water at 100 °C of 2-furanaldehyde,
benzaldehyde, phenylethanal, and 2-phenylethanol, J. Chem. Eng. Data, 52,
468–471, https://doi.org/10.1021/JE060406C, 2007.
English, N. J. and Carroll, D. G.: Prediction of Henry's law constants by a
quantitative structure property relationship and neural networks, J. Chem.
Inf. Comput. Sci., 41, 1150–1161, https://doi.org/10.1021/CI010361D, 2001.
Ercan, M. T.: Solubility coefficients of 133Xe in water, saline, dog
blood and organs, Int. J. Appl. Radiat. Isot., 30, 757–759,
https://doi.org/10.1016/0020-708X(79)90156-X, 1979.
Ervin, A. L., Mangone, M. A., and Singley, J. E.: Trace organics removal by air
stripping, in: Proceedings of the Annual Conference of the American Water
Works Association, 507–530, 1980.
Ettre, L. S., Welter, C., and Kolb, B.: Determination of gas-liquid partition
coefficients by automatic equilibrium headspace – gas chromatography
utilizing the phase ratio variation method, Chromatographia, 35, 73–84,
https://doi.org/10.1007/BF02278560, 1993.
Falabella, J. B. and Teja, A. S.: Air–water partitioning of gasoline
components in the presence of sodium chloride, Energy Fuels, 22, 398–401,
https://doi.org/10.1021/EF700513K, 2008.
Falabella, J. B., Nair, A., and Teja, A. S.: Henry's constants of 1-alkanols
and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945,
https://doi.org/10.1021/JE0600956, 2006.
Falk, A., Gullstrand, E., Löf, A., and Wigaeus-Hjelm, E.: Liquid/air
partition coefficients of four terpenes, Br. J. Ind. Med., 47, 62–64,
https://doi.org/10.1136/OEM.47.1.62, 1990.
Fang, F., Chu, S., and Hong, C.-S.: Air–water Henry's law constants for PCB
congeners: experimental determination and modeling of structure-property
relationship, Anal. Chem., 78, 5412–5418, https://doi.org/10.1021/AC0604742, 2006.
Feigenbrugel, V. and Le Calvé, S.: Temperature dependence of Henry's law
constants of fenpropidin and pyrimethanil: impact on their atmospheric
partitionnings and lifetimes, J. Environ. Sci. Public Health, 5, 180–199,
https://doi.org/10.26502/JESPH.96120124, 2021.
Feigenbrugel, V., Le Calvé, S., and Mirabel, P.: Temperature dependence of
Henry's law constants of metolachlor and diazinon, Chemosphere, 57, 319–327,
https://doi.org/10.1016/J.CHEMOSPHERE.2004.05.013, 2004a.
Feigenbrugel, V., Le Calvé, S., Mirabel, P., and Louis, F.: Henry's law
constant measurements for phenol, o-, m-, and p-cresol as a function of
temperature, Atmos. Environ., 38, 5577–5588,
https://doi.org/10.1016/J.ATMOSENV.2004.06.025, 2004b.
Felder, J. D., Adams, W. J., and Saeger, V. W.: Assessment of the safety of
dioctyl adipate in freshwater environments, Environ. Toxicol. Chem., 5,
777–784, https://doi.org/10.1002/ETC.5620050809, 1986.
Feldhake, C. J. and Stevens, C. D.: The solubility of tetraethyllead in water,
J. Chem. Eng. Data, 8, 196–197, https://doi.org/10.1021/JE60017A016, 1963.
Fenclová, D., Dohnal, V., Vrbka, P., and Laštovka, V.: Temperature
dependence of limiting activity coefficients, Henry's law constants, and
related infinite dilution properties of branched (C3 and C4) alkanols in
water, J. Chem. Eng. Data, 52, 989–1002, https://doi.org/10.1021/JE600567Z, 2007.
Fenclová, D., Dohnal, V., Vrbka, P., and Řehák, K.: Temperature dependence
of limiting activity coefficients, Henry's law constants, and related
infinite dilution properties of branched pentanols in water. Measurement,
critical compilation, correlation, and recommended data, J. Chem. Eng. Data,
55, 3032–3043, https://doi.org/10.1021/JE901063S, 2010.
Fenclová, D., Blahut, A., Vrbka, P., Dohnal, V., and Böhme, A.: Temperature
dependence of limiting activity coefficients, Henry's law constants, and
related infinite dilution properties of C4-C6 isomeric n-alkyl
ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation,
correlation, and recommended data, Fluid Phase Equilib., 375, 347–359,
https://doi.org/10.1016/J.FLUID.2014.05.023, 2014.
Fendinger, N. J. and Glotfelty, D. E.: A laboratory method for the experimental
determination of air–water Henry's law constants for several pesticides,
Environ. Sci. Technol., 22, 1289–1293, https://doi.org/10.1021/ES00176A007, 1988.
Fendinger, N. J. and Glotfelty, D. E.: Henry's law constants for selected
pesticides, PAHs and PCBs, Environ. Toxicol. Chem., 9, 731–735,
https://doi.org/10.1002/ETC.5620090606, 1990.
Fendinger, N. J., Glotfelty, D. E., and Freeman, H. P.: Comparison of two
experimental techniques for determining air/water Henry's law constants,
Environ. Sci. Technol., 23, 1528–1531, https://doi.org/10.1021/ES00070A013, 1989.
Fernández-Prini, R., Alvarez, J. L., and Harvey, A. H.: Henry's constants and
vapor-liquid distribution constants for gaseous solutes in H2O and
D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916,
https://doi.org/10.1063/1.1564818, 2003.
Ferreira, M. M. C.: Polycyclic aromatic hydrocarbons: a QSPR study,
Chemosphere, 44, 125–146, https://doi.org/10.1016/S0045-6535(00)00275-7, 2001.
Fichan, I., Larroche, C., and Gros, J. B.: Water solubility, vapor pressure,
and activity coefficients of terpenes and terpenoids, J. Chem. Eng. Data, 44,
56–62, https://doi.org/10.1021/JE980070+, 1999.
Fickert, S.: Laboruntersuchungen zur Freisetzung photoreaktiver
Halogenverbindungen aus Seesalzaerosol, Ph.D. thesis, Johannes
Gutenberg-Universität, Mainz, Germany, 1998.
Fischer, A., Müller, M., and Klasmeier, J.: Determination of Henry's law
constant for methyl tert-butyl ether (MTBE) at groundwater
temperatures, Chemosphere, 54, 689–694,
https://doi.org/10.1016/J.CHEMOSPHERE.2003.08.025, 2004.
Fischer, F. and Tropsch, H.: Notiz über Farbe und Oxydationswert einiger
Ozonlösungen, Ber. Dtsch. Chem. Ges., 50, 765–767,
https://doi.org/10.1002/CBER.191705001124, 1917.
Fischer, R. G. and Ballschmiter, K.: Determination of vapor pressure, water
solubility, gas-water partition coefficient PGW, Henry's law
constant, and octanol-water partition coefficient POW of 26 alkyl
dinitrates, Chemosphere, 36, 2891–2901, https://doi.org/10.1016/S0045-6535(97)10246-6,
1998a.
Fischer, R. G. and Ballschmiter, K.: Prediction of the environmental
distribution of alkyl dinitrates – Chromatographic determination of vapor
pressure p0, water solubility SH2O, gas-water partition
coefficient KGW (Henry's law constant) and octanol-water
partition coefficient KOW, Fresenius J. Anal. Chem., 360,
769–776, https://doi.org/10.1007/S002160050803, 1998b.
Fishbein, L. and Albro, P. W.: Chromatographic and biological aspects of the
phthalate esters, J. Chromatogr. A, 70, 365–412,
https://doi.org/10.1016/S0021-9673(00)92702-X, 1972.
Fogg, P. and Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and
Reactivity, John Wiley & Sons, Inc., ISBN 978-0-471-98651-5, 2003.
Fogg, P. G. T. and Young, C. L.: IUPAC Solubility Data Series, Vol. 32,
Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide, Pergamon Press,
Oxford, https://doi.org/10.1016/C2009-0-00348-1, 1988.
Fogg, P. G. T., Bligh, S.-W. A., Derrick, M. E., Yampol'skii, Y. P., Clever,
H. L., Skrzecz, A., Young, C. L., and Fogg, P. G. T.: IUPAC-NIST solubility
data series. 76. Solubility of ethyne in liquids, J. Phys. Chem. Ref. Data,
30, 1693–1876, https://doi.org/10.1063/1.1397768, 2002.
Foster, P., Ferronato, C., and Jacob, V.: Organic-compound transfer between
gas-phase and raindrops – 1st experiments in a simulation chamber, Fresenius
Environ. Bull., 3, 318–323, 1994.
Fox, C. J. J.: On the coefficients of absorption of nitrogen and oxygen in
distilled water and sea-water, and of atmospheric carbonic acid in sea-water,
Trans. Faraday Soc., 5, 68–86, https://doi.org/10.1039/TF9090500068, 1909.
Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur,
P.-F., De Mazière, M., De Smedt, I., Dorn, H.-P., Emmerichs, T.,
Fuchs, H., Gkatzelis, G., Griffith, D. W. T., Gromov, S., Hannigan, J. W.,
Hase, F., Hohaus, T., Jones, N., Kerkweg, A., Kiendler-Scharr, A., Lutsch,
E., Mahieu, E., Novelli, A., Ortega, I., Paton-Walsh, C., Pommier, M.,
Pozzer, A., Reimer, D., Rosanka, S., Sander, R., Schneider, M., Strong, K.,
Tillmann, R., Van Roozendael, M., Vereecken, L., Vigouroux, C., Wahner, A.,
and Taraborrelli, D.: Ubiquitous atmospheric production of organic acids
mediated by cloud droplets, Nature, 593, 233–237,
https://doi.org/10.1038/S41586-021-03462-X, 2021.
Fredenhagen, K. and Liebster, H.: Die Teildrucke und Verteilungszahlen der
Essigsäure über ihren wässerigen Lösungen bei 25 °C,
Z. Phys. Chem., 162A, 449–453, https://doi.org/10.1515/ZPCH-1932-16234, 1932.
Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Fluorwasserstoffs
über dem Zweistoffsystem [H2O-HF] bei 25 °C
und die Siedepunktskurve dieses Systems bei Atmosphärendruck, Z. Phys.
Chem., 162A, 454–466, https://doi.org/10.1515/ZPCH-1932-16235, 1932a.
Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Cyanwasserstoffs und
des Wassers über dem Zweistoffsystem [H2O-HCN] bei
18 °C, Z. Phys. Chem., 162A, 467–470,
https://doi.org/10.1515/ZPCH-1932-16236, 1932b.
Frenzel, A., Scheer, V., Sikorski, R., George, C., Behnke, W., and Zetzsch, C.:
Heterogeneous interconversion reactions of BrNO2, ClNO2,
Br2, and Cl2, J. Phys. Chem. A, 102, 1329–1337,
https://doi.org/10.1021/JP973044B, 1998.
Frenzel, A., Kutsuna, S., Takeuchi, K., and Ibusuki, T.: Solubility and
reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and
in sulphuric acid, Atmos. Environ., 34, 3641–3644,
https://doi.org/10.1016/S1352-2310(00)00132-1, 2000.
Friant, S. L. and Suffet, I. H.: Interactive effects of temperature, salt
concentration, and pH on head space analysis for isolating volatile trace
organics in aqueous environmental samples, Anal. Chem., 51, 2167–2172,
https://doi.org/10.1021/AC50049A027, 1979.
Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction
probability of N2O5 with sulfuric acid aerosols at stratospheric
temperatures and compositions, J. Geophys. Res., 99, 3517–3532,
https://doi.org/10.1029/93JD01907, 1994.
Friedman, H. L.: The solubilities of sulfur hexafluoride in water and of the
rare gases, sulfur hexafluoride and osmium tetroxide in nitromethane, J. Am.
Chem. Soc., 76, 3294–3297, https://doi.org/10.1021/JA01641A065, 1954.
Friesen, K. J., Loewen, M. D., Fairchild, W. L., Lawrence, S. G., Holoka,
M. H., and Muir, D. C. G.: Evidence for particle-mediated transport of
2,3,7,8-tetrachlorodibenzofuran during gas sparging of natural water,
Environ. Toxicol. Chem., 12, 2037–2044, https://doi.org/10.1002/ETC.5620121110, 1993.
Fu, M., Yu, Z., Lu, G., and Song, X.: Henry's law constant for phosphine in
seawater: determination and assessment of influencing factors, Chin. J.
Oceanol. Limnol., 31, 860–866, https://doi.org/10.1007/S00343-013-2212-1, 2013.
Fukuchi, K., Miyoshi, K., Watanabe, T., Yonezawa, S., and Arai, Y.: Measurement
and correlation of infinite dilution activity coefficients of alkanol or
ether in aqueous solution, Fluid Phase Equilib., 194-197, 937–945,
https://doi.org/10.1016/S0378-3812(01)00675-6, 2002.
Gabel, R. A. and Schultz, B.: Solubility of nitrous oxide in water, 20–80 C,
Anesthesiology, 38, 75–81, https://doi.org/10.1097/00000542-197301000-00019, 1973.
Gaffney, J. S. and Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and
their links to natural and anthropogenic organic sources, in: Gas-Liquid
Chemistry of Natural Waters, edited by: Newman, L., NTIS
TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory, 5–1–5–7, 1984.
Gaffney, J. S., Streit, G. E., Spall, W. D., and Hall, J. H.: Beyond acid rain.
Do soluble oxidants and organic toxins interact with SO2 and
NOx to increase ecosystem effects?, Environ. Sci. Technol., 21,
519–524, https://doi.org/10.1021/ES00160A001, 1987.
Galib, M. and Limmer, D. T.: Reactive uptake of N2O5 by atmospheric
aerosol is dominated by interfacial processes, Science, 371, 921–925,
https://doi.org/10.1126/SCIENCE.ABD7716, 2021.
Gan, J. and Yates, S. R.: Degradation and phase partition of methyl iodide in
soil, J. Agric. Food Chem., 44, 4001–4008, https://doi.org/10.1021/JF960413C, 1996.
Garbarini, D. R. and Lion, L. W.: Evaluation of sorptive partitioning of
nonionic pollutants in closed systems by headspace analysis, Environ. Sci.
Technol., 19, 1122–1128, https://doi.org/10.1021/ES00141A018, 1985.
Gatterer, A.: XXXIX. – The absorption of gases by colloidal solutions, J. Chem.
Soc., 129, 299–316, https://doi.org/10.1039/JR9262900299, 1926.
Gautier, C., Le Calvé, S., and Mirabel, P.: Henry's law constants
measurements of alachlor and dichlorvos between 283 and 298 K, Atmos.
Environ., 37, 2347–2353, https://doi.org/10.1016/S1352-2310(03)00155-9, 2003.
Geffcken, G.: Beiträge zur Kenntnis der Löslichkeitsbeeinflussung, Z. Phys.
Chem., 49, 257–302, https://doi.org/10.1515/ZPCH-1904-4925, 1904.
George, C., Ponche, J. L., and Mirabel, P.: Experimental determination of
uptake coefficients for acid halides, in: Proceedings of Workshop on
STEP-HALOCSIDE, AFEAS, Dublin, 23–25 March, 1993.
George, C., Lagrange, J., Lagrange, P., Mirabel, P., Pallares, C., and Ponche,
J. L.: Heterogeneous chemistry of trichloroacetyl chloride in the atmosphere,
J. Geophys. Res., 99, 1255–1262, https://doi.org/10.1029/93JD02915,
1994a.
George, C., Saison, J. Y., Ponche, J. L., and Mirabel, P.: Kinetics of mass
transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl
chloride at the air/water interface, J. Phys. Chem., 98, 10 857–10 862,
https://doi.org/10.1021/J100093A029, 1994b.
Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.:
Simultaneous uptake of DMS and ozone on water, J. Phys. Chem. A, 105,
7031–7036, https://doi.org/10.1021/JP010696Y, 2001.
Gharagheizi, F., Abbasi, R., and Tirandazi, B.: Prediction of Henry's law
constant of organic compounds in water from a new group-contribution-based
model, Ind. Eng. Chem. Res., 49, 10 149–10 152, https://doi.org/10.1021/IE101532E,
2010.
Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., and Richon, D.: Empirical
method for estimation of Henry's law constant of non-electrolyte organic
compounds in water, J. Chem. Thermodyn., 47, 295–299,
https://doi.org/10.1016/J.JCT.2011.11.015, 2012.
Giardino, N. J., Andelman, J. B., Borrazzo, J. E., and Davidson, C. I.: Sulfur
hexafluoride as a surrogate for volatilization of organics from indoor water
uses, J. Air Pollut. Control Assoc., 38, 278–279,
https://doi.org/10.1080/08940630.1988.10466379, 1988.
Gibbs, P., Radzicka, A., and Wolfenden, R.: The anomalous hydrophilic character
of proline, J. Am. Chem. Soc., 113, 4714–4715, https://doi.org/10.1021/JA00012A068,
1991.
Gill, S. J., Nichols, N. F., and Wadsö, I.: Calorimetric determination of
enthalpies of solution of slightly soluble liquids II. Enthalpy of solution
of some hydrocarbons in water and their use in establishing the temperature
dependence of their solubilities, J. Chem. Thermodyn., 8, 445–452,
https://doi.org/10.1016/0021-9614(76)90065-3, 1976.
Giona, A. R., Passino, A., and Turriziani, R.: Assorbimento del bromo in acqua,
La Ricerca Scientifica, 30, 2047–2056, 1969.
Glew, D. N. and Hames, D. A.: Aqueous nonelectrolyte solutions. Part X. Mercury
solubility in water, Can. J. Chem., 49, 3114–3118, https://doi.org/10.1139/V71-520,
1971.
Glew, D. N. and Moelwyn-Hughes, E. A.: Chemical statics of the methyl halides
in water, Discuss. Faraday Soc., 15, 150–161, https://doi.org/10.1039/DF9531500150,
1953.
Glotfelty, D. E., Seiber, J. N., and Liljedahl, A.: Pesticides in fog, Nature,
325, 602–605, https://doi.org/10.1038/325602A0, 1987.
Gmitro, J. I. and Vermeulen, T.: Vapor-liquid equilibria for aqueous sulfuric
acid, AIChE J., 10, 740–746, https://doi.org/10.1002/AIC.690100531, 1964.
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3:
Henry's law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental
Research Laboratory, Cincinnati, OH, USA, 1982.
Goodarzi, M., Ortiz, E. V., Coelho, L. D. S., and Duchowicz, P. R.: Linear and
non-linear relationships mapping the Henry's law parameters of organic
pesticides, Atmos. Environ., 44, 3179–3186,
https://doi.org/10.1016/J.ATMOSENV.2010.05.025, 2010.
Goodwin, W. L.: XXVI. – On the nature of solution. Part I. – On the solubility
of chlorine in water, and in aqueous solutions of soluble chlorides, Earth
Environ. Sci. Trans. R. Soc. Edinburgh, 30, 597–618,
https://doi.org/10.1017/S0080456800025096, 1883.
Gordon, L. I., Cohen, Y., and Standley, D. R.: The solubility of molecular
hydrogen in seawater, Deep-Sea Res., 24, 937–941,
https://doi.org/10.1016/0146-6291(77)90563-X, 1977.
Gordon, V.: Ueber die Absorption des Stickoxyduls in Wasser und in
Salzlösungen, Z. Phys. Chem., 18, 1–16, https://doi.org/10.1515/ZPCH-1895-1802,
1895.
Görgényi, M., Dewulf, J., and Van Langenhove, H.: Temperature dependence
of Henry's law constant in an extended temperature range, Chemosphere, 48,
757–762, https://doi.org/10.1016/S0045-6535(02)00131-5, 2002.
Goss, K.-U.: Predicting the equilibrium partitioning of organic compounds using
just one linear solvation energy relationship (LSER), Fluid Phase Equilib.,
233, 19–22, https://doi.org/10.1016/J.FLUID.2005.04.006, 2005.
Goss, K. U., Bronner, G., Harner, T., Hertel, M., and Schmidt, T.: The
partition behavior of fluorotelomer alcohols and olefins, Environ. Sci.
Technol., 40, 3572–3577, https://doi.org/10.1021/ES060004P, 2006.
Gossett, J. M.: Packed tower air stripping of trichloroethylene from dilute
aqueous solution, Final Report ESL-TR-81-38, Engineering and Services
Laboratory, Tyndall Air Force Base, FL, 1980.
Gossett, J. M.: Measurement of Henry's law constants for C1 and
C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208,
https://doi.org/10.1021/ES00156A012, 1987.
Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., and Lincoff,
A. H.: Mass transfer coefficients and Henry's constants for packed-tower air
stripping of volatile organics: Measurements and Correlations, Final Report
ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base,
FL, 1985.
Govers, H. A. J. and Krop, H. B.: Partition constants of chlorinated
dibenzofurans and dibenzo-p-dioxins, Chemosphere, 37, 2139–2152,
https://doi.org/10.1016/S0045-6535(98)00276-8, 1998.
Graedel, T. E. and Goldberg, K. I.: Kinetic studies of raindrop chemistry
1. Inorganic and organic processes, J. Geophys. Res., 88, 10 865–10 882,
https://doi.org/10.1029/JC088IC15P10865, 1983.
Green, W. J. and Frank, H. S.: The state of dissolved benzene in aqueous
solution, J. Solution Chem., 8, 187–196, https://doi.org/10.1007/BF00648878, 1979.
Grollman, A.: The solubility of gases in blood and blood fluids, J. Biol.
Chem., 82, 317–325, https://doi.org/10.1016/S0021-9258(20)78278-5, 1929.
Guitart, R., Puigdemont, F., and Arboix, M.: Rapid headspace gas
chromatographic method for the determination of liquid/gas partition
coefficients, J. Chromatogr., 491, 271–280,
https://doi.org/10.1016/S0378-4347(00)82845-5, 1989.
Guo, X. X. and Brimblecombe, P.: Henry's law constants of phenol and
mononitrophenols in water and aqueous sulfuric acid, Chemosphere, 68,
436–444, https://doi.org/10.1016/J.CHEMOSPHERE.2007.01.011, 2007.
Gupta, A. K., Teja, A. S., Chai, X. S., and Zhu, J. Y.: Henry's constants of
n-alkanols (methanol through n-hexanol) in water at temperatures between
40 °C and 90 °C, Fluid Phase Equilib., 170,
183–192, https://doi.org/10.1016/S0378-3812(00)00350-2, 2000.
Gurol, M. D. and Singer, P. C.: Kinetics of ozone decomposition: a dynamic
approach, Environ. Sci. Technol., 16, 377–383, https://doi.org/10.1021/ES00101A003,
1982.
Guthrie, J. P.: Hydration of carboxylic acids and esters. Evaluation of the
free energy change for addition of water to acetic and formic acids and their
methyl esters, J. Am. Chem. Soc., 95, 6999–7003, https://doi.org/10.1021/JA00802A021,
1973.
Haimi, P., Uusi-Kyyny, P., Pokki, J.-P., Aittamaa, J., and Keskinen, K. I.:
Infinite dilution activity coefficient measurements by inert gas stripping
method, Fluid Phase Equilib., 243, 126–132,
https://doi.org/10.1016/J.FLUID.2006.02.022, 2006.
Hales, J. M. and Drewes, D. R.: Solubility of ammonia in water at low
concentrations, Atmos. Environ., 13, 1133–1147,
https://doi.org/10.1016/0004-6981(79)90037-4, 1979.
Haller, J. F. and Northgraves, W. W.: Chlorine dioxide and safety, TAPPI, 38,
199–202, 1955.
Hamelink, J. L., Simon, P. B., and Silberhorn, E. M.: Henry's law constant,
volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane,
Environ. Sci. Technol., 30, 1946–1952, https://doi.org/10.1021/ES950634J, 1996.
Hamm, S., Hahn, J., Helas, G., and Warneck, P.: Acetonitrile in the
troposphere: residence time due to rainout and uptake by the ocean, Geophys.
Res. Lett., 11, 1207–1210, https://doi.org/10.1029/GL011I012P01207, 1984.
Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: Determination of
Henry's law constants of organics in dilute aqueous solutions, J. Chem. Eng.
Data, 38, 546–550, https://doi.org/10.1021/JE00012A017, 1993.
Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: A laboratory
method for the determination of Henry's law constants of volatile organic
chemicals, J. Chem. Educ., 72, 93–96, https://doi.org/10.1021/ED072P93, 1995.
Hanson, D. R. and Ravishankara, A. R.: The reaction probabilities of
ClONO2 and N2O5 on 40 to 75 % sulfuric acid solutions, J.
Geophys. Res., 96, 17 307–17 314, https://doi.org/10.1029/91JD01750, 1991.
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.:
Measurement of OH and HO2 radical uptake coefficients on water
and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985,
https://doi.org/10.1021/J100191A046, 1992.
Harger, R. N., Raney, B. B., Bridwell, E. G., and Kitchel, M. F.: The partition
ratio of alcohol between air and water, urine and blood; estimation and
identification of alcohol in these liquids from analysis of air equilibrated
with them, J. Biol. Chem., 183, 197–213,
https://doi.org/10.1016/S0021-9258(18)56458-9, 1950.
Harris, T. A. B.: The Mode of Action of Anaesthetics, E. & S. Livingstone,
1951.
Harrison, D. P., Valsaraj, K. T., and Wetzel, D. M.: Air stripping of organics
from ground water, Waste Manage., 13, 417–429,
https://doi.org/10.1016/0956-053X(93)90074-7, 1993.
Harrison, M. A. J., Cape, J. N., and Heal, M. R.: Experimentally determined
Henry's Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the
temperature range 281-302 K, Atmos. Environ., 36, 1843–1851,
https://doi.org/10.1016/S1352-2310(02)00137-1, 2002.
Hartkopf, A. and Karger, B. L.: Study of the interfacial properties of water by
gas chromatography, Acc. Chem. Res., 6, 209–216, https://doi.org/10.1021/AR50066A006,
1973.
Haruta, S., Jiao, W., Chen, W., Chang, A. C., and Gan, J.: Evaluating Henry's
law constant of N-Nitrosodimethylamine (NDMA), Wat. Sci. Tech., 64,
1636–1641, https://doi.org/10.2166/WST.2011.742, 2011.
Hauff, K., Fischer, R. G., and Ballschmiter, K.: Determination of
C1-C5 alkyl nitrates in rain, snow, white frost, and tap
water by a combined codistillation head-space gas chromatography technique.
Determination of Henry's law constants by head-space GC, Chemosphere, 37,
2599–2615, https://doi.org/10.1016/S0045-6535(98)00159-3, 1998.
Hawthorne, S. B., Sievers, R. E., and Barkley, R. M.: Organic emissions from
shale oil wastewaters and their implications for air quality, Environ. Sci.
Technol., 19, 992–997, https://doi.org/10.1021/ES00140A018, 1985.
Hayduk, W.: IUPAC Solubility Data Series, Vol. 9, Ethane, Pergamon Press,
Oxford, ISBN 0080262309, 1982.
Hayduk, W.: IUPAC Solubility Data Series, Vol. 24, Propane, Butane and
2-Methylpropane, Pergamon Press, Oxford, ISBN 008029202X, 1986.
Hayduk, W.: IUPAC Solubility Data Series, Vol. 57, Ethene, Pergamon Press,
Oxford, 1994.
Hayer, N., Jirasek, F., and Hasse, H.: Prediction of Henry's law constants by
matrix completion, AIChE J., 68, e17 753, https://doi.org/10.1002/AIC.17753, 2022.
Haynes, W. M.: CRC Handbook of Chemistry and Physics, 95th Edn. (Internet
Version 2015), Taylor and Francis Group, https://doi.org/10.1201/b17118, 2014.
Heal, M. R., Pilling, M. J., Titcombe, P. E., and Whitaker, B. J.: Mass
accommodation of aniline, phenol and toluene on aqueous droplets, Geophys.
Res. Lett., 22, 3043–3046, https://doi.org/10.1029/95GL02944, 1995.
Hedgecock, I. M. and Pirrone, N.: Chasing quicksilver: Modeling the atmospheric
lifetime of Hg0(g) in the marine boundary layer at various
latitudes, Environ. Sci. Technol., 38, 69–76, https://doi.org/10.1021/ES034623Z, 2004.
Hedgecock, I. M., Trunfio, G. A., Pirrone, N., and Sprovieri, F.: Mercury
chemistry in the MBL: Mediterranean case and sensitivity studies using the
AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, Atmos. Environ.,
39, 7217–7230, https://doi.org/10.1016/J.ATMOSENV.2005.09.002, 2005.
Heidman, J. L., Tsonopoulos, C., Brady, C. J., and Wilson, G. M.:
High-temperature mutual solubilities of hydrocarbons and water. Part II:
Ethylbenzene, ethylcyclohexane, and n-octane, AIChE J., 31, 376–384,
https://doi.org/10.1002/AIC.690310304, 1985.
Helburn, R., Albritton, J., Howe, G., Michael, L., and Franke, D.: Henry's law
constants for fragrance and organic solvent compounds in aqueous industrial
surfactants, J. Chem. Eng. Data, 53, 1071–1079, https://doi.org/10.1021/JE700418A,
2008.
Heller, S. R., McNaught, A., Pletnev, I., Stein, S., and Tchekhovskoi, D.:
InChI, the IUPAC international chemical identifier, J. Cheminformatics, 7,
23, https://doi.org/10.1186/S13321-015-0068-4, 2015.
Hellmann, H.: Model tests on volatilization of organic trace substances in
surfaces waters, Fresenius J. Anal. Chem., 328, 475–479,
https://doi.org/10.1007/BF00475967, 1987.
Hempel, W.: Ueber Kohlenoxysulfid, Z. Angew. Chem., 14, 865–868,
https://doi.org/10.1002/ANGE.19010143502, 1901.
Henry, W.: Experiments on the quantity of gases absorbed by water, at different
temperatures, and under different pressures, Phil. Trans. R. Soc. Lond., 93,
29–43, https://doi.org/10.1098/RSTL.1803.0004, 1803.
Heron, G., Christensen, T. H., and Enfield, C. G.: Henry's law constant for
trichloroethylene between 10 and 95 °C, Environ. Sci.
Technol., 32, 1433–1437, https://doi.org/10.1021/ES9707015, 1998.
Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity
coefficients for 2-phenylethanol and 2-phenylethanal in water at
100 °C, J. Chem. Eng. Data, 50, 1905–1906,
https://doi.org/10.1021/JE050171P, 2005.
Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity
coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool
in water at 100 °C, J. Chem. Eng. Data, 51, 1283–1285,
https://doi.org/10.1021/JE0600404, 2006.
Hertel, M. O., Scheuren, H., Sommer, K., and Glas, K.: Limiting separation
factors and limiting activity coefficients for hexanal, 2-methylbutanal,
3-methylbutanal, and dimethylsulfide in water at (98.1 to
99.0) °C, J. Chem. Eng. Data, 52, 148–150,
https://doi.org/10.1021/JE060324O, 2007.
Hiatt, M. H.: Determination of Henry's law constants using internal standards
with benchmark values, J. Chem. Eng. Data, 58, 902–908,
https://doi.org/10.1021/JE3010535, 2013.
Hilal, S. H., Ayyampalayam, S. N., and Carreira, L. A.: Air-liquid partition
coefficient for a diverse set of organic compounds: Henry's law constant in
water and hexadecane, Environ. Sci. Technol., 42, 9231–9236,
https://doi.org/10.1021/ES8005783, 2008.
Hill, J. O., Worsley, I. G., and Hepler, L. G.: Calorimetric determination of
the distribution coefficient and thermodynamic properties of bromine in water
and carbon tetrachloride, J. Phys. Chem., 72, 3695–3697,
https://doi.org/10.1021/J100856A066, 1968.
Himmelblau, D. M.: Solubilities of inert gases in water. 0 °C.
to near the critical point of water, J. Chem. Eng. Data, 5, 10–15,
https://doi.org/10.1021/JE60005A003, 1960.
Hine, J. and Mookerjee, P. K.: The intrinsic hydrophilic character of organic
compounds. Correlations in terms of structural contributions, J. Org. Chem.,
40, 292–298, https://doi.org/10.1021/JO00891A006, 1975.
Hine, J. and Weimar, Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87,
3387–3396, https://doi.org/10.1021/JA01093A018, 1965.
Hirshberg, B., Rossich Molina, E., Götz, A. W., Hammerich, A. D.,
Nathanson, G. M., Bertram, T. H., Johnson, M. A., and Gerber, R. B.:
N2O5 at water surfaces: binding forces, charge separation, energy
accommodation and atmospheric implications, Phys. Chem. Chem. Phys., 20,
17 961–17 976, https://doi.org/10.1039/C8CP03022G, 2018.
Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y.: Partitioning of organic
chemicals at the air–water interface in environmental systems, Environ. Sci.
Technol., 27, 2174–2180, https://doi.org/10.1021/ES00047A026, 1993.
Hoffmann, M. R. and Calvert, J. G.: Chemical transformation modules for
Eulerian acid deposition models. Volume II. The aqueous-phase chemistry,
Tech. rep., NCAR, Box 3000, Boulder, CO 80307, 1985.
Hoffmann, M. R. and Jacob, D. J.: Kinetics and mechanisms of the catalytic
oxidation of dissolved sulfur dioxide in aqueous solution: An application to
nighttime fog water chemistry, in: SO2, NO and NO2
Oxidation Mechanisms: Atmospheric Considerations, edited by: Calvert, J. G.,
Butterworth Publishers, Boston, MA, ISBN 0250405687, 101–172, 1984.
Holdren, M. W., Spicer, C. W., and Hales, J. M.: Peroxyacetyl nitrate
solubility and decomposition rate in acidic water, Atmos. Environ., 18,
1171–1173, https://doi.org/10.1016/0004-6981(84)90148-3, 1984.
Holst, G.: Die Grundlagen einer technischen Methode zur Darstellung von
Chlordioxyd, Svensk Papperstidn., 47, 537–546, 1944.
Holzwarth, G., Balmer, R. G., and Soni, L.: The fate of chlorine and
chloramines in cooling towers, Wat. Res., 18, 1421–1427,
https://doi.org/10.1016/0043-1354(84)90012-5, 1984.
Horvath, A. L. and Getzen, F. W.: IUPAC-NIST Solubility Data Series 68.
Halogenated Aliphatic Hydrocarbon Compounds C3-C14, J.
Phys. Chem. Ref. Data, 28, 649–777, https://doi.org/10.1063/1.556051, 1999.
Hough, A. M.: Development of a two-dimensional global tropospheric model: Model
chemistry, J. Geophys. Res., 96, 7325–7362, https://doi.org/10.1029/90JD01327, 1991.
Hovorka, Š. and Dohnal, V.: Determination of air–water partitioning of
volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem.
Eng. Data, 42, 924–933, https://doi.org/10.1021/JE970046G, 1997.
Hovorka, Š., Dohnal, V., Roux, A. H., and Roux-Desgranges, G.:
Determination of temperature dependence of limiting activity coefficients for
a group of moderately hydrophobic organic solutes in water, Fluid Phase
Equilib., 201, 135–164, https://doi.org/10.1016/S0378-3812(02)00087-0, 2002.
Hovorka, Š., Vrbka, P., Bermúdez-Salguero, C., Böhme, A., and Dohnal,
V.: Air–water partitioning of C5 and C6 alkanones: measurement, critical
compilation, correlation, and recommended data, J. Chem. Eng. Data, 64,
5765–5774, https://doi.org/10.1021/ACS.JCED.9B00726, 2019.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic
chemicals. Vol. I: Large production and priority pollutants, Lewis Publishers
Inc. Chelsea, Michigan, ISBN 0873711513, 1989.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic
chemicals. Vol. II: Solvents, Lewis Publishers Inc. Chelsea, Michigan,
https://doi.org/10.1201/9781003418863, 1990.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic
chemicals. Vol. III: Pesticides, Lewis Publishers Inc. Chelsea, Michigan,
https://doi.org/10.1201/9780203719305, 1991.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic
chemicals. Vol. IV: Solvents 2, Lewis Publishers Inc. Chelsea, Michigan,
https://doi.org/10.1201/9781003418887, 1993.
Howard, P. H. and Meylan, W. M.: Handbook of physical properties of organic
chemicals, CRC Press, Lewis Publisher, Boca Raton, FL, ISBN 1566702275,
1997.
Howard, P. H., Boethling, R. S., Jarvis, W. F., Meylan, W. M., and Michalenko,
E. M.: Handbook of Environmental Degradation Rates, Lewis Publishers Inc.
Chelsea, Michigan, https://doi.org/10.1201/9780203719329, 1991.
Howe, G. B., Mullins, M. E., and Rogers, T. N.: Evaluation and prediction of
Henry's law constants and aqueous solubilities for solvents and hydrocarbon
fuel components. Vol II: Experimental Henry's law data, Tech. Rep. NTIS
AD-A202 262, Research Triangle Institute, Research Triangle Park, NC, 27709,
USA, 1987.
Huang, D. and Chen, Z.: Reinvestigation of the Henry's law constant for
hydrogen peroxide with temperature and acidity variation, J. Environ. Sci.,
22, 570–574, https://doi.org/10.1016/S1001-0742(09)60147-9, 2010.
Hunter-Smith, R. J., Balls, P. W., and Liss, P. S.: Henry's law constants and
the air-sea exchange of various low molecular weight halocarbon gases,
Tellus, 35B, 170–176, https://doi.org/10.1111/J.1600-0889.1983.TB00021.X, 1983.
Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and
Brimblecombe, P.: Solubility of HOCl in water and aqueous
H2SO4 to stratospheric temperatures, J. Atmos. Chem., 21, 81–95,
https://doi.org/10.1007/BF00712439, 1995.
Hwang, H. and Dasgupta, P. G.: Thermodynamics of the hydrogen peroxide-water
system, Environ. Sci. Technol., 19, 255–258, https://doi.org/10.1021/ES00133A006,
1985.
Hwang, I.-C., Kwak, H.-Y., and Park, S.-J.: Determination and prediction of
Kow and dimensionless Henry's constant (H) for 6 ether compounds at
several temperatures, J. Ind. Eng. Chem., 16, 629–633,
https://doi.org/10.1016/J.JIEC.2010.03.003, 2010.
Hwang, Y.-L., Olson, J. D., and Keller, II, G. E.: Steam stripping for removal
of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng.
Chem. Res., 31, 1759–1768, https://doi.org/10.1021/IE00007A022, 1992.
Iliuta, M. C. and Larachi, F.: Gas-liquid partition coefficients and Henry's
law constants of DMS in aqueous solutions of Fe(II) chelate complexes
using the static headspace method, J. Chem. Eng. Data, 50, 1700–1705,
https://doi.org/10.1021/JE0501686, 2005a.
Iliuta, M. C. and Larachi, F.: Solubility of dimethyldisulfide (DMDS) in
aqueous solutions of Fe(III) complexes of
trans-1,2-cyclohexanediaminetetraacetic acid (CDTA) using the static
headspace method, Fluid Phase Equilib., 233, 184–189,
https://doi.org/10.1016/J.FLUID.2005.05.004, 2005b.
Iliuta, M. C. and Larachi, F.: Solubility of total reduced sulfurs (hydrogen
sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) in
liquids, J. Chem. Eng. Data, 52, 2–19, https://doi.org/10.1021/JE060263U, 2007.
Imagawa, H.: Chemical reactions in the chlorate manufacturing electrolytic cell
(part 1) The vapour pressure of hypochlorous acid on its aquous solution, J.
Electrochem. Soc. Jpn., 18, 382–385, https://doi.org/10.5796/DENKA.18.382, 1950.
Inga, R. F. and McKetta, J. J.: Solubility of propyne in water, J. Chem. Eng.
Data, 6, 337–338, https://doi.org/10.1021/JE00103A008, 1961.
Ioffe, B. V., Kostkina, M. I., and Vitenberg, A. G.: Preparation of standard
vapor-gas mixtures for gas chromatography: discontinuous gas extraction,
Anal. Chem., 56, 2500–2503, https://doi.org/10.1021/AC00277A053, 1984.
Ip, H. S. S., Huang, X. H. H., and Yu, J. Z.: Effective Henry's law constants
of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36,
L01802, https://doi.org/10.1029/2008GL036212, 2009.
Iraci, L. T., Baker, B. M., Tyndall, G. S., and Orlando, J. J.: Measurements of
the Henry's law coefficients of 2-methyl-3-buten-2-ol, methacrolein, and
methylvinyl ketone, J. Atmos. Chem., 33, 321–330,
https://doi.org/10.1023/A:1006169029230, 1999.
Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur
von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37,
789–798, https://doi.org/10.1002/CITE.330370802, 1965.
Isaacman-VanWertz, G., Yee, L. D., Kreisberg, N. M., Wernis, R., Moss, J. A.,
Hering, S. V., de Sá, S. S., Martin, S. T., Alexander, M. L., Palm,
B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Riva, M.,
Surratt, J. D., Viegas, J., Manzi, A., Edgerton, E., Baumann, K., Souza, R.,
Artaxo, P., and Goldstein, A. H.: Ambient gas-particle partitioning of
tracers for biogenic oxidation, Environ. Sci. Technol., 50, 9952–9962,
https://doi.org/10.1021/ACS.EST.6B01674, 2016.
Ishi, G.: Solubility of chlorine dioxide, Chem. Eng. (Japan), 22, 153–154,
https://doi.org/10.1252/KAKORONBUNSHU1953.22.153, 1958.
Iverfeldt, Å. and Lindqvist, O.: Distribution equilibrium of methyl mercury
chloride between water and air, Atmos. Environ., 16, 2917–2925,
https://doi.org/10.1016/0004-6981(82)90042-7, 1982.
Iverfeldt, Å. and Persson, I.: The solvation thermodynamics of
methylmercury(II) species derived from measurements of the heat of solution
and the Henry's law constant, Inorg. Chim. Acta, 103, 113–119,
https://doi.org/10.1016/S0020-1693(00)87476-9, 1985.
Jacob, D. J.: Chemistry of OH in remote clouds and its role in the
production of formic acid and peroxymonosulfate, J. Geophys. Res., 91,
9807–9826, https://doi.org/10.1029/JD091ID09P09807, 1986.
Jacob, D. J., Gottlieb, E. W., and Prather, M. J.: Chemistry of a polluted
cloudy boundary layer, J. Geophys. Res., 94, 12 975–13 002,
https://doi.org/10.1029/JD094ID10P12975, 1989.
Jadkar, P. B. and Chaudhari, R. V.: Solubility of acetylene in aqueous
solutions of formaldehyde and 2-butyne-1,4-diol, J. Chem. Eng. Data, 25,
115–117, https://doi.org/10.1021/JE60085A021, 1980.
Jaeglé, L., Yung, Y. L., Toon, G. C., Sen, B., and Blavier, J.-F.: Balloon
observations or organic and inorganic chlorine in the stratosphere: The role
of HClO4 production on sulfate aerosols, Geophys. Res. Lett., 23,
1749–1752, https://doi.org/10.1029/96GL01543, 1996.
Janini, G. M. and Quaddora, L. A.: Determination of activity coefficients of
oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr.,
9, 39–53, https://doi.org/10.1080/01483918608076621, 1986.
Jantunen, L. M. and Bidleman, T. F.: Henry's law constants for
hexachlorobenzene, p,p'-DDE and components of technical chlordane and
estimates of gas exchange for Lake Ontario, Chemosphere, 62, 1689–1696,
https://doi.org/10.1016/J.CHEMOSPHERE.2005.06.035, 2006.
Järnberg, J. and Johanson, G.: Liquid/air partition coefficients of the
trimethylbenzenes, Toxicol. Ind. Health, 11, 81–88,
https://doi.org/10.1177/074823379501100107, 1995.
Jayasinghe, D. S., Brownawell, B. J., Chen, H., and Westall, J. C.:
Determination of Henry's constants of organic compounds of low volatility:
methylanilines in methanol-water, Environ. Sci. Technol., 26, 2275–2281,
https://doi.org/10.1021/ES00035A028, 1992.
Jenkins, J. and King, M. B.: Vapor-liquid equilibria for the system
bromine/water at low bromine concentrations, Chem. Eng. Sci., 20, 921–922,
https://doi.org/10.1016/0009-2509(65)80089-6, 1965.
Ji, C. and Evans, E. M.: Using an internal standard method to determine Henry's
law constants, Environ. Toxicol. Chem., 26, 231–236,
https://doi.org/10.1897/06-339R.1, 2007.
Ji, C., Day, S. E., Ortega, S. A., and Beall, G. W.: Henry's law constants of
some aromatic aldehydes and ketones measured by an internal standard method,
J. Chem. Eng. Data, 53, 1093–1097, https://doi.org/10.1021/JE700612B, 2008.
Johanson, G. and Dynésius, B.: Liquid/air partition coefficients of six
commonly used glycol ethers, Br. J. Ind. Med., 45, 561–564,
https://doi.org/10.1136/OEM.45.8.561, 1988.
Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's law coefficients of
formic and acetic acids, J. Atmos. Chem., 24, 113–119,
https://doi.org/10.1007/BF00162406, 1996.
Johnson, J. E. and Harrison, H.: Carbonyl sulfide concentrations in the surface
waters and above the Pacific Ocean, J. Geophys. Res., 91, 7883–7888,
https://doi.org/10.1029/JD091ID07P07883, 1986.
Johnstone, H. F. and Leppla, P. W.: The solubility of sulfur-dioxide at low
partial pressures, J. Am. Chem. Soc., 56, 2233–2238,
https://doi.org/10.1021/JA01326A009, 1934.
Jones, A. W.: Determination of liquid/air partition coefficients for dilute
solutions of ethanol in water, whole blood, and plasma, J. Anal. Technol., 7,
193–197, https://doi.org/10.1093/JAT/7.4.193, 1983.
Jones, W. J.: XLIX. – The determination of solubility coefficients by
aspiration, J. Chem. Soc. Trans., 99, 392–404, https://doi.org/10.1039/CT9119900392,
1911.
Jones, W. J., Egoville, M. J., Strolle, E. O., and Dellamonica, E. S.:
Determination of partition coefficients by headspace gas chromatography, J.
Chromatogr. A, 455, 45–51, https://doi.org/10.1016/S0021-9673(01)82105-1, 1988.
Jönsson, J. Å., Vejrosta, J., and Novák, J.: Air/water partition
coefficients for normal alkanes (n-pentane to n-nonane), Fluid Phase
Equilib., 9, 279–286, https://doi.org/10.1016/0378-3812(82)80023-X, 1982.
Joosten, G. E. H. and Danckwerts, P. V.: Solubility and diffusivity of nitrous
oxide in equimolar potassium carbonate-potassium bicarbonate solutions at
25 °C and 1 atm, J. Chem. Eng. Data, 17, 452–454,
https://doi.org/10.1021/JE60055A016, 1972.
Jou, F.-Y. and Mather, A. E.: Vapor-liquid-liquid locus of the system pentane +
water, J. Chem. Eng. Data, 45, 728–729, https://doi.org/10.1021/JE000065H, 2000.
Jou, F.-Y., Mather, A. E., and Schmidt, K. A. G.: Solubility of ethanethiol in
water, J. Chem. Eng. Data, 66, 4174–4179, https://doi.org/10.1021/ACS.JCED.1C00358,
2021.
Kames, J. and Schurath, U.: Alkyl nitrates and bifunctional nitrates of
atmospheric interest: Henry's law constants and their temperature
dependencies, J. Atmos. Chem., 15, 79–95, https://doi.org/10.1007/BF00053611, 1992.
Kames, J. and Schurath, U.: Henry's law and hydrolysis-rate constants for
peroxyacyl nitrates (PANs) using a homogeneous gas-phase source, J.
Atmos. Chem., 21, 151–164, https://doi.org/10.1007/BF00696578, 1995.
Kames, J., Schweighoefer, S., and Schurath, U.: Henry's law constant and
hydrolysis of peroxyacetyl nitrate (PAN), J. Atmos. Chem., 12,
169–180, https://doi.org/10.1007/BF00115778, 1991.
Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L.,
Praplan, A. P., Prévôt, A. S. H., Baltensperger, U., Hoffmann, T., and
Volkamer, R.: Effective Henry's law partitioning and the salting constant of
glyoxal in aerosols containing sulfate, Environ. Sci. Technol., 47,
4236–4244, https://doi.org/10.1021/ES400083D, 2013.
Kanakidou, M., Dentener, F. J., and Crutzen, P. J.: A global three-dimensional
study of the fate of HCFCs and HFC − 134a in the troposphere, J.
Geophys. Res., 100, 18 781–18 801, https://doi.org/10.1029/95JD01919, 1995.
Kanefke, R.: Durch Quecksilberbromierung verbesserte Quecksilberabscheidung aus
den Abgasen von Kohlekraftwerken und Abfallverbrennungsanlagen, Ph.D. thesis,
Martin-Luther-Universität Halle-Wittenberg, Germany, ISBN
978-3-8322-7241-8, 2008.
Kaneko, T., Wang, P. Y., and Sato, A.: Partition coefficients of some acetate
esters and alcohols in water, blood, olive oil, and rat tissues, Occup.
Environ. Med., 51, 68–72, https://doi.org/10.1136/OEM.51.1.68, 1994.
Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Saiz-Lopez,
A., Cuevas, C. A., Fernandez, R. P., Sherwen, T., Volkamer, R., Koenig,
T. K., Giroud, T., and Peter, T.: Iodine chemistry in the chemistry–climate
model SOCOL-AERv2-I, Geosci. Model Dev., 14, 6623–6645,
https://doi.org/10.5194/GMD-14-6623-2021, 2021.
Karl, T., Yeretzian, C., Jordan, A., and Lindinger, W.: Dynamic measurements of
partition coefficients using proton-transfer-reaction mass spectrometry
(PTR-MS), Int. J. Mass Spectrom., 223-224, 383–395,
https://doi.org/10.1016/S1387-3806(02)00927-2, 2003.
Karl, T., Guenther, A., Turnipseed, A., Patton, E. G., and Jardine, K.:
Chemical sensing of plant stress at the ecosystem scale, Biogeosci., 5,
1287–1294, https://doi.org/10.5194/BG-5-1287-2008, 2008.
Katrib, Y., Deiber, G., Schweitzer, F., Mirabel, P., and George, C.: Chemical
transformation of bromine chloride at the air/water interface, J. Aerosol
Sci., 32, 893–911, https://doi.org/10.1016/S0021-8502(00)00114-2, 2001.
Katrib, Y., Calve, S. L., and Mirabel, P.: Uptake measurements of dibasic
esters by water droplets and determination of their Henry's law constants, J.
Phys. Chem. A, 107, 11 433–11 439, https://doi.org/10.1021/JP0368132, 2003.
Katritzky, A. R., Wang, Y., Sild, S., Tamm, T., and Karelson, M.: QSPR studies
on vapor pressure, aqueous solubility, and the prediction of water-air
partition coefficients, J. Chem. Inf. Comput. Sci., 38, 720–725,
https://doi.org/10.1021/CI980022T, 1998.
Kawamoto, K. and Urano, K.: Parameters for predicting fate of organochlorine
pesticides in the environment (I) Octanol-water and air–water partition
coefficients, Chemosphere, 18, 1987–1996,
https://doi.org/10.1016/0045-6535(89)90482-7, 1989.
Keeley, D. F., Hoffpauir, M. A., and Meriwether, J. R.: Solubility of aromatic
hydrocarbons in water and sodium chloride solutions of different ionic
strengths: benzene and toluene, Environ. Sci. Technol., 33, 87–89,
https://doi.org/10.1021/JE00052A006, 1988.
Keene, W. C. and Galloway, J. N.: Considerations regarding sources for formic
and acetic acids in the troposphere, J. Geophys. Res., 91, 14 466–14 474,
https://doi.org/10.1029/JD091ID13P14466, 1986.
Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz,
R. S., Maben, J. R., Daube, B. C., and Galloway, J. N.: Carboxylic acids in a
high-elevation forested site in central Virginia, J. Geophys. Res., 100,
9345–9357, https://doi.org/10.1029/94JD01247, 1995.
Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem.
Soc., 78, 5752–5756, https://doi.org/10.1021/JA01603A010, 1956.
Kepinski, J. and Trzeszczynski, J.: Absorption equilibria of chlorine dioxide.
Solubility in water, carbon tetrachloride, sulphuric and acetic acid
solutions, Rocz. Chem., 38, 201–211, 1964.
Keshavarz, M. H., Rezaei, M., and Hosseini, S. H.: A simple approach for
prediction of Henry's law constant of pesticides, solvents, aromatic
hydrocarbons, and persistent pollutants without using complex computer codes
and descriptors, Process Saf. Environ. Prot., 162, 867–877,
https://doi.org/10.1016/J.PSEP.2022.04.045, 2022.
Keßel, S., Cabrera-Perez, D., Horowitz, A., Veres, P. R., Sander, R.,
Taraborrelli, D., Tucceri, M., Crowley, J. N., Pozzer, A., Stönner, C.,
Vereecken, L., Lelieveld, J., and Williams, J.: Atmospheric chemistry,
sources and sinks of carbon suboxide, C3O2, Atmos. Chem. Phys., 17,
8789–8804, https://doi.org/10.5194/ACP-17-8789-2017, 2017.
Khalfaoui, B. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures
of water and brominated hydrocarbons, Fluid Phase Equilib., 98, 213–223,
https://doi.org/10.1016/0378-3812(94)80120-7, 1994a.
Khalfaoui, B. and Newsham, D. M. T.: Determination of infinite dilution
activity coefficients and second virial coefficients using gas-liquid
chromatography I. The dilute mixtures of water and unsaturated chlorinated
hydrocarbons and of water and benzene, J. Chromatogr. A, 673, 85–92,
https://doi.org/10.1016/0021-9673(94)87060-8, 1994b.
Khan, I. and Brimblecombe, P.: Henry's law constants of low molecular weight
( < 130) organic acids, J. Aerosol Sci., 23, S897–S900,
https://doi.org/10.1016/0021-8502(92)90556-B, 1992.
Khan, I., Brimblecombe, P., and Clegg, S. L.: The Henry's law constants of
pyruvic and methacrylic acids, Environ. Technol., 13, 587–593,
https://doi.org/10.1080/09593339209385187, 1992.
Khan, I., Brimblecombe, P., and Clegg, S. L.: Solubilities of pyruvic acid and
the lower (C1-C6) carboxylic acids. Experimental
determination of equilibrium vapour pressures above pure aqueous and salt
solutions, J. Atmos. Chem., 22, 285–302, https://doi.org/10.1007/BF00696639, 1995.
Kieckbusch, T. G. and King, C. J.: Partition-coefficients for acetates in food
systems, J. Agric. Food Chem., 27, 504–507, https://doi.org/10.1021/JF60223A033,
1979a.
Kieckbusch, T. G. and King, C. J.: An improved method of determining vapor
liquid equilibria for dilute organics in aqueous solution, J. Chromatogr.
Sci., 17, 273–276, https://doi.org/10.1093/CHROMSCI/17.5.273, 1979b.
Kilpatrick, M. L., Herrick, C. C., and Kilpatrick, M.: The decomposition of
ozone in aqueous solution, J. Am. Chem. Soc., 78, 1784–1789,
https://doi.org/10.1021/JA01590A003, 1956.
Kim, B. R., Kalis, E. M., DeWulf, T., and Andrews, K. M.: Henry's Law constants
for paint solvents and their implications on volatile organic compound
emissions from automotive painting, Water Environ. Res., 72, 65–74,
https://doi.org/10.2175/106143000X137121, 2000.
Kim, I., Svendsen, H. F., and Børresen, E.: Ebulliometric determination of
vapor-liquid equilibria for pure water, monoethanolamine,
N-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and
ternary solutions, J. Chem. Eng. Data, 53, 2521–2531,
https://doi.org/10.1021/JE800290K, 2008.
Kim, Y.-H. and Kim, K.-H.: Recent advances in thermal desorption-gas
chromatography-mass spectrometery method to eliminate the matrix effect
between air and water samples: Application to the accurate determination of
Henry's law constant, J. Chromatogr. A, 1342, 78–85,
https://doi.org/10.1016/J.CHROMA.2014.03.040, 2014.
Kim, Y.-H. and Kim, K.-H.: A simple method for the accurate determination of
the Henry's law constant for highly sorptive, semivolatile organic compounds,
Anal. Bioanal. Chem., 408, 775–784, https://doi.org/10.1007/S00216-015-9159-3, 2016.
Kish, J. D., Leng, C. B., Kelley, J., Hiltner, J., Zhang, Y. H., and Liu, Y.:
An improved approach for measuring Henry's law coefficients of atmospheric
organics, Atmos. Environ., 79, 561–565,
https://doi.org/10.1016/J.ATMOSENV.2013.07.023, 2013.
Klein, R. G.: Calculations and measurements on the volatility of N-nitrosamines
and their aqueous solutions, Toxicology, 23, 135–147,
https://doi.org/10.1016/0300-483X(82)90093-2, 1982.
Knauss, K. G., Dibley, M. J., Leif, R. N., Mew, D. A., and Aines, R. D.: The
aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a
function of temperature, Appl. Geochem., 15, 501–512,
https://doi.org/10.1016/S0883-2927(99)00058-X, 2000.
Kochetkov, A., Smith, J. S., Ravikrishna, R., Valsaraj, K. T., and Thibodeaux,
L. J.: Air–water partition constants for volatile methyl siloxanes, Environ.
Toxicol. Chem., 20, 2184–2188, https://doi.org/10.1002/ETC.5620201008, 2001.
Koga, Y.: Vapor pressures of dilute aqueous t-butyl alcohol: How dilute is
the Henry's law region?, J. Phys. Chem., 99, 6231–6233,
https://doi.org/10.1021/J100016A069, 1995.
Kolb, B., Welter, C., and Bichler, C.: Determination of partition coefficients
by automatic equilibrium headspace gas chromatography by vapor phase
calibration, Chromatographia, 34, 235–240, https://doi.org/10.1007/BF02268351, 1992.
Komiyama, H. and Inoue, H.: Reaction and transport of nitrogen oxides in
nitrous acid solutions, J. Chem. Eng. Jpn., 11, 25–32,
https://doi.org/10.1252/JCEJ.11.25, 1978.
Komiyama, H. and Inoue, H.: Absorption of nitrogen oxides into water, Chem.
Eng. Sci., 35, 154–161, https://doi.org/10.1016/0009-2509(80)80082-0, 1980.
Kondoh, H. and Nakajima, T.: Optimization of headspace cryofocus gas
chromatography/mass spectrometry for the analysis of 54 volatile organic
compounds, and the measurement of their Henry's constants, J. Environ. Chem.,
7, 81–89, https://doi.org/10.5985/JEC.7.81, 1997.
Kosak-Channing, L. F. and Helz, G. R.: Solubility of ozone in aqueous solutions
of 0–0.6 M ionic strength at 5–30 °C, Environ. Sci.
Technol., 17, 145–149, https://doi.org/10.1021/ES00109A005, 1983.
Kotlik, S. B. and Lebedeva, G. N.: Equilibrium pressures of HCN and
NH3 over aqueous solutions, Zh. Prikl. Khim., 47, 444–446, 1974.
Kramers, H., Blind, M. P. P., and Snoeck, E.: Absorption of nitrogen tetroxide
by water jets, Chem. Eng. Sci., 14, 115–123,
https://doi.org/10.1016/0009-2509(61)85062-8, 1961.
Krause, Jr., D. and Benson, B. B.: The solubility and isotopic fractionation of
gases in dilute aqueous solution. IIa. solubilities of the noble gases, J.
Solution Chem., 18, 823–873, https://doi.org/10.1007/BF00685062, 1989.
Kremann, R. and Hönel, H.: Über die Löslichkeit von Acetylen in Aceton
und Aceton-Wassergemischen, Monatsh. Chem. – Chem. Mon., 34, 1089–1094,
https://doi.org/10.1007/BF01517552, 1913.
Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and
Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by
reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110, D23207,
https://doi.org/10.1029/2005JD006004, 2005.
Krop, H. B., van Velzen, M. J. M., Parsons, J. R., and Govers, H. A. J.:
n-Octanol-water partition coefficients, aqueous solubilities and Henry's law
constants of fatty acid esters, Chemosphere, 34, 107–119,
https://doi.org/10.1016/S0045-6535(96)00371-2, 1997.
Krysztofiak, G., Catoire, V., Poulet, G., Marécal, V., Pirre, M., Louis, F.,
Canneaux, S., and Josse, B.: Detailed modeling of the atmospheric degradation
mechanism of very-short lived brominated species, Atmos. Environ., 59,
514–532, https://doi.org/10.1016/J.ATMOSENV.2012.05.026, 2012.
Kucklick, J. R., Hinckley, D. A., and Bidleman, T. F.: Determination of Henry's
law constants for hexachlorocyclohexanes in distilled water and artificial
seawater as a function of temperature, Mar. Chem., 34, 197–209,
https://doi.org/10.1016/0304-4203(91)90003-F, 1991.
Kühne, R., Ebert, R.-U., and Schüürmann, G.: Prediction of the
temperature dependency of Henry's law constant from chemical structure,
Environ. Sci. Technol., 39, 6705–6711, https://doi.org/10.1021/ES050527H, 2005.
Kunerth, W.: Solubility of CO2 and N2O in certain solvents,
Phys. Rev., 19, 512–524, https://doi.org/10.1103/PHYSREV.19.512, 1922.
Kuramochi, H., Maeda, K., and Kawamoto, K.: Measurements of water solubilities
and 1-octanol/water partition coefficients and estimations of Henry's law
constants for brominated benzenes, J. Chem. Eng. Data, 49, 720–724,
https://doi.org/10.1021/JE0342724, 2004.
Kuramochi, H., Takigami, H., Scheringer, M., and Sakai, S.: Measurement of
vapor pressures of selected PBDEs, hexabromobenzene, and
1,2-bis(2,4,6-tribromophenoxy)ethane at elevated temperatures, J. Chem. Eng.
Data, 59, 8–15, https://doi.org/10.1021/JE400520E, 2014.
Kurtén, T., Elm, J., Prisle, N. L., Mikkelsen, K. V., Kampf, C. J., Waxman,
E. M., and Volkamer, R.: Computational study of the effect of glyoxal-sulfate
clustering on the Henry's law coefficient of glyoxal, J. Phys. Chem. A, 119,
4509–4514, https://doi.org/10.1021/JP510304C, 2015.
Kurz, J. and Ballschmiter, K.: Vapour pressures, aqueous solubilities, Henry's
law constants, partition coefficients between gas/water (Kgw),
n-octanol/water (Kow) and gas/n-octanol (Kgo) of
106 polychlorinated diphenyl ethers (PCDE), Chemosphere, 38, 573–586,
https://doi.org/10.1016/S0045-6535(98)00212-4, 1999.
Kutsuna, S.: Determination of rate constants for aqueous reactions of HCFC-123
and HCFC-225ca with OH− along with Henry's law constants of several
HCFCs, Int. J. Chem. Kinet., 45, 440–451, https://doi.org/10.1002/KIN.20780, 2013.
Kutsuna, S.: Experimental determination of Henry's law constants of
difluoromethane (HFC-32) and the salting-out effects in aqueous salt
solutions relevant to seawater, Atmos. Chem. Phys., 17, 7495–7507,
https://doi.org/10.5194/ACP-17-7495-2017, 2017.
Kutsuna, S. and Hori, H.: Experimental determination of Henry's law constants
of trifluoroacetic acid at 278-298 K, Atmos. Environ., 42,
1399–1412, https://doi.org/10.1016/J.ATMOSENV.2007.11.009, 2008a.
Kutsuna, S. and Hori, H.: Experimental determination of Henry's law constant of
perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas
stripping method with a helical plate, Atmos. Environ., 42, 8883–8892,
https://doi.org/10.1016/J.ATMOSENV.2008.09.008, 2008b.
Kutsuna, S. and Kaneyasu, N.: Henry's law constants and hydration equilibrium
constants of n-hexanal and their temperature dependence as determined by
the rectangular pulse method, Chem. Eng. Sci., 239, 116 639,
https://doi.org/10.1016/J.CES.2021.116639, 2021.
Kutsuna, S., Chen, L., Ohno, K., Tokuhashi, K., and Sekiya, A.: Henry's law
constants and hydrolysis rate constants of 2,2,2-trifluoroethyl acetate and
methyl trifluoroacetate, Atmos. Environ., 38, 725–732,
https://doi.org/10.1016/J.ATMOSENV.2003.10.019, 2004.
Kutsuna, S., Chen, L., Abe, T., Mizukado, J., Uchimaru, T., Tokuhashi, K., and
Sekiya, A.: Henry's law constants of 2,2,2-trifluoroethyl formate, ethyl
trifluoroacetate, and non-fluorinated analogous esters, Atmos. Environ., 39,
5884–5892, https://doi.org/10.1016/J.ATMOSENV.2005.06.021, 2005.
Lamarche, P. and Droste, R. L.: Air stripping mass transfer correlations for
volatile organics, J. Am. Water Works Assoc., 81, 78–89,
https://doi.org/10.1002/J.1551-8833.1989.TB03326.X, 1989.
Landy, P., Druaux, C., and A.Voilley: Retention of aroma compounds by proteins
in aqueous solution, Food Chem., 54, 387–392,
https://doi.org/10.1016/0308-8146(95)00069-U, 1995.
Landy, P., Courthaudon, J.-L., Dubois, C., and Voilley, A.: Effect of interface
in model food emulsions on the volatility of aroma compounds, J. Agric. Food
Chem., 44, 526–530, https://doi.org/10.1021/JF950279G, 1996.
Lannung, A.: The solubilities of helium, neon and argon in water and some
organic solvents, J. Am. Chem. Soc., 52, 68–80, https://doi.org/10.1021/JA01364A011,
1930.
Latimer, W. M.: The Oxidation States of the Elements and their Potentials in
Aqueous Solutions, Prentice-Hall, Englewood Cliffs, NJ, 1952.
Lau, F. K., Charles, M. J., and Cahill, T. M.: Evaluation of gas-stripping
methods for the determination of Henry's law constants for polybrominated
diphenyl ethers and polychlorinated biphenyls, J. Chem. Eng. Data, 51,
871–878, https://doi.org/10.1021/JE050308B, 2006.
Lau, K., Rogers, T. N., and Chesney, D. J.: Measuring the aqueous Henry's law
constant at elevated temperatures using an extended EPICS technique, J. Chem.
Eng. Data, 55, 5144–5148, https://doi.org/10.1021/JE100701W, 2010.
Lau, Y. L., Liu, D. L. S., Pacepavicius, G. J., and Maguire, R. J.:
Volatilization of metolachlor from water, J. Environ. Sci. Health B, 30,
605–620, https://doi.org/10.1080/03601239509372956, 1995.
Leaist, D. G.: Absorption of chlorine into water, J. Solution Chem., 15,
827–838, https://doi.org/10.1007/BF00646090, 1986.
Ledbury, W. and Blair, E. W.: The partial formaldehyde vapour pressures of
aqueous solutions of formaldehyde. Part II, J. Chem. Soc., 127, 2832–2839,
https://doi.org/10.1039/CT9252702832, 1925.
Lee, F. F.: Comprehensive analysis, Henry's law constant determination, and
photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other
persistent organic pollutants (POPs), Ph.D. thesis, University at Albany,
State University of New York, USA, ISBN 978-0-549-42141-2, 2007.
Lee, H., Kim, H.-J., and Kwon, J.-H.: Determination of Henry's law constant
using diffusion in air and water boundary layers, J. Chem. Eng. Data, 57,
3296–3302, https://doi.org/10.1021/JE300954S, 2012.
Lee, S.-H., Mukherjee, S., Brewer, B., Ryan, R., Yu, H., and Gangoda, M.: A
laboratory experiment to measure Henry's law constants of volatile organic
compounds with a bubble column and a gas chromatography flame ionization
detector (GC-FID), J. Chem. Educ., 90, 495–499, https://doi.org/10.1021/ED200303X,
2013.
Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with
liquid water at low partial pressure, J. Phys. Chem., 85, 840–848,
https://doi.org/10.1021/J150607A022, 1981.
Lee, Y.-N. and Zhou, X.: Method for the determination of some soluble
atmospheric carbonyl compounds, Environ. Sci. Technol., 27, 749–756,
https://doi.org/10.1021/ES00041A020, 1993.
Lee, Y.-N. and Zhou, X.: Aqueous reaction kinetics of ozone and dimethylsulfide
and its atmospheric implications, J. Geophys. Res., 99, 3597–3605,
https://doi.org/10.1029/93JD02919, 1994.
Lei, Y. D., Wania, F., Shiu, W. Y., and Boocock, D. G. B.: Temperature
dependent vapor pressures of chlorinated catechols, syringols, and
syringaldehydes, J. Chem. Eng. Data, 44, 200–202, https://doi.org/10.1021/JE9801819,
1999.
Lei, Y. D., Wania, F., Mathers, D., and Mabury, S. A.: Determination of vapor
pressures, octanol-air, and water-air partition coefficients for
polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols, J.
Chem. Eng. Data, 49, 1013–1022, https://doi.org/10.1021/JE049949H, 2004.
Lei, Y. D., Shunthirasingham, C., and Wania, F.: Comparison of headspace and
gas-stripping techniques for measuring the air–water partititioning of
normal alkanols (C4 to C10) – effect of temperature, chain length and
adsorption to the water surface, J. Chem. Eng. Data, 52, 168–179,
https://doi.org/10.1021/JE060344Q, 2007.
Leighton, D. T. and Calo, J. M.: Distribution coefficients of chlorinated
hydrocarbons in dilute air–water systems for groundwater contamination
applications, J. Chem. Eng. Data, 26, 382–385, https://doi.org/10.1021/JE00026A010,
1981.
Leistra, M.: Distribution of 1,3-dichloropropene over the phases in soil, J.
Agric. Food Chem., 18, 1124–1126, https://doi.org/10.1021/JF60172A004, 1970.
Lekvam, K. and Bishnoi, P. R.: Dissolution of methane in water at low
temperatures and intermediate pressures, Fluid Phase Equilib., 131, 297–309,
https://doi.org/10.1016/S0378-3812(96)03229-3, 1997.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267, https://doi.org/10.1007/BF00048075,
1991.
Leng, C., Kish, J. D., Kelley, J., Mach, M., Hiltner, J., Zhang, Y., and Liu,
Y.: Temperature-dependent Henry's law constants of atmospheric organics of
biogenic origin, J. Phys. Chem. A, 117, 10 359–10 367,
https://doi.org/10.1021/JP403603Z, 2013.
Leng, C., Kish, J. D., Roberts, J. E., Dwebi, I., Chon, N., and Liu, Y.:
Temperature-dependent Henry's law constants of atmospheric amines, J. Phys.
Chem. A, 119, 8884–8891, https://doi.org/10.1021/ACS.JPCA.5B05174, 2015a.
Leng, C.-B., Roberts, J. E., Zeng, G., Zhang, Y.-H., and Liu, Y.: Effects of
temperature, pH, and ionic strength on the Henry's law constant of
triethylamine, Geophys. Res. Lett., 42, 3569–3575,
https://doi.org/10.1002/2015GL063840, 2015b.
Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B.: A model
for tropospheric multiphase chemistry: application to one cloudy event during
the CIME experiment, Atmos. Environ., 34, 5015–5036,
https://doi.org/10.1016/S1352-2310(00)00329-0, 2000.
Lerman, J., Willis, M. M., Gregory, G. A., and Eger, E. I.: Osmolarity
determines the solubility of anesthetics in aqueous solutions at
37 °C, Anesthesiology, 59, 554–558,
https://doi.org/10.1097/00000542-198312000-00013, 1983.
Leu, M.-T. and Zhang, R.: Solubilities of CH3C(O)O2NO2 and
HO2NO2 in water and liquid H2SO4, Geophys. Res. Lett., 26,
1129–1132, https://doi.org/10.1029/1999GL900158, 1999.
Leuenberger, C., Ligocki, M. P., and Pankow, J. F.: Trace organic compounds in
rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in
urban air and rain, Environ. Sci. Technol., 19, 1053–1058,
https://doi.org/10.1021/ES00141A005, 1985.
Levanov, A. V., Kuskov, I. V., Antipenko, E. E., and Lunin, V. V.: The
solubility of ozone in aqueous solutions of sulfuric, phosphoric, and
perchloric acids, Russ. J. Phys. Chem. A, 82, 1126–1131, 2008.
Lewis, C., Hopke, P. K., and Stukel, J. J.: Solubility of radon in selected
perfluorocarbon compounds and water, Ind. Eng. Chem. Res., 26, 356–359,
https://doi.org/10.1021/IE00062A030, 1987.
Li, H., Ellis, D., and Mackay, D.: Measurement of low air–water partition
coefficients of organic acids by evaporation from a water surface, J. Chem.
Eng. Data, 52, 1580–1584, https://doi.org/10.1021/JE600556D, 2007.
Li, H., Wang, X., Yi, T., Xu, Z., and Liu, X.: Prediction of Henry's law
constants for organic compounds using multilayer feedforward neural networks
based on linear salvation energy relationship, J. Chem. Pharm. Res., 6,
1557–1564, 2014.
Li, J. and Carr, P. W.: Measurement of water-hexadecane partition coefficients
by headspace gas chromatography and calculation of limiting activity
coefficients in water, Anal. Chem., 65, 1443–1450,
https://doi.org/10.1021/AC00058A023, 1993.
Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait,
M. J., and Eckert, C. A.: Measurement of large infinite dilution activity
coefficients of nonelectrolytes in water by inert gas stripping and gas
chromatography, Anal. Chem., 65, 3212–3218, https://doi.org/10.1021/AC00070A008, 1993.
Li, J., Perdue, E. M., Pavlostathis, S. G., and Araujo, R.: Physicochemical
properties of selected monoterpenes, Environ. Int., 24, 353–358,
https://doi.org/10.1016/S0160-4120(98)00013-0, 1998.
Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu,
Y.-N., and Zheng, P.-C.: Dynamic measurements of Henry's law constant of
aromatic compounds using proton transfer reaction mass spectrometry, Acta
Phys. Chim. Sin., 24, 705–708, 2008.
Li, N., Wania, F., Lei, Y. D., and Daly, G. L.: A comprehensive and critical
compilation, evaluation, and selection of physical-chemical property data for
selected polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 32, 1545–1590,
https://doi.org/10.1063/1.1562632, 2003.
Li, P., Mühle, J., Montzka, S. A., Oram, D. E., Miller, B. R., Weiss, R. F.,
Fraser, P. J., and Tanhua, T.: Atmospheric histories, growth rates and
solubilities in seawater and other natural waters of the potential transient
tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and
PFC-116, Ocean Sci., 15, 33–60, https://doi.org/10.5194/OS-15-33-2019, 2019.
Li, S., Chen, Z., and Shi, F.: Determination of Henry's Law constant for methyl
hydroperoxide by long path FTIR, Prog. Nat. Sci., 14, 765–769,
https://doi.org/10.1080/10020070412331344291, 2004.
Lichtenbelt, J. H. and Schram, B. J.: Vapor-liquid equilibrium of
water-acetone-air at ambient temperatures and pressures. An analysis of
different VLE-fitting methods, Ind. Eng. Chem. Process Des. Dev., 24,
391–397, https://doi.org/10.1021/I200029A029, 1985.
Lide, D. R. and Frederikse, H. P. R.: CRC Handbook of Chemistry and Physics,
76th Edn., CRC Press, Inc., Boca Raton, FL, ISBN 0849304768, 1995.
Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous
chlorine (HOCl/OCl−): Implications for tropospheric mercury
chemistry, J. Geophys. Res., 103, 28 093–28 102, https://doi.org/10.1029/98JD02304,
1998.
Lin, J.-H. and Chou, M.-S.: Temperature effects on Henry's law constants for
four VOCs in air-activated sludge systems, Atmos. Environ., 40, 2469–2477,
https://doi.org/10.1016/J.ATMOSENV.2005.12.037, 2006.
Lincoff, A. H. and Gossett, J. M.: The determination of Henry's law constant
for volatile organics by equilibrium partitioning in closed systems, in: Gas
transfer at water surfaces, edited by: Brutsaert, W. and Jirka, G. H.,
D. Reidel Publishing Company, Dordrecht-Holland, 17–25,
https://doi.org/10.1007/978-94-017-1660-4_2, 1984.
Lind, J. A. and Kok, G. L.: Henry's law determinations for aqueous solutions of
hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys.
Res., 91, 7889–7895, https://doi.org/10.1029/JD091ID07P07889, 1986.
Lind, J. A. and Kok, G. L.: Correction to “Henry's law determinations for
aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic
acid” by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99, 21 119,
https://doi.org/10.1029/94JD01155, 1994.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) medical applications, food control and environmental
research, Int. J. Mass Spectrom. Ion Proc., 173, 191–241,
https://doi.org/10.1016/S0168-1176(97)00281-4, 1998.
Lindqvist, O. and Rodhe, H.: Atmospheric mercury – a review, Tellus, 37B,
136–159, https://doi.org/10.1111/J.1600-0889.1985.TB00062.X, 1985.
Linnemann, M., Nikolaychuk, P. A., noz Muñoz, Y. M. M., Baumhögger, E., and
Vrabec, J.: Henry's law constant of noble gases in water, methanol, ethanol,
and isopropanol by experiment and molecular simulation, J. Chem. Eng. Data,
65, 1180–1188, https://doi.org/10.1021/ACS.JCED.9B00565, 2020.
Liss, P. S. and Slater, P. G.: Flux of gases across the air-sea interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181A0, 1974.
Liu, G.-H., Wen, M.-M., Deng, L.-T., Cui, H.-N., Jia, Y.-Y., Cheng, S.-H., Cao,
J., and Li, C.: The determination of Henry's law constant of methane in test
water by A.R.M/headspace, Acta Geosci. Sinica, 4, 565–571,
https://doi.org/10.3975/CAGSB.2020.111202, 2021.
Liu, X., Guo, Z., Roache, N. F., Mocka, C. A., Allen, M. R., and Mason, M. A.:
Henry's law constant and overall mass transfer coefficient for formaldehyde
emission from small water pools under simulated indoor environmental
conditions, Environ. Sci. Technol., 49, 1603–1610, https://doi.org/10.1021/ES504540C,
2015.
Lodge, K. B. and Danso, D.: The measurement of fugacity and the Henry's law
constant for volatile organic compounds containing chromophores, Fluid Phase
Equilib., 253, 74–79, https://doi.org/10.1016/J.FLUID.2007.01.010, 2007.
Long, J., Youli, Q., and Yu, L.: Effect analysis of quantum chemical
descriptors and substituent characteristics on Henry's law constants of
polybrominated diphenyl ethers at different temperatures, Ecotoxicol.
Environ. Saf., 145, 176–183, https://doi.org/10.1016/J.ECOENV.2017.07.024, 2017.
Longo, L. D., Delivoria-Papadopoulos, M., Power, G. G., Hill, E. P., and
Forster, R. E.: Diffusion equilibration of inert gases between maternal and
fetal placental capillaires, Am. J. Physiol., 219, 561–569,
https://doi.org/10.1152/AJPLEGACY.1970.219.3.561, 1970.
Loomis, A. G.: Solubilities of gases in water, in: International Critical
Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III, edited
by: Washburn, E. W., West, C. J., Dorsey, N. E., Bichowsky, F. R., and
Klemenc, A., McGraw-Hill, Inc., 255–261, 1928.
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric dimethyl
sulphide and the natural sulphur cycle, Nature, 237, 452–453,
https://doi.org/10.1038/237452A0, 1972.
Luke, W. T., Dickerson, R. R., and Nunnermacker, L. J.: Direct measurements of
the photolysis rate coefficients and Henry's law constants of several alkyl
nitrates, J. Geophys. Res., 94, 14 905–14 921,
https://doi.org/10.1029/JD094ID12P14905, 1989.
Luther, R.: Zur Kenntnis des Ozons, Z. Elektrochem., 11, 832–835,
https://doi.org/10.1002/BBPC.19050114704, 1905.
Lutsyk, A., Portnanskij, V., Sujkov, S., and Tchuprina, V.: A new set of
gas/water partition coefficients for the chloromethanes, Monatsh. Chem. –
Chem. Mon., 136, 1183–1189, https://doi.org/10.1007/S00706-005-0319-6, 2005.
Ma, J., Dasgupta, P. K., Blackledge, W., and Boss, G. R.: Temperature
dependence of Henry's law constant for hydrogen cyanide. Generation of trace
standard gaseous hydrogen cyanide, Environ. Sci. Technol., 44, 3028–3034,
https://doi.org/10.1021/ES1001192, 2010a.
Ma, Y.-G., Lei, Y. D., Xiao, H., Wania, F., and Wang, W.-H.: Critical review
and recommended values for the physical-chemical property data of 15
polycyclic aromatic hydrocarbons at 25 °C, J. Chem. Eng. Data,
55, 819–825, https://doi.org/10.1021/JE900477X, 2010b.
Maahs, H. G.: Sulfur-dioxide/water equilibria between 0 ° and
50 °C. An examination of data at low concentrations, in:
Heterogeneous Atmospheric Chemistry, Geophysical Monograph 26, edited by:
Schryer, D. R., Am. Geophys. Union, Washington, D.C., 187–195,
https://doi.org/10.1029/GM026P0187, 1982.
Maaßen, S.: Experimentelle Bestimmung und Korrelierung von
Verteilungskoeffizienten in verdünnten Lösungen, Ph.D. thesis, Technische
Universität Berlin, Germany, ISBN 3826511042, 1995.
Mabury, S. A. and Crosby, D. G.: Pesticide reactivity toward hydroxyl and its
relationship to field persistence, J. Agric. Food Chem., 44, 1920–1924,
https://doi.org/10.1021/JF950423Y, 1996.
MacBean, C.: The Pesticide Manual, 16th Edn., Supplementary Entries –
Extended, Tech. rep., British Crop Production Council, ISBN 190139686X,
2012a.
MacBean, C.: The Pesticide Manual, British Crop Production Council, ISBN
9781901396867, 2012b.
Macintosh, R. R., Mushin, W. W., and Epstein, H. G.: Physics for the
Anaesthetist: Including a Section on Explosions, Charles C. Thomas Publisher,
Ltd., 1958.
Mackay, D. and Leinonen, P. J.: Rate of evaporation of low-solubility
contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9,
1178–1180, https://doi.org/10.1021/ES60111A012, 1975.
Mackay, D. and Shiu, W. Y.: A critical review of Henry's law constants for
chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10,
1175–1199, https://doi.org/10.1063/1.555654, 1981.
Mackay, D. and Yeun, A. T. K.: Mass transfer coefficient correlations for
volatilization of organic solutes from water, Environ. Sci. Technol., 17,
211–217, https://doi.org/10.1021/ES00110A006, 1983.
Mackay, D., Shiu, W. Y., and Sutherland, R. P.: Determination of air–water
Henry's law constants for hydrophobic pollutants, Environ. Sci. Technol., 13,
333–337, https://doi.org/10.1021/ES60151A012, 1979.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis
Publishers, Boca Raton, ISBN 0873715136, 1992a.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. II of Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins,
and Dibenzofurans, Lewis Publishers, Boca Raton, ISBN 0873715837,
1992b.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton,
ISBN 0873719735, 1993.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis
Publishers, Boca Raton, ISBN 1566700353, 1995.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group,
https://doi.org/10.1201/9781420044393, 2006a.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group,
https://doi.org/10.1201/9781420044393, 2006b.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group,
https://doi.org/10.1201/9781420044393, 2006c.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of
Physical-Chemical Properties and Environmental Fate for Organic Chemicals,
vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides,
CRC/Taylor & Francis Group, https://doi.org/10.1201/9781420044393, 2006d.
Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George,
C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by
water surfaces, J. Phys. Chem. A, 101, 4943–4949, https://doi.org/10.1021/JP970646M,
1997.
Mailfert, M.: Sur la solubilité de l'ozone, C. R. Hebd. Séances Acad. Sci.,
119, 951–953, 1894.
Maillard, A. and Rosenthal, W.: Solubilité de l'acétylène dans divers
liquides organiques, C. R. Hebd. Séances Acad. Sci., 234, 2546–2548, 1952.
Maniere, I., Bouneb, F., Fastier, A., Courty, B., Dumenil, J., Poupard, M., and
Mercier, T.: AGRITOX-Database on pesticide active substances, Toxicol. Lett.,
205S, S231–S232, https://doi.org/10.1016/J.TOXLET.2011.05.792, 2011.
Manogue, W. H. and Pigford, R. L.: The kinetics of the absorption of phosgene
into water and aqueous solutions, AIChE J., 6, 494–500,
https://doi.org/10.1002/AIC.690060329, 1960.
Mansfield, M. L.: Mass transport of gases across the air–water interface:
implications for aldehyde emissions in the Uinta Basin, Utah, USA, Atmos.,
11, 1057, https://doi.org/10.3390/ATMOS11101057, 2020.
Marin, M., Baek, I., and Taylor, A. J.: Volatile release from aqueous solutions
under dynamic headspace dilution conditions, J. Agric. Food Chem., 47,
4750–4755, https://doi.org/10.1021/JF990470G, 1999.
Markham, A. E. and Kobe, K. A.: The solubility of gases in liquids, Chem. Rev.,
28, 519–588, https://doi.org/10.1021/CR60091A003, 1941.
Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law
constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080,
https://doi.org/10.1016/0004-6981(85)90192-1, 1985.
Marti, J. J., Jefferson, A., Cai, X. P., Richert, C., McMurry, P. H., and
Eisele, F.: H2SO4 vapor pressure of sulfuric acid and ammonium
sulfate solutions, J. Geophys. Res., 102, 3725–3735,
https://doi.org/10.1029/96JD03064, 1997.
Martin, L. R.: Kinetic studies of sulfite oxidation in aqueous solution, in:
SO2, NO and NO2 Oxidation Mechanisms: Atmospheric
Considerations, edited by: Calvert, J. G., Butterworth
Publishers, Boston, MA, 63–100, ISBN 0250405687, 1984.
Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by
hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621,
https://doi.org/10.1016/0004-6981(81)90146-3, 1981.
Martins, M. A. R., Silva, L. P., Ferreira, O., Schröder, B., Coutinho, J.
A. P., and Pinho, S. P.: Terpenes solubility in water and their environmental
distribution, J. Mol. Liq., 241, 996–1002,
https://doi.org/10.1016/J.MOLLIQ.2017.06.099, 2017.
Mazza, G.: Relative volatilities of some onion flavour components, Int. J. Food
Sci. Technol., 15, 35–41, https://doi.org/10.1111/J.1365-2621.1980.TB00916.X, 1980.
Mazzoni, S. M., Roy, S., and Grigoras, S.: Eco-relevant properties of selected
organosilicon materials, in: The Handbook of Environmental Chemistry, Vol. 3.
Part H. Organosilicon Materials, edited by: Chandra, G., Springer
Verlag, Berlin, 53–81, https://doi.org/10.1007/978-3-540-68331-5, 1997.
McAuliffe, C.: Solubility in water of C1-C9 hydrocarbons,
Nature, 200, 1092–1093, https://doi.org/10.1038/2001092A0, 1963.
McAuliffe, C.: Solubility in water of paraffin, cycloparaffin, olefin,
acetylene, cycloolefin, and aromatic hydrocarbons, J. Phys. Chem., 70,
1267–1275, https://doi.org/10.1021/J100876A049, 1966.
McAuliffe, C.: Gas chromatographic determination of solutes by multiple phase
equilibrium, Chem. Technol., 1, 46–51, 1971.
McCarty, P. L.: Organics in water – an engineering challenge, J. Environ. Eng.
Div., 106, 1–17, 1980.
McConnell, G., Ferguson, D. M., and Pearson, C. R.: Chlorinated hydrocarbons
and the environment, Endeavour, 34, 13–18,
https://doi.org/10.1016/0160-9327(75)90062-9, 1975.
McCoy, W. F., Blatchley, III, E. R., and Johnson, R. W.: Hypohalous acid and
haloamine flashoff in industrial evaporative cooling systems, Tech. rep.,
Cooling Tower Institute, paper no.: TP90-09, 1990.
McFall, A. S., Johnson, A. W., and Anastasio, C.: Air–water partitioning of
biomass-burning phenols and the effects of temperature and salinity, Environ.
Sci. Technol., 54, 3823–3830, https://doi.org/10.1021/ACS.EST.9B06443, 2020.
McIntosh, J. M. and Heffron, J. J. A.: Modelling alterations in the partition
coefficient in in vitro biological systems using headspace gas
chromatography, J. Chromatogr. B, 738, 207–216,
https://doi.org/10.1016/S0378-4347(99)00506-X, 2000.
McKeown, A. and Stowell, F. P.: XVI. – The vapour pressures of mixtures of (a)
methyl acetate and water; (b) methyl acetate, sucrose, and water, J. Chem.
Soc., 97–103, https://doi.org/10.1039/JR9270000097, 1927.
McLachlan, M., Mackay, D., and Jones, P. H.: A conceptual model of organic
chemical volatilization at waterfalls, Environ. Sci. Technol., 24, 252–257,
https://doi.org/10.1021/ES00072A015, 1990.
McLinden, M. O.: Physical properties of alternatives to the fully halogenated
chlorofluorocarbons, in: WMO Report 20, Scientific Assessment of
Stratospheric Ozone: 1989, Volume II, World Meteorol. Organ.,
Geneva, 11–38, ISBN 9280712551, 1989.
McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner,
A. J., and Barakat, J. M.: Aqueous-phase secondary organic aerosol and
organosulfate formation in atmospheric aerosols: a modeling study, Environ.
Sci. Technol., 46, 8075–8081, https://doi.org/10.1021/ES3002986, 2012.
McPhedran, K. N., Seth, R., and Drouillard, K. G.: Evaluation of the gas
stripping technique for calculation of Henry's law constants using the
initial slope method for 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and
hexachlorobenzene, Chemosphere, 91, 1648–1652,
https://doi.org/10.1016/J.CHEMOSPHERE.2012.12.017, 2013.
Meadows, R. W. and Spedding, D. J.: The solubility of very low concentrations
of carbon monoxide in aqueous solution, Tellus, 26, 143–149,
https://doi.org/10.3402/TELLUSA.V26I1-2.9745, 1974.
Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous
hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem.
Phys., 1, 5451–5457, https://doi.org/10.1039/A905338G, 1999.
Mentel, T. F., Folkers, M., Tillmann, R., Henk, H., Wahner, A., Otjes, R.,
Blom, M., and ten Brink, H. M.: Determination of the Henry coefficients for
organic aerosol components, Geophys. Res. Abstr., 6, 1525, 2004.
Merk, S. and Riederer, M.: Sorption of volatile C1 to C6 alkanols in plant
cuticles, J. Exp. Bot., 48, 1095–1104, https://doi.org/10.1093/JXB/48.5.1095, 1997.
Metcalfe, C. D., McLeese, D. W., and Zitko, V.: Rate of volatilization of
fenitrothion from fresh water, Chemosphere, 9, 151–155,
https://doi.org/10.1016/0045-6535(80)90086-7, 1980.
Meylan, W. M. and Howard, P. H.: Bond contribution method for estimating
Henry's law constants, Environ. Toxicol. Chem., 10, 1283–1293,
https://doi.org/10.1002/ETC.5620101007, 1991.
Meynier, A., Garillon, A., Lethuaut, L., and Genot, C.: Partition of five aroma
compounds between air and skim milk, anhydrous milk fat or full-fat cream,
Lait, 83, 223–235, https://doi.org/10.1051/LAIT:2003012, 2003.
Mick, J. R., Barhaghi, M. S., and Potoff, J. J.: Prediction of radon-222 phase
behavior by Monte Carlo simulation, J. Chem. Eng. Data, 61, 1625–1631,
https://doi.org/10.1021/ACS.JCED.5B01002, 2016.
Miguel, A. A. F., Ferreira, A. G. M., and Fonseca, I. M. A.: Solubilities of
some new refrigerants in water, Fluid Phase Equilib., 173, 97–107,
https://doi.org/10.1016/S0378-3812(00)00390-3, 2000.
Miller, M. E. and Stuart, J. D.: Measurement of aqueous Henry's law constants
for oxygenates and aromatics found in gasolines by the static headspace
method, Anal. Chem., 72, 622–625, https://doi.org/10.1021/AC990757C, 2000.
Miller, M. E. and Stuart, J. D.: Correction: Measurement of aqueous Henry's law
constants for oxygenates and aromatics found in gasolines by the static
headspace method, Anal. Chem., 75, 1037, https://doi.org/10.1021/AC034002O, 2003.
Millero, F. J., Huang, F., and Laferiere, A. L.: Solubility of oxygen in the
major sea salts as a function of concentration and temperature, Mar. Chem.,
78, 217–230, https://doi.org/10.1016/S0304-4203(02)00034-8, 2002a.
Millero, F. J., Huang, F., and Laferiere, A. L.: The solubility of oxygen in
the major sea salts and their mixtures at 25 °C, Geochim.
Cosmochim. Acta, 66, 2349–2359, https://doi.org/10.1016/S0016-7037(02)00838-4,
2002b.
Mirabel, P., George, C., Magi, L., and Ponche, J. L.: Chapter 6.3: Gas-liquid
interactions, in: Heterogeneous and Liquid-Phase Processes, edited by:
Warneck, P., Springer Verlag, Berlin, 175–181,
https://doi.org/10.1007/978-3-642-61445-3_6, 1996.
Mirvish, S. S., Issenberg, P., and Sornson, H. C.: Air–water and ether-water
distribution of N-nitroso compounds: implications for laboratory safety,
analytic methodology, and carcinogenicity for the rat esophagus, nose, and
liver, J. Natl. Cancer Inst., 56, 1125–1129, https://doi.org/10.1093/JNCI/56.6.1125,
1976.
Modarresi, H., Modarress, H., and Dearden, J. C.: Henry's law constant of
hydrocarbons in air–water system: The cavity ovality effect on the
non-electrostatic contribution term of solvation free energy, SAR QSAR
Environ. Res., 16, 461–482, https://doi.org/10.1080/10659360500319869, 2005.
Modarresi, H., Modarress, H., and Dearden, J. C.: QSPR model of Henry's law
constant for a diverse set of organic chemicals based on genetic
algorithm-radial basis function network approach, Chemosphere, 66,
2067–2076, https://doi.org/10.1016/J.CHEMOSPHERE.2006.09.049, 2007.
Mohebbi, V., Naderifar, A., Behbahani, R. M., and Moshfeghian, M.:
Determination of Henry's law constant of light hydrocarbon gases at low
temperatures, J. Chem. Thermodyn., 51, 8–11,
https://doi.org/10.1016/J.JCT.2012.02.014, 2012.
Möller, D. and Mauersberger, G.: Aqueous phase chemical reaction system used
in cloud chemistry modelling, in: EUROTRAC Special Publication: Clouds:
Models and Mechanisms, edited by: Flossmann, A., Cvitaš, T., Möller, D.,
and Mauersberger, G., 77–93, 1992.
Moore, R. M.: The solubility of a suite of low molecular weight organochlorine
compounds in seawater and implications for estimating the marine source of
methyl chloride to the atmosphere, Chemosphere Global Change Sci., 2, 95–99,
https://doi.org/10.1016/S1465-9972(99)00045-8, 2000.
Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Henry's law
constants for a suite of naturally occuring halogenated methanes in seawater,
Chemosphere, 30, 1183–1191, https://doi.org/10.1016/0045-6535(95)00009-W, 1995.
Morrison, T. J. and Billett, F.: 730. The salting-out of non-electrolytes. Part
II. The effect of variation in non-electrolyte, J. Chem. Soc.,
3819–3822, https://doi.org/10.1039/JR9520003819, 1952.
Morrison, T. J. and Johnstone, N. B.: Solubilities of the inert gases in water,
J. Chem. Soc., 3441–3446, https://doi.org/10.1039/JR9540003441, 1954.
Morrow, M., McMahon, T., Leighton, T., Shamim, N., Angle, G., Chen, J.,
Carlisle, S., Isbell, D., Slotnick, J., Mitchell, E., Henson, W., Koch, E.,
and Knorr, M.: Reregistration eligibility decision (RED) for chlorine dioxide
and sodium chlorite (case 4023), Tech. Rep. EPA 738-R-06-007, United States
Environmental Protection Agency,
(last access: 19 September 2023),
2006.
Mozurkewich, M.: Comment on “Possible role of NO3 in the nighttime
chemistry of a cloud” by William L. Chameides, J. Geophys. Res., 91,
14 569–14 570, https://doi.org/10.1029/JD091ID13P14569, 1986.
Mozurkewich, M.: Mechanisms for the release of halogens from sea-salt particles
by free radical reactions, J. Geophys. Res., 100, 14 199–14 207,
https://doi.org/10.1029/94JD00358, 1995.
Muccitelli, J. A. and Wen, W.-Y.: Solubilities of hydrogen and deuterium gases
in water and their isotope fractionation factor, J. Solution Chem., 7,
257–267, https://doi.org/10.1007/BF00644273, 1978.
Muir, D. C. G., Teixeira, C., and Wania, F.: Empirical and modeling evidence of
regional atmospheric transport of current-use pesticides, Environ. Toxicol.
Chem., 23, 2421–2432, https://doi.org/10.1897/03-457, 2004.
Müller, B. and Heal, M. R.: The Henry's law coefficient of 2-nitrophenol over
the temperature range 278–303 K, Chemosphere, 45, 309–314,
https://doi.org/10.1016/S0045-6535(00)00592-0, 2001.
Munder, B., Lidal, H., and Sandall, O. C.: Physical solubility of hydrogen
sulfide in aqueous solutions of 2-(tert-butylamino)ethanol, J. Chem.
Eng. Data, 45, 1201–1204, https://doi.org/10.1021/JE000166F, 2000.
Munson, E. S., Saidman, L. J., and Eger, E. I.: Solubility of fluroxene in
blood and tissue homogenates, Anesthesiology, 25, 638–640,
https://doi.org/10.1097/00000542-196409000-00010, 1964.
Munz, C. and Roberts, P. V.: Effects of solute concentration and cosolvents on
the aqueous activity coefficient of halogenated hydrocarbons, Environ. Sci.
Technol., 20, 830–836, https://doi.org/10.1021/ES00150A013, 1986.
Munz, C. and Roberts, P. V.: Air–water phase equilibria of volatile organic
solutes, J. Am. Water Works Assoc., 79, 62–69,
https://doi.org/10.1002/J.1551-8833.1987.TB02844.X, 1987.
Murphy, T. J., Pokojowczyk, J. C., and Mullin, M. D.: Vapor exchange of PCBs
with Lake Michigan: The atmosphere as a sink for PCBs, in: Physical Behavior
of PCBs in the Great Lakes, edited by: Mackay, D., Patterson, S., Eisenreich,
S. J., and Simmons, M. S., Ann Arbor Science, Ann Arbor, Mich., 49–58,
1983b.
Murphy, T. J., Mullin, M. D., and Meyer, J. A.: Equilibration of
polychlorinated biphenyls and toxaphene with air and water, Environ. Sci.
Technol., 21, 155–162, https://doi.org/10.1021/ES00156A005, 1987.
Murray, C. N. and Riley, J. P.: The solubility of gases in distilled water and
sea water – II. Oxygen, Deep-Sea Res. Oceanogr. Abstr., 16, 311–320,
https://doi.org/10.1016/0011-7471(69)90021-7, 1969.
Murray, C. N. and Riley, J. P.: The solubility of gases in distilled water and
sea water – III. Argon, Deep-Sea Res. Oceanogr. Abstr., 17, 203–209,
https://doi.org/10.1016/0011-7471(70)90100-2, 1970.
Murray, C. N. and Riley, J. P.: The solubility of gases in distilled water and
sea water – IV. Carbon dioxide, Deep-Sea Res. Oceanogr. Abstr., 18,
533–541, https://doi.org/10.1016/0011-7471(71)90077-5, 1971.
Murray, C. N., Riley, J. P., and Wilson, T. R. S.: The solubility of gases in
distilled water and sea water – I. Nitrogen, Deep-Sea Res. Oceanogr.
Abstr., 16, 297–310, https://doi.org/10.1016/0011-7471(69)90020-5, 1969.
Myrdal, P. and Yalkowsky, S. H.: A simple scheme for calculating aqueous
solubility, vapor pressure and Henry's law constant: application to the
chlorobenzenes, SAR QSAR Environ. Res., 2, 17–28,
https://doi.org/10.1080/10629369408028837, 1994.
Nahon, D. F., Harrison, M., and Roozen, J. P.: Modeling flavor release from
aqueous sucrose solutions, using mass transfer and partition coefficients, J.
Agric. Food Chem., 48, 1278–1284, https://doi.org/10.1021/JF990464K, 2000.
Nelson, P. E. and Hoff, J. E.: Food volatiles: Gas chromatographic
determination of partition coefficients in water-lipid systems, Int. J. Mass
Spectrom., 228, 479–482, https://doi.org/10.1111/J.1365-2621.1968.TB03659.X, 1968.
Nicholson, B. C., Maguire, B. P., and Bursill, D. B.: Henry's law constants for
the trihalomethanes: Effects of water composition and temperature, Environ.
Sci. Technol., 18, 518–521, https://doi.org/10.1021/ES00125A006, 1984.
Nielsen, F., Olsen, E., and Fredenslund, A.: Henry's law constants and infinite
dilution activity coefficients for volatile organic compounds in water by a
validated batch air stripping method, Environ. Sci. Technol., 28, 2133–2138,
https://doi.org/10.1021/ES00061A022, 1994.
Niinemets, U. and Reichstein, M.: A model analysis of the effects of
nonspecific monoterpenoid storage in leaf tissues on emission kinetics and
composition in Mediterranean sclerophyllous Quercus species, Global
Biogeochem. Cycles, 16, 1110, https://doi.org/10.1029/2002GB001927, 2002.
Nirmalakhandan, N., Brennan, R. A., and Speece, R. E.: Predicting Henry's law
constant and the effect of temperature on Henry's law constant, Wat. Res.,
31, 1471–1481, https://doi.org/10.1016/S0043-1354(96)00395-8, 1997.
Nirmalakhandan, N. N. and Speece, R. E.: QSAR model for predicting Henry's
constant, Environ. Sci. Technol., 22, 1349–1357, https://doi.org/10.1021/ES00176A016,
1988.
Nozière, B. and Riemer, D. D.: The chemical processing of gas-phase carbonyl
compounds by sulfuric acid aerosols: 2,4-pentanedione, Atmos. Environ., 37,
841–851, https://doi.org/10.1016/S1352-2310(02)00934-2, 2003.
Nunn, J. F.: Respiratory measurements in the presence of nitrous oxide: storage
of gas samples and chemical methods of analysis, Br. J. Anaesth., 30,
254–263, https://doi.org/10.1093/BJA/30.6.254, 1958.
Odabasi, M. and Adali, M.: Determination of temperature dependent Henry's law
constants of polychlorinated naphthalenes: Application to air-sea exchange in
Izmir Bay, Turkey, Atmos. Environ., 147, 200–208,
https://doi.org/10.1016/J.ATMOSENV.2016.10.009, 2016.
Odabasi, M., Cetin, B., and Sofuoglu, A.: Henry's law constant, octanol-air
partition coefficient and supercooled liquid vapor pressure of carbazole as a
function of temperature: Application to gas/particle partitioning in the
atmosphere, Chemosphere, 62, 1087–1096,
https://doi.org/10.1016/J.CHEMOSPHERE.2005.05.035, 2006.
O'Farrell, C. E. and Waghorne, W. E.: Henry's law constants of organic
compounds in water and n-octane at T = 293.2 K, J. Chem. Eng. Data, 55,
1655–1658, https://doi.org/10.1021/JE900711H, 2010.
Oliver, B. G.: Desorption of chlorinated hydrocarbons from spiked and
anthropogenically contaminated sediments, Chemosphere, 14, 1087–1106,
https://doi.org/10.1016/0045-6535(85)90029-3, 1985.
Olsen, R., Kvamme, B., and Kuznetsova, T.: Free energy of solvation and Henry's
law solubility constants for mono-, di- and tri-ethylene glycol in water and
methane, Fluid Phase Equilib., 418, 152–159,
https://doi.org/10.1016/J.FLUID.2015.10.019, 2016.
Olson, J. D.: The vapor pressure of pure and aqueous glutaraldehyde, Fluid
Phase Equilib., 150–151, 713–720, https://doi.org/10.1016/S0378-3812(98)00351-3,
1998.
Ömür-Özbek, P. and Dietrich, A. M.: Determination of
temperature-dependent Henry's law constants of odorous contaminants and their
application to human perception, Environ. Sci. Technol., 39, 3957–3963,
https://doi.org/10.1021/ES0480264, 2005.
Ondo, D. and Dohnal, V.: Temperature dependence of limiting activity
coefficients and Henry's law constants of cyclic and open-chain ethers in
water, Fluid Phase Equilib., 262, 121–136,
https://doi.org/10.1016/J.FLUID.2007.08.013, 2007.
Ooki, A. and Yokouchi, Y.: Determination of Henry's law constant of halocarbons
in seawater and analysis of sea-to-air flux of iodoethane (C2H5I) in
the Indian and Southern Oceans based on partial pressure measurements,
Geochem. J., 45, e1–e7, https://doi.org/10.2343/GEOCHEMJ.1.0122, 2011.
Opresko, D. M., Young, R. A., Faust, R. A., Talmage, S. S., Watson, A. P.,
Ross, R. H., Davidson, K. A., and King, J.: Chemical warfare agents:
estimating oral reference doses, Rev. Environ. Contam. Toxicol., 156, 1–183,
https://doi.org/10.1007/978-1-4612-1722-0_1, 1998.
Orcutt, F. S. and Seevers, M. H.: A method for determining the solubility of
gases in pure liquids or solutions by the Van Slyke-Neill manometric
apparatus, J. Biol. Chem., 117, 501–507,
https://doi.org/10.1016/S0021-9258(18)74550-X, 1937a.
Orcutt, F. S. and Seevers, M. H.: The solubility coefficients of cyclopropane
for water, oils and human blood, J. Pharmacol. Exp. Ther., 59, 206–210,
1937b.
Ordóñez, C., Lamarque, J.-F., Tilmes, S., Kinnison, D. E., Atlas, E. L.,
Blake, D. R., Sousa Santos, G., Brasseur, G., and Saiz-Lopez, A.: Bromine
and iodine chemistry in a global chemistry-climate model: description and
evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12,
1423–1447, https://doi.org/10.5194/ACP-12-1423-2012, 2012.
O'Sullivan, D. W., Lee, M., Noone, B. C., and Heikes, B. G.: Henry's law
constant determinations for hydrogen peroxide, methyl hydroperoxide,
hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid, J.
Phys. Chem., 100, 3241–3247, https://doi.org/10.1021/JP951168N, 1996.
Otto, S., Riello, L., Düring, R.-A., Hummel, H. E., and Zanin, G.: Herbicide
dissipation and dynamics modelling in three different tillage systems,
Chemosphere, 34, 163–178, https://doi.org/10.1016/S0045-6535(96)00356-6, 1997.
Ourisson, J. and Kastner, M.: Determination des tensions de vapeurs des
solutions d'acide hypochloreux à 10° et 20° C, Bull. Soc.
Chim. Memoirs, 6, 1307–1311, 1939.
Owens, J. W., Wasik, S. P., and DeVoe, H.: Aqueous solubilities and enthalpies
of solution of n-alkylbenzenes, J. Chem. Eng. Data, 31, 47–51,
https://doi.org/10.1021/JE00043A016, 1986.
Paasivirta, J. and Sinkkonen, S. I.: Environmentally relevant properties of all
209 polychlorinated biphenyl congeners for modeling their fate in different
natural and climatic conditions, J. Chem. Eng. Data, 54, 1189–1213,
https://doi.org/10.1021/JE800501H, 2009.
Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., and Wania, F.:
Estimation of vapor pressures, solubilities and Henry's law constants of
selected persistent organic pollutants as functions of temperature,
Chemosphere, 39, 811–832, https://doi.org/10.1016/S0045-6535(99)00016-8, 1999.
Palmer, D. A., Ramette, R. W., and Mesmer, R. E.: The hydrolysis of iodine:
Equilibria at high temperatures, J. Nucl. Mater., 130, 280–286,
https://doi.org/10.1016/0022-3115(85)90317-4, 1985.
Pandis, S. N. and Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism
for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94, 1105–1126,
https://doi.org/10.1029/JD094ID01P01105, 1989.
Pankow, J. F., Rathbun, R. E., and Zogorski, J. S.: Calculated volatilization
rates of fuel oxygenate compounds and other gasoline-related compounds from
rivers and streams, Chemosphere, 33, 921–937,
https://doi.org/10.1016/0045-6535(96)00227-5, 1996.
Park, J. H., Hussam, A., Couasnon, P., Fritz, D., and Carr, P. W.: Experimental
reexamination of selected partition coefficients from Rohrschneider's data
set, Anal. Chem., 59, 1970–1976, https://doi.org/10.1021/AC00142A016, 1987.
Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous
acid in aqueous solution, J. Phys. Chem., 92, 6294–6302,
https://doi.org/10.1021/J100333A025, 1988.
Park, S.-J., Han, S.-D., and Ryu, S.-A.: Measurement of air/water partition
coefficient (Henry's law constant) by using EPICS method and their
relationship with vapor pressure and water solubility, J. Korean Inst. Chem.
Eng., 35, 915–920, 1997.
Park, T., Rettich, T. R., Battino, R., Peterson, D., and Wilhelm, E.:
Solubility of gases in liquids. 14. Bunsen coefficients for several
fluorine-containing gases (Freons) dissolved in water at 298.15 K, J. Chem.
Eng. Data, 27, 324–326, https://doi.org/10.1021/JE00029A027, 1982.
Parker, V. D.: The reversible reduction potential of the proton in water and in
non-aqueous solvents, Acta Chem. Scand., 46, 692–694,
https://doi.org/10.3891/ACTA.CHEM.SCAND.46-0692, 1992.
Parnis, J. M., Mackay, D., and Harner, T.: Temperature dependence of Henry's
law constants and KOA for simple and heteroatom-substituted PAHs
by COSMO-RS, Atmos. Environ., 110, 27–35,
https://doi.org/10.1016/J.ATMOSENV.2015.03.032, 2015.
Parsons, G. H., Rochester, C. H., and Wood, C. E. C.: Effect of 4-substitution
on the thermodynamics of hydration of phenol and the phenoxide anion, J.
Chem. Soc. B, 533–536, https://doi.org/10.1039/J29710000533, 1971.
Parsons, G. H., Rochester, C. H., Rostron, A., and Sykes, P. C.: The
thermodynamics of hydration of phenols, J. Chem. Soc. Perkin Trans. 2,
136–138, https://doi.org/10.1039/P29720000136, 1972.
Pearson, C. R. and McConnell, G.: Chlorinated C1 and C2
hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332,
https://doi.org/10.1098/RSPB.1975.0059, 1975.
Pecsar, R. E. and Martin, J. J.: Solution thermodynamics from gas-liquid
chromatography, Anal. Chem., 38, 1661–1669, https://doi.org/10.1021/AC60244A009, 1966.
Peng, J. and Wan, A.: Measurement of Henry's constants of high-volatility
organic compounds using a headspace autosampler, Environ. Sci. Technol., 31,
2998–3003, https://doi.org/10.1021/ES970240N, 1997.
Peng, J. and Wan, A.: Effect of ionic strength on Henry's constants of volatile
organic compounds, Chemosphere, 36, 2731–2740,
https://doi.org/10.1016/S0045-6535(97)10232-6, 1998.
Perlinger, J. A., Eisenreich, S. J., and Capel, P. D.: Application of headspace
analysis to the study of sorption of hydrophobic organic chemicals to
α − Al2O3, Environ. Sci. Technol., 27, 928–937,
https://doi.org/10.1021/ES00042A016, 1993.
Perry, R. H. and Chilton, C. H.: Chemical Engineers' Handbook, 5th Edn.,
McGraw-Hill, Inc., ISBN 0070855471, 1973.
Petersen, G., Pleijel, J. M. K., Bloxam, R., and Vinod Kumar, A.: A
comprehensive Eulerian modeling framework for airborne mercury species:
Development and testing of the tropospheric chemistry module (TCM), Atmos.
Environ., 32, 829–843, https://doi.org/10.1016/S1352-2310(97)00049-6, 1998.
Petrasek, A. C., Kugelman, I. J., Austern, B. M., Pressley, T. A., Winslow,
L. A., and Wise, R. H.: Fate of toxic organic compounds in wastewater
treatment plants, J. Water Pollut. Control Fed., 55, 1286–1296, 1983.
Pfeifer, O., Lohmann, U., and Ballschmiter, K.: Halogenated methyl-phenyl
ethers (anisoles) in the environment: Determination of vapor pressures,
aqueous solubilities, Henry's law constants, and gas/water-
(Kgw), n-octanol/water- (Kow) and gas/n-octanol
(Kgo) partition coefficients, Fresenius J. Anal. Chem., 371,
598–606, https://doi.org/10.1007/S002160101077, 2001.
Philippe, E., Seuvre, A.-M., Colas, B., Langendorff, V., Schippa, C., and
Voilley, A.: Behavior of flavor compounds in model food systems: a
thermodynamic study, J. Agric. Food Chem., 51, 1393–1398,
https://doi.org/10.1021/JF020862E, 2003.
Pierotti, G. J., Deal, C. H., and Derr, E. L.: Activity coefficients and
molecular structure, Ind. Eng. Chem., 51, 95–102, https://doi.org/10.1021/IE50589A048,
(data available in Supplement, document no. 5782, American Documentation
Institute, Library of Congress, Washington, D.C.), 1959.
Pierotti, R. A.: Aqueous solutions of nonpolar gases, J. Phys. Chem., 69,
281–288, https://doi.org/10.1021/J100885A043, 1965.
Pividal, K. A., Birtigh, A., and Sandler, S. I.: Infinite dilution activity
coefficients for oxygenate systems determined using a differential static
cell, J. Chem. Eng. Data, 37, 484–487, https://doi.org/10.1021/JE00008A025, 1992.
Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and
Berger, U.: Theoretical and experimental simulation of the fate of
semifluorinated n-alkanes during snowmelt, Environ. Sci. Technol., 44,
6692–6697, https://doi.org/10.1021/ES101562W, 2010.
Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and
Berger, U.: Laboratory studies on the fate of perfluoroalkyl carboxylates and
sulfonates during snowmelt, Environ. Sci. Technol., 45, 6872–6878,
https://doi.org/10.1021/ES201249D, 2011.
Plyasunov, A. V.: Thermodynamics of Si(OH)4 in the vapor phase of
water: Henry's and vapor-liquid distribution constants, fugacity and cross
virial coefficients, Geochim. Cosmochim. Acta, 77, 215–231,
https://doi.org/10.1016/J.GCA.2011.11.019, 2012.
Plyasunov, A. V. and Shock, E. L.: Thermodynamic functions of hydration of
hydrocarbons at 298.15 K and 0.1 MPa, Geochim. Cosmochim. Acta, 64,
439–468, https://doi.org/10.1016/S0016-7037(99)00330-0, 2000.
Plyasunov, A. V. and Shock, E. L.: Group contribution values of the infinite
dilution thermodynamic functions of hydration for aliphatic noncyclic
hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa,
J. Chem. Eng. Data, 46, 1016–1019, https://doi.org/10.1021/JE0002282, 2001.
Plyasunov, A. V., O'Connell, J. P., Wood, R. H., and Shock, E. L.:
Semiempirical equation of state for the infinite dilution thermodynamic
functions of hydration of nonelectrolytes over wide ranges of temperature and
pressure, Fluid Phase Equilib., 183–184, 133–142,
https://doi.org/10.1016/S0378-3812(01)00427-7, 2001.
Plyasunov, A. V., Plyasunova, N. V., and Shock, E. L.: Group contribution
values for the thermodynamic functions of hydration of aliphatic esters at
298.15 K, 0.1 MPa, J. Chem. Eng. Data, 49, 1152–1167,
https://doi.org/10.1021/JE049850A, 2004.
Plyasunov, A. V., Plyasunova, N. V., and Shock, E. L.: Group contribution
values for the thermodynamic functions of hydration at 298.15 K,
0.1 MPa. 4. aliphatic nitriles and dinitriles, J. Chem. Eng. Data,
51, 1481–1490, https://doi.org/10.1021/JE060129+, 2006.
Plyasunova, N. V., Plyasunov, A. V., and Shock, E. L.: Group contribution
values for the thermodynamic functions of hydration at 298.15 K,
0.1 MPa. 2. aliphatic thiols, alkyl sulfides, and polysulfides, J.
Chem. Eng. Data, 50, 246–253, https://doi.org/10.1021/JE0497045, 2004.
Podoll, R. T., Jaber, H. M., and Mill, T.: Tetrachlorodibenzodioxin: rates of
volatilization and photolysis in the environment, Environ. Sci. Technol., 20,
490–492, https://doi.org/10.1021/ES00147A008, 1986.
Pollien, P., Jordan, A., Lindinger, W., and Yeretzian, C.: Liquid-air
partitioning of volatile compounds in coffee: dynamic measurements using
proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom., 228,
69–80, https://doi.org/10.1016/S1387-3806(03)00197-0, 2003.
Potter II, R. W. and Clynne, M. A.: The solubility of the noble gases He, Ne,
Ar, Kr, and Xe in water up to the critical point, J. Solution Chem., 7,
837–844, https://doi.org/10.1007/BF00650811, 1978.
Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Le
Calvé, S., and Monod, A.: In-cloud multiphase behaviour of acetone in the
troposphere: Gas uptake, Henry's law equilibrium and aqueous phase
photooxidation, Chemosphere, 81, 312–320,
https://doi.org/10.1016/J.CHEMOSPHERE.2010.07.032, 2010.
Power, G. G. and Stegall, H.: Solubility of gases in human red blood cell
ghosts, J. Appl. Physiol., 29, 145–149, https://doi.org/10.1152/JAPPL.1970.29.2.145,
1970.
Przyjazny, A., Janicki, W., Chrzanowski, W., and Staszewski, R.: Headspace gas
chromatographic determination of distribution coefficients of selected
organosulphur compounds and their dependence on some parameters, J.
Chromatogr., 280, 249–260, https://doi.org/10.1016/S0021-9673(00)91567-X, 1983.
Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin,
Y.-H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J., Hutzell, W. T.,
Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., and Edney,
E. O.: Epoxide pathways improve model predictions of isoprene markers and
reveal key role of acidity in aerosol formation, Environ. Sci. Technol., 47,
11 056–11 064, https://doi.org/10.1021/ES402106H, 2013.
Qin, C., Gou, Y., Wang, Y., Mao, Y., Liao, H., Wang, Q., and Xie, M.:
Gas–particle partitioning of polyol tracers at a suburban site in Nanjing,
east China: increased partitioning to the particle phase, Atmos. Chem. Phys.,
21, 12 141–12 153, https://doi.org/10.5194/ACP-21-12141-2021, 2021.
Ramachandran, B. R., Allen, J. M., and Halpern, A. M.: Air–water partitioning
of environmentally important organic compounds, J. Chem. Educ., 73,
1058–1061, https://doi.org/10.1021/ED073P1058, 1996.
Ramstedt, E.: Sur la solubilité de l'émanation du radium dans les liquides
organiques, Radium (Paris), 8, 253–256,
https://doi.org/10.1051/RADIUM:0191100807025301, 1911.
Rathbun, R. E. and Tai, D. Y.: Volatilization of ketones from water, Water Air
Soil Pollut., 17, 281–293, https://doi.org/10.1007/BF00283158, 1982.
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., and Aumont,
B.: Structure-activity relationships to estimate the effective Henry's law
constants of organics of atmospheric interest, Atmos. Chem. Phys., 10,
7643–7654, https://doi.org/10.5194/ACP-10-7643-2010, 2010.
Razumovskii, S. D. and Zaikov, G. E.: The solubility of ozone in various
solvents, Russ. Chem. Bull., 20, 616–620, https://doi.org/10.1007/BF00853885, 1971.
Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and
kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829,
https://doi.org/10.1021/JP971908N, 1997.
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter
Kohlenwasserstoffe, Ph.D. thesis, Technische Universität Berlin, Germany,
1995.
Rettich, T. R., Handa, Y. P., Battino, R., and Wilhelm, E.: Solubility of gases
in liquids. 13. High-precision determination of Henry's constants for methane
and ethane in liquid water at 275 to 328 K, J. Phys. Chem., 85,
3230–3237, https://doi.org/10.1021/J150622A006, 1981.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids.
15. High-precision determination of Henry coefficients for carbon monoxide in
liquid water at 278 to 323 K, Ber. Bunsenges. Phys. Chem., 86, 1128–1132,
https://doi.org/10.1002/BBPC.198200051, 1982.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids.
XVI. Henry's law coefficients for nitrogen in water at 5 to 50 °C, J. Solution Chem., 13, 335–348, https://doi.org/10.1007/BF00645706, 1984.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids.
18. High-precision determination of Henry fugacities for argon in liquid
water at 2 to 40 °C, J. Solution Chem., 21, 987–1004,
https://doi.org/10.1007/BF00650874, 1992.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids.
22. High-precision determination of Henry's law constants of oxygen in liquid
water from T = 274 K to T = 328 K, J. Chem. Thermodyn., 32, 1145–1156,
https://doi.org/10.1006/JCHT.1999.0581, 2000.
Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe
in Wasser, Z. Phys. Chem., 55, 355–370, https://doi.org/10.1515/ZPCH-1906-5519, 1906.
Reyes-Pérez, E., Le Calvé, S., and Mirabel, P.: UV absorption spectrum
and Henry's law constant of EPTC, Atmos. Environ., 42, 7940–7946,
https://doi.org/10.1016/J.ATMOSENV.2008.07.017, 2008.
Reza, J. and Trejo, A.: Temperature dependence of the infinite dilution
activity coefficient and Henry's law constant of polycyclic aromatic
hydrocarbons in water, Chemosphere, 56, 537–547,
https://doi.org/10.1016/J.CHEMOSPHERE.2004.04.020, 2004.
Rice, C. P., Chernyak, S. M., Hapeman, C. J., and Biboulian, S.: Air–water
distribution of the endosulfan isomers, J. Environ. Qual., 26, 1101–1106,
https://doi.org/10.2134/JEQ1997.00472425002600040022X, 1997a.
Rice, C. P., Chernyak, S. M., and McConnell, L. L.: Henry's law constants for
pesticides measured as a function of temperature and salinity, J. Agric. Food
Chem., 45, 2291–2298, https://doi.org/10.1021/JF960834U, 1997b.
Richon, D., Sorrentino, F., and Voilley, A.: Infinite dilution activity
coefficients by the inert gas stripping method: extension to the study of
viscous and foaming mixtures, Ind. Eng. Chem. Process Des. Dev., 24,
1160–1165, https://doi.org/10.1021/I200031A044, 1985.
Riederer, M.: Estimating partitioning and transport of organic chemicals in the
foliage/atmosphere system: discussion of a fugacity-based model, Environ.
Sci. Technol., 24, 829–837, https://doi.org/10.1021/ES00076A006, 1990.
Rinker, E. B. and Sandall, O. C.: Physical solubility of hydrogen sulfide in
several aqueous solvents, Can. J. Chem. Eng., 78, 232–236,
https://doi.org/10.1002/CJCE.5450780130, 2000.
Rischbieter, E., Stein, H., and Schumpe, A.: Ozone solubilities in water and
aqueous salt solutions, J. Chem. Eng. Data, 45, 338–340,
https://doi.org/10.1021/JE990263C, 2000.
Riveros, P. A., Koren, D., McNamara, V. M., and Binvignat, J.: Cyanide recovery
from a gold mill barren solution containing high levels of copper, CIM Bull.,
91, 73–81, 1998.
Robbins, G. A., Wang, S., and Stuart, J. D.: Using the headspace method to
determine Henry's law constants, Anal. Chem., 65, 3113–3118,
https://doi.org/10.1021/AC00069A026, 1993.
Roberts, D. D. and Pollien, P.: Analysis of aroma release during microwave
heating, J. Agric. Food Chem., 45, 4388–4392, https://doi.org/10.1021/JF9702508, 1997.
Roberts, J. M. and Liu, Y.: Solubility and solution-phase chemistry of
isocyanic acid, methyl isocyanate, and cyanogen halides, Atmos. Chem. Phys.,
19, 4419–4437, https://doi.org/10.5194/ACP-19-4419-2019, 2019.
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.:
N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol,
Science, 321, 1059, https://doi.org/10.1126/SCIENCE.1158777, 2008.
Roberts, J. M., Veres, P. R., Cochran, A. K., Warneke, C., Burling, I. R.,
Yokelson, R. J., Lerner, B., Gilman, J. B., Kuster, W. C., Fall, R., and de
Gouw, J.: Isocyanic acid in the atmosphere and its possible link to
smoke-related health effects, Proc. Natl. Acad. Sci. USA, 108, 8966–8971,
https://doi.org/10.1073/PNAS.1103352108, 2011.
Roberts, J. M., Neuman, J. A., Brown, S. S., Veres, P. R., Coggon, M. M.,
Stockwell, C. E., Warneke, C., Peischl, J., and Robinson, M. A.: Furoyl
peroxynitrate (fur-PAN), a product of VOC-NOx photochemistry from biomass
burning emissions: photochemical synthesis, calibration, chemical
characterization, and first atmospheric observations, Environ. Sci. Atmos.,
2, 1087–1100, https://doi.org/10.1039/D2EA00068G, 2022.
Robinson, G. N., Worsnop, D. R., Jayne, J. T., , Kolb, C. E., and Davidovits,
P.: Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid
solutions, J. Geophys. Res., 102, 3583–3601, https://doi.org/10.1029/96JD03457, 1997.
Rochester, H. and Symonds, J. R.: Thermodynamic studies of fluoroalcohols. Part
3. – The thermodynamics of transfer of five fluoroalcohols from the
gas-phase to aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69,
1577–1585, https://doi.org/10.1039/F19736901577, 1973.
Rodríguez-Sevilla, J., Álvarez Diaz, M., Diaz Garcia, C., and
Limiñana de la Fe, G.: Thermodynamic equilibrium of
SO2-H2O system at low partial pressures, Afinidad, 492,
141–146, 2001.
Rodríguez-Sevilla, J., Álvarez, M., Limiñana, G., and Díaz,
M. C.: Dilute SO2 absorption equilibria in aqueous HCl and
NaCl solutions at 298.15 K, J. Chem. Eng. Data, 47, 1339–1345,
https://doi.org/10.1021/JE015538E, 2002.
Roduner, E. and Bartels, D. M.: Solvent and isotope effects on addition of
atomic hydrogen to benzene in aqueous solution, Ber. Bunsenges. Phys. Chem.,
96, 1037–1042, https://doi.org/10.1002/BBPC.19920960813, 1992.
Rohrschneider, L.: Solvent characterization by gas-liquid partition
coefficients of selected solutes, Anal. Chem., 45, 1241–1247,
https://doi.org/10.1021/AC60329A023, 1973.
Ross, S. and Hudson, J. B.: Henry's law constants of butadiene in aqueous
solutions of a cationic surfactant, J. Colloid Sci., 12, 523–525,
https://doi.org/10.1016/0095-8522(57)90054-5, 1957.
Roth, J. A. and Sullivan, D. E.: Solubility of ozone in water, Ind. Eng. Chem.
Fund., 20, 137–140, 1981.
Roth, W.: Ueber die Absorption des Stickoxyduls in wässrigen Lösungen
verschieden dissociierter Stoffe, Z. Phys. Chem., 24, 114–151,
https://doi.org/10.1515/ZPCH-1897-2408, 1897.
Roth, W. A.: Zur Thermochemie des Chlors und der unterchlorigen Säure, Z.
Phys. Chem., 145, 289–297, https://doi.org/10.1515/ZPCH-1929-14525, 1929.
Roth, W. A.: Notiz zur Thermochemie des Chlormonoxydes, Z. Phys. Chem., A191,
248–250, https://doi.org/10.1515/ZPCH-1942-19117, 1942.
Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W.: Reactive
uptake of NO3 on pure water and ionic solutions, J. Geophys. Res.,
101, 21 023–21 031, https://doi.org/10.1029/96JD01844, 1996.
Ruetschi, P. and Amlie, R. F.: Solubility of hydrogen in potassium hydroxide
and sulfuric acid. Salting-out and hydration, J. Phys. Chem., 70, 718–723,
https://doi.org/10.1021/J100875A018, 1966.
Ruiz-Bevia, F. and Fernandez-Torres, M. J.: Determining the Henry's law
constants of THMs in seawater by means of purge-and-trap gas chromatography
(PT-GC): The influence of seawater as sample matrix, Anal. Sci., 26,
723–726, https://doi.org/10.2116/ANALSCI.26.723, 2010.
Russell, C. J., Dixon, S. L., and Jurs, P. C.: Computer-assisted study of the
relationship between molecular structure and Henry's law constant, Anal.
Chem., 64, 1350–1355, https://doi.org/10.1021/AC00037A009, 1992.
Ryan, J. A., Bell, R. M., Davidson, J. M., and O'Connor, G. A.: Plant uptake of
non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323,
https://doi.org/10.1016/0045-6535(88)90142-7, 1988.
Rytting, J. H., Huston, L. P., and Higuchi, T.: Thermodynamic group
contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69,
615–618, https://doi.org/10.1002/JPS.2600670510, 1978.
Ryu, S.-A. and Park, S.-J.: A rapid determination method of the air/water
partition coefficient and its application, Fluid Phase Equilib., 161,
295–304, https://doi.org/10.1016/S0378-3812(99)00193-4, 1999.
Sabljić, A. and Güsten, H.: Predicting Henry's law constants for
polychlorinated biphenyls, Chemosphere, 19, 1503–1511,
https://doi.org/10.1016/0045-6535(89)90495-5, 1989.
Saçan, M. T., Özkul, M., and Erdem, S. S.: Physico-chemical properties of
PCDD/PCDFs and phthalate esters, SAR QSAR Environ. Res., 16, 443–459,
https://doi.org/10.1080/10659360500320602, 2005.
Sagebiel, J. C., Seiber, J. N., and Woodrow, J. E.: Comparison of headspace and
gas-stripping methods for determining the Henry's law constant (H) for
organic compounds of low to intermediate H, Chemosphere, 25, 1763–1768,
https://doi.org/10.1016/0045-6535(92)90017-L, 1992.
Sahsuvar, L., Helm, P. A., Jantunen, L. M., and Bidleman, T. F.: Henry's law
constants for α-, β-, and γ-hexachlorocyclohexanes (HCHs)
as a function of temperature and revised estimates of gas exchange in Arctic
regions, Atmos. Environ., 37, 983–992, https://doi.org/10.1016/S1352-2310(02)00936-6,
2003.
Saidman, L. J., Eger, E. I., Munson, E. S., and Severinghaus, J. W.: A method
for determining solubility of anesthetics utilizing the Scholander apparatus,
Anesthesiology, 27, 180–184, https://doi.org/10.1097/00000542-196603000-00011, 1966.
Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S., Bauguitte, S.
J.-B., Jones, A. E., Roscoe, H. K., Salmon, R. A., Bloss, W. J., Lee, J. D.,
and Heard, D. E.: On the vertical distribution of boundary layer halogens
over coastal Antarctica: implications for O3, HOx,
NOx and the Hg lifetime, Atmos. Chem. Phys., 8, 887–900,
https://doi.org/10.5194/ACP-8-887-2008, 2008.
Saiz-Lopez, A., Fernandez, R. P., Ordóñez, C., Kinnison, D. E., Gómez
Martín, J. C., Lamarque, J.-F., and Tilmes, S.: Iodine chemistry in the
troposphere and its effect on ozone, Atmos. Chem. Phys., 14,
13 119–13 143, https://doi.org/10.5194/ACP-14-13119-2014, 2014.
Sander, R.: Modeling atmospheric chemistry: Interactions between gas-phase
species and liquid cloud/aerosol particles, Surv. Geophys., 20, 1–31,
https://doi.org/10.1023/A:1006501706704, 1999.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as
solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/ACP-15-4399-2015,
2015.
Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and
ozone destruction in polluted air masses transported to the sea, J. Geophys.
Res., 101, 9121–9138, https://doi.org/10.1029/95JD03793, 1996.
Sander, R., Acree Jr., W. E., De Visscher, A., Schwartz, S. E., and
Wallington, T. J.: Henry's law constants (IUPAC Recommendations 2021), Pure
Appl. Chem., 94, 71–85, https://doi.org/10.1515/PAC-2020-0302, 2022.
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K.,
Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina,
M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical
Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation
Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA,
(last access: 19 September 2023), 2006.
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R.,
Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K.,
Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet
Propulsion Laboratory, Pasadena,
(last access: 19 September 2023), 2011.
Sanders, P. F. and Seiber, J. N.: A chamber for measuring volatilization of
pesticides from model soil and water disposal systems, Chemosphere, 12,
999–1012, https://doi.org/10.1016/0045-6535(83)90252-7, 1983.
Sanemasa, I.: The solubility of elemental mercury vapor in water, Bull. Chem.
Soc. Jpn., 48, 1795–1798, https://doi.org/10.1246/BCSJ.48.1795, 1975.
Sanemasa, I., Akari, M., Deguchi, T., and Nagai, H.: Solubilities of benzene
and the alkylbenzenes in water – method for obtaining aqueous solutions
saturated with vapours in equilibrium with organic liquids, Chem. Lett., 10,
225–228, https://doi.org/10.1246/CL.1981.225, 1981.
Sanemasa, I., Araki, M., Deguchi, T., and Nagai, H.: Solubility measurements of
benzene and the alkylbenzenes in water by making use of solute vapor, Bull.
Chem. Soc. Jpn., 55, 1054–1062, https://doi.org/10.1246/BCSJ.55.1054, 1982.
Santl, H., Brandsch, R., and Gruber, L.: Experimental determination of Henry's
law constant (HLC) for some lower chlorinated dibenzodioxins, Chemosphere,
29, 2209–2214, https://doi.org/10.1016/0045-6535(94)90388-3, 1994.
Sanz, M. T. and Gmehling, J.: Isothermal vapor-liquid equilibrium, excess
enthalpy data, and activity coefficients at infinite dilution for the binary
system water + methyl lactate, J. Chem. Eng. Data, 50, 85–88,
https://doi.org/10.1021/JE049824C, 2005.
Sarraute, S., Delepine, H., Costa Gomes, M. F., and Majer, V.: Aqueous
solubility, Henry's law constants and air/water partition coefficients of
n-octane and two halogenated octanes, Chemosphere, 57, 1543–1551,
https://doi.org/10.1016/J.CHEMOSPHERE.2004.07.046, 2004.
Sarraute, S., Mokbel, I., Costa Gomes, M. F., Majer, V., Delepine, H., and
Jose, J.: Vapour pressures, aqueous solubility, Henry's law constants and
air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane,
Chemosphere, 64, 1829–1836, https://doi.org/10.1016/J.CHEMOSPHERE.2006.01.057, 2006.
Sato, A. and Nakajima, T.: Partition coefficients of some aromatic hydrocarbons
and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234,
https://doi.org/10.1136/OEM.36.3.231, 1979a.
Sato, A. and Nakajima, T.: A structure-activity relationship of some
chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75,
https://doi.org/10.1080/00039896.1979.10667371, 1979b.
Sauer, F.: Bestimmung von H2O2 und organischen Peroxiden in Labor- und
Feldmessungen mittels Umkehrphasen-Hochdruck-Flüssigkeitschromatographie
und enzymatischer Nachsäulenderivatisierung, Ph.D. thesis, Johannes
Gutenberg-Universität, Mainz, Germany, 1997.
Savary, G., Hucher, N., Petibon, O., and Grisel, M.: Study of interactions
between aroma compounds and acacia gum using headspace measurements, Food
Hydrocolloids, 37, 1–6, https://doi.org/10.1016/J.FOODHYD.2013.10.026, 2014.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric
particles: A critical review of the literature and application of
thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109,
https://doi.org/10.1007/BF00053823, 1996.
Saylor, J. H., Stuckey, J. M., and Gross, P. M.: Solubility studies. V. the
validity of Henry's law for the calculation of vapor solubilities, J. Am.
Chem. Soc., 60, 373–376, https://doi.org/10.1021/JA01269A041, 1938.
Schäfer, K. and Lax, E., eds.: Landolt-Börnstein. Zahlenwerte und
Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. II. Band.
Eigenschaften der Materie in ihren Aggregatzuständen. 2. Teil.
Gleichgewichte ausser Schmelzgleichgewichten. Bandteil b.
Lösungsgleichgewichte I, Springer Verlag, Berlin-Göttingen-Heidelberg,
ISBN 9783540028680, 1962.
Schaffer, D. L. and Daubert, T. E.: Gas-liquid chromatographic determination of
solution properties of oxygenated compounds in water, Anal. Chem., 41,
1585–1589, https://doi.org/10.1021/AC60281A016, 1969.
Scharlin, P.: IUPAC Solubility Data Series, Vol. 62, Carbon Dioxide in Water
and Aqueous Electrolyte Solutions, Oxford University Press, 1996.
Scharlin, P. and Battino, R.: Solubility of CCl2F2, CClF3,
CF4 and c-C4F8 in H2O and D2O at 288 to
318 K and 101.325 kPa. Thermodynamics of transfer of gases from
H2O to D2O, Fluid Phase Equilib., 95, 137–147,
https://doi.org/10.1016/0378-3812(94)80066-9, 1994.
Scharlin, P. and Battino, R.: Solubility of CCl2F2, CClF3,
CF4, and CH4 in water and seawater at 288.15-303.15 K and
101.325 kPa, J. Chem. Eng. Data, 40, 167–169, https://doi.org/10.1021/JE00017A036,
1995.
Scheer, V., Frenzel, A., Behnke, W., Zetzsch, C., Magi, L., George, C., and
Mirabel, P.: Uptake of nitrosyl chloride (NOCl) by aqueous solutions,
J. Phys. Chem. A, 101, 9359–9366, https://doi.org/10.1021/JP972143M, 1997.
Schmidt, U.: The solubility of carbon monoxide and hydrogen in water and
sea-water at partial pressures of about 10−5 atmospheres, Tellus, 31,
68–74, https://doi.org/10.1111/J.2153-3490.1979.TB00883.X, 1979.
Schoen, R.: Zur Kenntnis der Acetylenwirkung. II. Mitteilung. Die Löslichkeit
von Acetylen in Wasser und Blut, Z. Physiol. Chem., 127, 243–259,
https://doi.org/10.1515/BCHM2.1923.127.4-6.243, 1923.
Schoene, K. and Steinhanses, J.: Determination of Henry's law constant by
automated head space-gas chromatography, Fresenius J. Anal. Chem., 321,
538–543, https://doi.org/10.1007/BF00464360, 1985.
Schoenfeld, F.: Ueber den Absorptionscoëfficienten der schwefligen Säure,
des Chlors und des Schwefelwasserstoffs, Liebigs Ann. Chem., 95, 1–23,
https://doi.org/10.1002/JLAC.18550950102, 1855.
Schöne, E.: Ueber das Verhalten von Ozon und Wasser zu einander, Ber. Dtsch.
Chem. Ges., 6, 1224–1229, https://doi.org/10.1002/CBER.187300602111, 1873.
Schröder, B., Santos, L. M. N. B. F., Rocha, M. A. A., Oliveira, M. B.,
Marrucho, I. M., and Coutinho, J. A. P.: Prediction of environmental
parameters of polycyclic aromatic hydrocarbons with COSMO-RS, Chemosphere,
79, 821–829, https://doi.org/10.1016/J.CHEMOSPHERE.2010.02.059, 2010.
Schröder, B., Freire, M. G., Varanda, F. R., Marrucho, I. M., Santos, L. M.
N. B. F., and Coutinho, J. A. P.: Aqueous solubility, effects of salts on
aqueous solubility, and partitioning behavior of hexafluorobenzene:
Experimental results and COSMO-RS predictions, Chemosphere, 84, 415–422,
https://doi.org/10.1016/J.CHEMOSPHERE.2011.03.055, 2011.
Schröder, B., Coutinho, J., and Santos, L. M. N. B. F.: Predicting
physico-chemical properties of alkylated naphthalenes with COSMO-RS,
Polycyclic Aromat. Compd., 33, 1–19, https://doi.org/10.1080/10406638.2012.683231,
2013.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – An overview, Atmos.
Environ., 32, 809–822, https://doi.org/10.1016/S1352-2310(97)00293-8, 1998.
Schroy, J. M., Hileman, F. D., and Cheng, S. C.: Physical/chemical properties
of 2,3,7,8-TCDD, Chemosphere, 14, 877–880,
https://doi.org/10.1016/0045-6535(85)90207-3, 1985.
Schuhfried, E., Biasioli, F., Aprea, E., Cappellin, L., Soukoulis, C.,
Ferrigno, A., Märk, T. D., and Gasperi, F.: PTR-MS measurements and
analysis of models for the calculation of Henry's law constants of
monosulfides and disulfides, Chemosphere, 83, 311–317,
https://doi.org/10.1016/J.CHEMOSPHERE.2010.12.051, 2011.
Schuhfried, E., Aprea, E., Märk, T. D., and Biasioli, F.: Refined
measurements of Henry's law constant of terpenes with inert gas stripping
coupled with PTR-MS, Water Air Soil Pollut., 226, 120,
https://doi.org/10.1007/S11270-015-2337-2, 2015.
Schumpe, A.: The estimation of gas solubilities in salt solutions, Chem. Eng.
Sci., 48, 153–158, https://doi.org/10.1016/0009-2509(93)80291-W, 1993.
Schurath, U., Bongartz, A., Kames, J., Wunderlich, C., and Carstens, T.:
Chapter 6.4: Laboratory determination of physico-chemical rate parameters
pertinent to mass transfer into cloud and fog droplets, in: Heterogeneous and
Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag,
Berlin, 182–189, https://doi.org/10.1007/978-3-642-61445-3_6, 1996.
Schüürmann, G.: Prediction of Henry's law constant of benzene derivatives
using quantum chemical continuum-solvation models, J. Comput. Chem., 21,
17–34, https://doi.org/10.1002/(SICI)1096-987X(20000115)21:1<17::AID-JCC3>3.0.CO;2-5,
2000.
Schwardt, A., Dahmke, A., and Köber, R.: Henry's law constants of volatile
organic compounds between 0 and 95 °C – Data compilation and
complementation in context of urban temperature increases of the subsurface,
Chemosphere, 272, 129 858, https://doi.org/10.1016/J.CHEMOSPHERE.2021.129858, 2021.
Schwardt, A., Dahmke, A., and Köber, R.: Corrigendum to “Henry's law
constants of volatile organic compounds between 0 and 95 °C –
Data compilation and complementation in context of urban temperature
increases of the subsurface” [Chem. 272 (2021) 129858], Chemosphere, 298,
134 683, https://doi.org/10.1016/J.CHEMOSPHERE.2022.134683, 2022.
Schwartz, S. E.: Gas- and aqueous-phase chemistry of HO2 in liquid
water clouds, J. Geophys. Res., 89, 11 589–11 598,
https://doi.org/10.1029/JD089ID07P11589, 1984.
Schwartz, S. E.: Mass-transport considerations pertinent to aqueous phase
reactions of gases in liquid-water clouds, in: Chemistry of Multiphase
Atmospheric Systems, NATO ASI Series, Vol. G6, edited by: Jaeschke, W.,
Springer Verlag, Berlin, 415–471, https://doi.org/10.1007/978-3-642-70627-1_16, 1986.
Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides
and oxyacids in dilute aqueous solution, in: Advances in Environmental
Science and Engineering, edited by: Pfafflin, J. R. and Ziegler, E. N.,
vol. 4, Gordon and Breach Science Publishers, NY, 1–45, 1981.
Schwarz, F. P. and Wasik, S. P.: A fluorescence method for the measurement of
the partition coefficients of naphthalene, 1-methylnaphthalene, and
1-ethylnaphthalene in water, J. Chem. Eng. Data, 22, 270–273,
https://doi.org/10.1021/JE60074A009, 1977.
Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO2 and O2−
with iodine and bromine and the I2− and I atom reduction
potentials, J. Phys. Chem., 90, 1445–1448, https://doi.org/10.1021/J100398A045, 1986.
Schwarz, H. A. and Dodson, R. W.: Equilibrium between hydroxyl radicals and
thallium(II) and the oxidation potential of OH(aq), J. Phys. Chem.,
88, 3643–3647, https://doi.org/10.1021/J150660A053, 1984.
Schwarzenbach, R. P., Stierli, R., Folsom, B. R., and Zeyer, J.: Compound
properties relevant for assessing the environmental partitioning of
nitrophenols, Environ. Sci. Technol., 22, 83–92, https://doi.org/10.1021/ES00166A009,
1988.
Secoy, C. H. and Cady, G. H.: The effect of temperature and pressure on the
solubility of chlorine monoxide in water, J. Am. Chem. Soc., 63, 2504–2508,
https://doi.org/10.1021/JA01854A055, 1941.
Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution,
Wiley-Interscience Publication, NY, ISBN 0471828572, 1986.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John
Wiley & Sons, Inc., ISBN 0471178160, 1997.
Serra, M. C. C. and Palavra, A. M. F.: Solubility of 1-butene in water and in a
medium for cultivation of a bacterial strain, J. Solution Chem., 32,
527–534, https://doi.org/10.1023/A:1025313916280, 2003.
Servant, J., Kouadio, G., Cros, B., and Delmas, R.: Carboxylic monoacids in the
air of Mayombe forest (Congo): Role of the forest as a source or sink, J.
Atmos. Chem., 12, 367–380, https://doi.org/10.1007/BF00114774, 1991.
Setschenow, J.: Über die Konstitution der Salzlösungen auf Grund ihres
Verhaltens zu Kohlensäure, Z. Phys. Chem., 4, 117–125,
https://doi.org/10.1515/ZPCH-1889-0409, 1889.
Severit, P.: Experimentelle Untersuchung der Desorption von Quecksilber und
Quecksilberverbindungen aus wässrigen Lösungen, Diplomarbeit,
Universität Köln, Germany, 1997.
Seyfioglu, R. and Odabasi, M.: Determination of Henry's law constant of
formaldehyde as a function of temperature: Application to air–water exchange
in Tahtali lake in Izmir, Turkey, Environ. Monit. Assess., 128, 343–349,
https://doi.org/10.1007/S10661-006-9317-3, 2007.
Sheikheldin, S. Y., Cardwell, T. J., Cattrall, R. W., Luque de Castro, M. D.,
and Kolev, S. D.: Determination of Henry's law constants of phenols by
pervaporation-flow injection analysis, Environ. Sci. Technol., 35, 178–181,
https://doi.org/10.1021/ES001406E, 2001.
Shen, L. and Wania, F.: Compilation, evaluation, and selection of
physical-chemical property data for organochlorine pesticides, J. Chem. Eng.
Data, 50, 742–768, https://doi.org/10.1021/JE049693F, 2005.
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J.
Air Pollut. Control Assoc., 32, 79–82, https://doi.org/10.1080/00022470.1982.10465374,
1982.
Shepson, P. B., Mackay, E., and Muthuramu, K.: Henry's law constants and
removal processes for several atmospheric β-hydroxy alkyl nitrates,
Environ. Sci. Technol., 30, 3618–3623, https://doi.org/10.1021/ES960538Y, 1996.
Sherblom, P. M., Gschwend, P. M., and Eganhouse, R. P.: Aqueous solubilities,
vapor pressures, and 1-octanol-water partition coefficients for
C9–C14 linear alkylbenzenes, J. Chem. Eng. Data, 37,
394–399, https://doi.org/10.1021/JE00008A005, 1992.
Sherwood, J. E., Stagnitti, F., Kokkinn, M. J., and Williams, W. D.: Dissolved
oxygen concentrations in hypersaline waters, Limnol. Oceanogr., 36, 235–250,
https://doi.org/10.4319/LO.1991.36.2.0235, 1991.
Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R., and Kolb, C. E.: Uptake
of gas-phase ammonia. 1. Uptake by aqueous surfaces as a function of pH, J.
Phys. Chem. A, 103, 8812–8823, https://doi.org/10.1021/JP991696P, 1999.
Shimotori, T. and Arnold, W. A.: Measurement and estimation of Henry's law
constants of chlorinated ethylenes in aqueous surfactant solutions, J. Chem.
Eng. Data, 48, 253–261, https://doi.org/10.1021/JE025553Z, 2003.
Shiu, W. Y. and Ma, K.-C.: Temperature dependence of physical-chemical
properties of selected chemicals of environmental interest. I. mononuclear
and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130,
https://doi.org/10.1063/1.556055, 2000.
Shiu, W. Y. and Mackay, D.: A critical review of aqueous solubilities, vapor
pressures, Henry's law constants, and octanol-water partition coefficients of
the polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 15, 911–929,
https://doi.org/10.1063/1.555755, 1986.
Shiu, W.-Y. and Mackay, D.: Henry's law constants of selected aromatic
hydrocarbons, alcohols, and ketones, J. Chem. Eng. Data, 42, 27–30,
https://doi.org/10.1021/JE960218U, 1997.
Shiu, W. Y., Doucette, W., Gobas, F. A. P. C., Andren, A., and Mackay, D.:
Physical-chemical properties of chlorinated dibenzo-p-dioxins, Environ. Sci.
Technol., 22, 651–658, https://doi.org/10.1021/ES00171A006, 1988.
Shiu, W.-Y., Ma, K.-C., Varhaníčková, D., and Mackay, D.:
Chlorophenols and alkylphenols: A review and correlation of environmentally
relevant properties and fate in an evaluative environment, Chemosphere, 29,
1155–1224, https://doi.org/10.1016/0045-6535(94)90252-6, 1994.
Shon, Z.-H., Kim, K.-H., Kim, M.-Y., and Lee, M.: Modeling study of reactive
gaseous mercury in the urban air, Atmos. Environ., 39, 749–761,
https://doi.org/10.1016/J.ATMOSENV.2004.09.071, 2005.
Shoor, S. K., Walker, Jr., R. D., and Gubbins, K. E.: Salting out of nonpolar
gases in aqueous potassium hydroxide solutions, J. Phys. Chem., 73, 312–317,
https://doi.org/10.1021/J100722A006, 1969.
Shunthirasingham, C., Cao, X., Lei, Y. D., and Wania, F.: Large bubbles reduce
the surface sorption artifact during inert gas stripping, J. Chem. Eng. Data,
58, 792–797, https://doi.org/10.1021/JE301326T, 2013.
Siebeck, R.: Über die Aufnahme von Stickoxydul im Blut, Skand. Arch.
Physiol., 21, 368–382, https://doi.org/10.1111/J.1748-1716.1909.TB00063.X, 1909.
Siebers, J. and Mattusch, P.: Determination of airborne residues in greenhouses
after application of pesticides, Chemosphere, 33, 1597–1607,
https://doi.org/10.1016/0045-6535(96)00279-2, 1996.
Siebers, J., Gottschild, D., and Nolting, H.-G.: Pesticides in precipitation in
northern Germany, Chemosphere, 28, 1559–1570,
https://doi.org/10.1016/0045-6535(94)90249-6, 1994.
Sieg, K., Fries, E., and Püttmann, W.: Analysis of benzene, toluene,
ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase
dynamic extraction combined with gas chromatography/mass spectrometry, J.
Chromatogr. A, 1178, 178–186, https://doi.org/10.1016/J.CHROMA.2007.11.025, 2008.
Sieg, K., Starokozheva, E., Schmidt, M. U., and Püttmann, W.: Inverse
temperature dependence of Henry's law coefficients for volatile organic
compounds in supercooled water, Chemosphere, 77, 8–14,
https://doi.org/10.1016/J.CHEMOSPHERE.2009.06.028, 2009.
Signer, R., Arm, H., and Daenicker, H.: Dampfdrücke, Dichten,
thermodynamische Mischfunktionen und Brechungsindices der binären Systeme
Wasser-Tetrahydrofuran und Wasser-Diäthyläther bei 25 °,
Helv. Chim. Acta, 52, 2347–2351, https://doi.org/10.1002/HLCA.19690520816, 1969.
Simpson, L. B. and Lovell, F. P.: Solubility of methyl, ethyl, and vinyl
acetylene in several solvents, J. Chem. Eng. Data, 7, 498–552,
https://doi.org/10.1021/JE60015A017, 1962.
Sisi, J. C., Dubeau, C., and Ozanne, N.: Solubility of hydrogen selenide gas in
water, J. Chem. Eng. Data, 16, 78–79, https://doi.org/10.1021/JE60048A023, 1971.
Slater, R. M. and Spedding, D. J.: Transport of dieldrin between air and water,
Arch. Environ. Contam. Toxicol., 10, 25–33, https://doi.org/10.1007/BF01057572, 1981.
Smith, F. L. and Harvey, A. H.: Avoid common pitfalls when using Henry's law,
Chem. Eng. Prog., 33–39, 2007.
Smith, J. H. and Bomberger, D. C.: Prediction of volatilization rate of
chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the
Aquatic Environment, edited by: Afghan, B. K., Mackay, D., Braun, H. E., Chau,
A. S. Y., Lawrence, J., Lean, D. R. S., Meresz, O., Miles, J. R. W., Pierce,
R. C., Rees, G. A. V., White, R. E., Whittle, D. M., and Williams, D. T.,
Plenum Press New York, 445–451, 1980.
Smith, J. H., Bomberger, D. C., and Haynes, D. L.: Volatilization rates of
intermediate and low volatility chemicals from water, Chemosphere, 10,
281–289, https://doi.org/10.1016/0045-6535(81)90028-X, 1981a.
Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman,
R. L., and Linz, D. G.: Treatment of organically contaminated groundwaters in
municipal activated sludge systems, Water Environ. Res., 65, 804–818,
https://doi.org/10.2175/WER.65.7.2, 1993.
Smith, R. A., Porter, E. G., and Miller, K. W.: The solubility of anesthetic
gases in lipid bilayers, Biochim. Biophys. Acta - Biomembranes, 645,
327–338, 1981b.
Snider, J. R. and Dawson, G. A.: Tropospheric light alcohols, carbonyls, and
acetonitrile: Concentrations in the southwestern United States and Henry's
law data, J. Geophys. Res., 90, 3797–3805, https://doi.org/10.1029/JD090ID02P03797,
1985.
Sotelo, J. L., Beltrán, F. J., Benitez, F. J., and Beltrán-Heredia, J.:
Henry's law constant for the ozone-water system, Wat. Res., 23, 1239–1246,
https://doi.org/10.1016/0043-1354(89)90186-3, 1989.
Souchon, I., Athès, V., Pierre, F.-X., and Marin, M.: Liquid-liquid
extraction and air stripping in membrane contactor: application to aroma
compounds recovery, Desalination, 163, 39–46,
https://doi.org/10.1016/S0011-9164(04)90174-9, 2004.
Southworth, G. R.: The role of volatilization in removing polycyclic aromatic
hydrocarbons from aquatic environments, Bull. Environ. Contam. Toxicol., 21,
507–514, https://doi.org/10.1007/BF01685462, 1979.
St-Pierre, J., Wetton, B., Zhai, Y., and Gea, J.: Liquid water scavenging of
PEMFC contaminants, J. Electrochem. Soc., 161, E3357–E3364,
https://doi.org/10.1149/2.0291409JES, 2014.
Staffelbach, T. A. and Kok, G. L.: Henry's law constants for aqueous solutions
of hydrogen peroxide and hydroxymethyl hydroperoxide, J. Geophys. Res., 98,
12 713–12 717, https://doi.org/10.1029/93JD01022, 1993.
Staples, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J.: The
environmental fate of phthalate esters: A literature review, Chemosphere, 35,
667–749, https://doi.org/10.1016/S0045-6535(97)00195-1, 1997.
Staudinger, J. and Roberts, P. V.: A critical review of Henry's law constants
for environmental applications, Crit. Rev. Environ. Sci. Technol., 26,
205–297, https://doi.org/10.1080/10643389609388492, 1996.
Staudinger, J. and Roberts, P. V.: A critical compilation of Henry's law
constant temperature dependence relations for organic compounds in dilute
aqueous solutions, Chemosphere, 44, 561–576,
https://doi.org/10.1016/S0045-6535(00)00505-1, 2001.
Steward, A., Allott, P. R., Cowles, A. L., and Mapleson, W. W.: Solubility
coefficients for inhaled anaesthetics for water, oil and biological media,
Br. J. Anaesth., 45, 282–293, https://doi.org/10.1093/BJA/45.3.282, 1973.
Stock, A. and Kuß, E.: Zur Kenntnis des Kohlenoxysulfides COS, Ber. Dtsch.
Chem. Ges., 50, 159–164, https://doi.org/10.1002/CBER.19170500125, 1917.
Stoelting, R. K. and Longshore, R. E.: The effects of temperature on fluroxene,
halothane, and methoxyflurane blood-gas and cerebrospinal fluid-gas partition
coefficients, Anesthesiology, 36, 503–505,
https://doi.org/10.1097/00000542-197205000-00018, 1972.
Straver, E. J. M. and de Loos, T. W.: Determination of Henry's law constants
and activity coefficients at infinite dilution of flavor compounds in water
at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50,
1171–1176, https://doi.org/10.1021/JE0495942, 2005.
Strekowski, R. S. and George, C.: Measurement of Henry's law constants for
acetone, 2-butanone, 2,3-butanedione and isobutyraldehyde using a horizontal
flow reactor, J. Chem. Eng. Data, 50, 804–810, https://doi.org/10.1021/JE034137R,
2005.
Stumm, W.: Ozone as a disinfectant for water and sewage, J. Boston Soc. Civil
Eng., 45, 68–79, 1958.
Suleimenov, O. M. and Krupp, R. E.: Solubility of hydrogen sulfide in pure
water and in NaCl solutions, from 20 to 320 °C and at
saturation pressures, Geochim. Cosmochim. Acta, 58, 2433–2444,
https://doi.org/10.1016/0016-7037(94)90022-1, 1994.
Suntio, L. R., Shiu, W. Y., Mackay, D., Seiber, J. N., and Glotfelty, D.:
Critical review of Henry's law constants for pesticides, Rev. Environ.
Contam. Toxicol., 103, 1–59, https://doi.org/10.1007/978-1-4612-3850-8_1, 1988.
Suzuki, T., Ohtaguchi, K., and Koide, K.: Application of principal components
analysis to calculate Henry's constant from molecular structure, Comput.
Chem., 16, 41–52, https://doi.org/10.1016/0097-8485(92)85007-L, 1992.
Swain, C. G. and Thornton, E. R.: Initial-state and transition-state isotope
effects of methyl halides in light and heavy water, J. Am. Chem. Soc., 84,
822–826, https://doi.org/10.1021/JA00864A029, 1962.
Sy, W. P. and Hasbrouck, J. D.: Solubility of nitrous oxide in water and in
canine blood, Anesthesiology, 25, 59–63,
https://doi.org/10.1097/00000542-196401000-00010, 1964.
Tabai, S., Rogalski, M., Solimando, R., and Malanowski, S. K.: Activity
coefficients of chlorophenols in water at infinite dilution, J. Chem. Eng.
Data, 42, 1147–1150, https://doi.org/10.1021/JE960336H, 1997.
Taft, R. W., Abraham, M. H., Doherty, R. M., and Kamlet, M. J.: The molecular
properties governing solubilities of organic nonelectrolytes in water,
Nature, 313, 384–386, https://doi.org/10.1038/313384A0, 1985.
Talmi, Y. and Mesmer, R. E.: Studies on vaporization and halogen decomposition
of methyl mercury compounds using gc with a microwave detector, Wat. Res., 9,
547–552, https://doi.org/10.1016/0043-1354(75)90080-9, 1975.
Tancrède, M. V. and Yanagisawa, Y.: An analytical method to determine Henry's
law constant for selected volatile organic compounds at concentrations and
temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40,
1658–1663, https://doi.org/10.1080/10473289.1990.10466813, 1990.
Taube, H. and Dodgen, H.: Applications of radioactive chlorine to the study of
the mechanisms of reactions involving changes in the oxidation state of
chlorine, J. Am. Chem. Soc., 71, 3330–3336, https://doi.org/10.1021/JA01178A016, 1949.
Teja, A. S., Gupta, A. K., Bullock, K., Chai, X.-S., and Zhu, J.: Henry's
constants of methanol in aqueous systems containing salts, Fluid Phase
Equilib., 185, 265–274, https://doi.org/10.1016/S0378-3812(01)00476-9, 2001.
Templeton, J. C. and King, E. L.: Kinetic and equilibrium studies on
azidochromium(III) ion in concentrated perchloric acid, J. Am. Chem. Soc.,
93, 7160–7166, https://doi.org/10.1021/JA00755A009, 1971.
ten Hulscher, T. E. M., van der Velde, L. E., and Bruggeman, W. A.:
Temperature dependence of Henry's law constants for selected chlorobenzenes,
polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environ.
Toxicol. Chem., 11, 1595–1603, https://doi.org/10.1002/ETC.5620111109, 1992.
Terraglio, F. P. and Manganelli, R. M.: The absorption of atmospheric sulfur
dioxide by water solutions, J. Air Pollut. Control Assoc., 17, 403–406,
https://doi.org/10.1080/00022470.1967.10468999, 1967.
Thomas, J. E., Ou, L.-T., Allen Jr., L. H., Vu, J. C., and Dickson, D. W.:
Henry's law constants and mass transfer coefficients for methyl bromide and
1,3-dichloropropene applied to Florida sandy field soil, Chemosphere, 62,
980–988, https://doi.org/10.1016/J.CHEMOSPHERE.2005.06.017, 2006.
Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley, D.: On the
exchange of NO3 radicals with aqueous solutions: Solubility and
sticking coefficient, J. Atmos. Chem., 29, 17–43,
https://doi.org/10.1023/A:1005860312363, 1998.
Thompson, A. M. and Zafiriou, O. C.: Air-sea fluxes of transient atmospheric
species, J. Geophys. Res., 88, 6696–6708, https://doi.org/10.1029/JC088IC11P06696,
1983.
Thompson, J. G., Matin, N. S., Abad, K., Onneweer, F., Bhatnagar, S., and Liu,
K.: Determining the Henry's volatility coefficient of nitrosamines in
CO2 capture solvents, Int. J. Greenhouse Gas Control, 73, 104–110,
https://doi.org/10.1016/J.IJGGC.2018.04.004, 2018.
Timmermans, J.: The Physico-Chemical Constants of Binary Systems in
Concentrated Solutions, Vol. 4, Interscience Publisher, Inc., New York, NY,
1960.
Timofejew, W.: Über die Absorption von Wasserstoff und Sauerstoff in Wasser
und Alkohol, Z. Phys. Chem., 6, 141–152, https://doi.org/10.1515/ZPCH-1890-0614, 1890.
Tittlemier, S. A., Halldorson, T., Stern, G. A., and Tomy, G. T.: Vapor
pressures, aqueous solubilities, and Henry's law constants of some brominated
flame retardants, Environ. Toxicol. Chem., 21, 1804–1810,
https://doi.org/10.1002/ETC.5620210907, 2002.
Tittlemier, S. A., Braekevelt, E., Halldorson, T., Reddy, C. M., and Norstrom,
R. J.: Vapour pressures, aqueous solubilities, Henry's Law constants, and
octanol/water partition coefficients of a series of mixed halogenated
dimethyl bipyrroles, Chemosphere, 57, 1373–1381,
https://doi.org/10.1016/J.CHEMOSPHERE.2004.08.061, 2004.
Tomlin, C. D. S.: The Pesticide Manual, 11th Edn., British Crop Production
Council, ISBN 1901396118, 1998.
Trampe, D. B. and Eckert, C. A.: A dew point technique for limiting activity
coefficients in nonionic solutions, AIChE J., 39, 1045–1050,
https://doi.org/10.1002/AIC.690390613, 1993.
Tremp, J., Mattrel, P., Fingler, S., and Giger, W.: Phenols and nitrophenols as
tropospheric pollutants: Emissions from automobile exhausts and phase
transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123,
https://doi.org/10.1007/BF00479396, 1993.
Treves, K., Shragina, L., and Rudich, Y.: Henry's law constants of some
β-, γ-, and δ-hydroxy nitrates of atmospheric interest,
Environ. Sci. Technol., 34, 1197–1203, https://doi.org/10.1021/ES990558A, 2000.
Tse, G., Orbey, H., and Sandler, S. I.: Infinite dilution activity coefficients
and Henry's law coefficients of some priority water pollutants determined by
a relative gas chromatographic method, Environ. Sci. Technol., 26,
2017–2022, https://doi.org/10.1021/ES00034A021, 1992.
Tsibul'skii, V. V., Tsibul'skaya, I. A., and Yaglitskaya, N. N.: Sampling and
storage of samples for the gas-chromatographic Determination of
aromatic-hydrocarbons as microimpurities in gases, J. Anal. Chem. USSR, 34,
1052–1055, 1979.
Tsonopoulos, C. and Wilson, G. M.: High-temperature mutual solubilities of
hydrocarbons and water. Part I: Benzene, cyclohexane and n-hexane, AIChE
J., 29, 990–999, https://doi.org/10.1002/AIC.690290618, 1983.
Tsuji, M., Nakano, T., and T.Okuno: Desorption of odor substances from water
bodies to the atmosphere, Atmos. Environ., 24, 2019–2021,
https://doi.org/10.1016/0960-1686(90)90236-G, 1990.
Tucker, E. E., Lane, E. H., and Christian, S. D.: Vapor pressure studies of
hydrophobic interactions. formation of benzene-benzene and
cyclohexane-cyclohexanol dimers in dilute aqueous solution, J. Solution
Chem., 10, 1–20, https://doi.org/10.1007/BF00652776, 1981.
Turner, L. H., Chiew, Y. C., Ahlert, R. C., and Kosson, D. S.: Measuring
vapor-liquid equilibrium for aqueous-organic systems: Review and a new
technique, AIChE J., 42, 1772–1788, https://doi.org/10.1002/AIC.690420629, 1996.
Ueberfeld, J., Zbinden, H., Gisin, N., and Pellaux, J. P.: Determination of
Henry's constant using a photoacoustic sensor, J. Chem. Thermodyn., 33,
755–764, https://doi.org/10.1006/JCHT.2000.0776, 2001.
Van Krevelen, D. W., Hoftijzer, P. J., and Huntjens, F. J.: Composition and
vapor pressures of aqueous solutions of ammonia, carbon dioxide and hydrogen
sulfide, Recl. Trav. Chim. Pays-Bas, 68, 191–216, 1949.
van Roon, A., Parsons, J. R., Kloeze, A. M. T., and Govers, H. A. J.: Fate and
transport of monoterpenes through soils. Part I. Prediction of temperature
dependent soil fate model input-parameters, Chemosphere, 61, 599–609,
https://doi.org/10.1016/J.CHEMOSPHERE.2005.02.081, 2005.
van Ruth, S. M. and Villeneuve, E.: Influence of β-lactoglobulin, pH
and presence of other aroma compounds on the air/liquid partition
coefficients of 20 aroma compounds varying in functional group and chain
length, Food Chem., 79, 157–164, https://doi.org/10.1016/S0308-8146(02)00124-3, 2002.
van Ruth, S. M., Grossmann, I., Geary, M., and Delahunty, C. M.: Interactions
between artificial saliva and 20 aroma compounds in water and oil model
systems, J. Agric. Food Chem., 49, 2409–2413, https://doi.org/10.1021/JF001510F, 2001.
van Ruth, S. M., de Vries, G., Geary, M., and Giannouli, P.: Influence of
composition and structure of oil-in-water emulsions on retention of aroma
compounds, J. Sci. Food Agric., 82, 1028–1035, https://doi.org/10.1002/JSFA.1137,
2002.
Van Slyke, D. D., Dillon, R. T., and Margaria, R.: Studies of gas and
electrolyte equilibria in blood: XVIII. Solubility and physical state of
atmospheric nitrogen in blood cells and plasma, J. Biol. Chem., 105,
571–596, https://doi.org/10.1016/S0021-9258(18)75528-2, 1934.
Vane, L. M. and Giroux, E. L.: Henry's law constants and micellar partitioning
of volatile organic compounds in surfactant solutions, J. Chem. Eng. Data,
45, 38–47, https://doi.org/10.1021/JE990195U, 2000.
Vasilakos, P., Hu, Y., Russell, A., and Nenes, A.: Determining the role of
acidity, fate and formation of IEPOX-derived SOA in CMAQ, Atmos., 12, 707,
https://doi.org/10.3390/ATMOS12060707, 2021.
Villalta, P. W., Lovejoy, E. R., and Hanson, D. R.: Reaction probability of
peroxyacetyl radical on aqueous surfaces, Geophys. Res. Lett., 23,
1765–1768, https://doi.org/10.1029/96GL01286, 1996.
Vitenberg, A. G. and Dobryakov, Y. G.: Gas-chromatographic determination of the
distribution ratios of volatile substances in gas-liquid systems, Russ. J.
Appl. Chem., 81, 339–359, https://doi.org/10.1134/S1070427208030014, 2008.
Vitenberg, A. G., Ioffe, B. V., and Borisov, V. N.: Application of phase
equilibria to gas chromatographic trace analysis, Chromatographia, 7,
610–619, https://doi.org/10.1007/BF02269053, 1974.
Vitenberg, A. G., Ioffe, B. V., Dimitrova, Z. S., and Butaeva, I. L.:
Determination of gas-liquid partition coefficients by means of gas
chromatographic analysis, J. Chromatogr., 112, 319–327,
https://doi.org/10.1016/S0021-9673(00)99964-3, 1975.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from
sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330,
https://doi.org/10.1038/383327A0, 1996.
Vogt, R., Sander, R., von Glasow, R., and Crutzen, P. J.: Iodine chemistry
and its role in halogen activation and ozone loss in the marine boundary
layer: A model study, J. Atmos. Chem., 32, 375–395,
https://doi.org/10.1023/A:1006179901037, 1999.
Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary organic aerosol
formation from acetylene (C2H2): seed effect on SOA yields due to
organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9,
1907–1928, https://doi.org/10.5194/ACP-9-1907-2009, 2009.
von Antropoff, A.: The solubility of xenon, krypton, argon, neon, and helium
in water, Proc. R. Soc. Lond. A, 83, 474–482, https://doi.org/10.1098/RSPA.1910.0036,
1910.
von Hartungen, E., Wisthaler, A., Mikoviny, T., Jaksch, D., Boscaini, E.,
Dunphy, P. J., and Märk, T. D.: Proton-transfer-reaction mass spectrometry
(PTR-MS) of carboxylic acids. Determination of Henry's law constants and
axillary odour investigations, Int. J. Mass Spectrom., 239, 243–248,
https://doi.org/10.1016/J.IJMS.2004.09.009, 2004.
Vrabec, J., Stoll, J., and Hasse, H.: A set of molecular models for symmetric
quadrupolar fluids, J. Phys. Chem. B, 105, 12 126–12 133,
https://doi.org/10.1021/JP012542O, 2001.
Vítovec, J.: Absorption of acetylene and carbon dioxide in water, xylene and
methanol in a packed column, Collect. Czech. Chem. Commun., 33, 1203–1210,
https://doi.org/10.1135/CCCC19681203, 1968.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey,
S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical
thermodynamic properties; Selected values for inorganic and C1 and
C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11,
suppl. 2, (last access: 19 September 2023), 1982.
Wagner, W. and Pruss, A.: International equations for the saturation properties
of ordinary water substance. Revised according to the international
temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893
(1987), J. Phys. Chem. Ref. Data, 22, 783–787, https://doi.org/10.1063/1.555926, 1993.
Wang, C., Yuan, T., Wood, S. A., Goss, K.-U., Li, J., Ying, Q., and Wania, F.:
Uncertain Henry's law constants compromise equilibrium partitioning
calculations of atmospheric oxidation products, Atmos. Chem. Phys., 17,
7529–7540, https://doi.org/10.5194/ACP-17-7529-2017, 2017.
Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum,
D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous
bromine chloride, bromine, and chlorine species, Inorg. Chem., 33,
5872–5878, https://doi.org/10.1021/IC00103A040, 1994.
Wang, Y. H. and Wong, P. K.: Mathematical relationships between vapor pressure,
water solubility, Henry's law constant, n-octanol/water partition
coefficent and gas chromatographic retention index of
polychlorinated-dibenzo-dioxins, Wat. Res., 36, 350–355,
https://doi.org/10.1016/S0043-1354(01)00192-0, 2002.
Wania, F. and Dugani, C. B.: Assessing the long-range transport potential of
polybrominated diphenyl ethers: A comparison of four multimedia models,
Environ. Toxicol. Chem., 22, 1252–1261, https://doi.org/10.1002/ETC.5620220610, 2003.
Warneck, P.: Chemistry of the Natural Atmosphere, Acad., San Diego, CA, ISBN
0127356304, 1988.
Warneck, P.: The relative importance of various pathways for the oxidation of
sulfur dioxide and nitrogen dioxide in sunlit continental fair weather
clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, https://doi.org/10.1039/A906558J, 1999.
Warneck, P.: The solubility of ozone in water, in: Chemicals in the Atmosphere:
Solubility, Sources and Reactivity, edited by: Fogg, P. and Sangster, J.,
John Wiley & Sons, Inc., 225–228, ISBN 978-0-471-98651-5, 2003.
Warneck, P.: Multi-phase chemistry of C2 and C3 organic
compounds in the marine atmosphere, J. Atmos. Chem., 51, 119–159,
https://doi.org/10.1007/S10874-005-5984-7, 2005.
Warneck, P.: A note on the temperature dependence of Henry's Law coefficients
for methanol and ethanol, Atmos. Environ., 40, 7146–7151,
https://doi.org/10.1016/J.ATMOSENV.2006.06.024, 2006.
Warneck, P.: A review of Henry's law coefficients for chlorine-containing
C1 and C2 hydrocarbons, Chemosphere, 69, 347–361,
https://doi.org/10.1016/J.CHEMOSPHERE.2007.04.088, 2007.
Warneck, P. and Williams, J.: The Atmospheric Chemist's Companion: Numerical
Data for Use in the Atmospheric Sciences, Springer Verlag,
https://doi.org/10.1007/978-94-007-2275-0, 2012.
Warneck, P., Mirabel, P., Salmon, G. A., van Eldik, R., Vinckier, C.,
Wannowius, K. J., and Zetzsch, C.: Chapter 2: Review of the activities and
achievements of the EUROTRAC subproject HALIPP, in: Heterogeneous and
Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag,
Berlin, 7–74, https://doi.org/10.1007/978-3-642-61445-3_2, 1996.
Warner, H. P., Cohen, J. M., and Ireland, J. C.: Determination of Henry's law
constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal
Environmental Research Laboratory, Wastewater Research Division, Cincinnati,
Ohio, 45268, USA, 1980.
Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and 12
in water and seawater, Deep-Sea Res. A, 32, 1485–1497, 1985.
Warr, O., Ballentine, C. J., Mu, J., and Masters, A.: Optimizing noble
gas-water interactions via Monte Carlo simulations, J. Phys. Chem. B, 119,
14 486–14 495, https://doi.org/10.1021/ACS.JPCB.5B06389, 2015.
Wasik, S. P. and Tsang, W.: Gas chromatographic determination of partition
coefficients of some unsaturated hydrocarbons and their deuterated isomers in
aqueous silver nitrate solutions, J. Phys. Chem., 74, 2970–2976,
https://doi.org/10.1021/J100709A023, 1970.
Watanabe, T.: Relationship between volatilization rates and physicochemical
properties of some pesticides, J. Pestic. Sci., 18, 201–209,
https://doi.org/10.1584/JPESTICS.18.3_201, 1993.
Watts, S. F. and Brimblecombe, P.: The Henry's law constant of dimethyl
sulphoxide, Environ. Technol. Lett., 8, 483–486,
https://doi.org/10.1080/09593338709384509, 1987.
Wauchope, R. D. and Haque, R.: Aqueous solutions of nonpolar compounds.
Heat-capacity effects, Can. J. Chem., 50, 133–138, https://doi.org/10.1139/V72-022,
1972.
Webster, G. R. B., Friesen, K. J., Sarna, L. P., and Muir, D. C. G.:
Environmental fate modelling of chlorodioxins: Determination of physical
constants, Chemosphere, 14, 609–622, https://doi.org/10.1016/0045-6535(85)90169-9,
1985.
Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of
free-radical reactions in cloudwater: H2O2 production and
destruction, Environ. Sci. Technol., 25, 791–800, https://doi.org/10.1021/ES00016A027,
1991.
Weisenberger, S. and Schumpe, A.: Estimation of gas solubilities in salt
solutions at temperatures from 273 K to 363 K, AIChE J., 42, 298–300,
https://doi.org/10.1002/AIC.690420130, 1996.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2,
1974.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater,
Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Welke, B., Ettlinger, K., and Riederer, M.: Sorption of volatile organic
chemicals in plant surfaces, Environ. Sci. Technol., 32, 1099–1104,
https://doi.org/10.1021/ES970763V, 1998.
Wen, W.-Y. and Muccitelli, J. A.: Thermodynamics of some perfluorocarbon gases
in water, J. Solution Chem., 8, 225–246, https://doi.org/10.1007/BF00648882, 1979.
Westcott, J. W., Simon, C. G., and Bidleman, T. F.: Determination of
polychlorinated biphenyl vapor pressures by a semimicro gas saturation
method, Environ. Sci. Technol., 15, 1375–1378, https://doi.org/10.1021/ES00093A012,
1981.
Westheimer, F. H. and Ingraham, L. L.: The entropy of chelation, J. Phys.
Chem., 60, 1668–1670, https://doi.org/10.1021/J150546A024, 1956.
Wetlaufer, D. B., Malik, S. K., Stoller, L., and Coffin, R. L.: Nonpolar group
participation in the denaturation of proteins by urea and guanidinium salts.
Model compound studies, J. Am. Chem. Soc., 86, 508–514,
https://doi.org/10.1021/JA01057A045, 1964.
Whitney, R. P. and Vivian, J. E.: Solubility of chlorine in water, Ind. Eng.
Chem., 33, 741–744, https://doi.org/10.1021/IE50378A014, 1941a.
Whitney, R. P. and Vivian, J. E.: Solubility of chlorine in water, Pap. Trade
J., 113, 31–32, 1941b.
Wieland, F., Neff, A., Gloess, A. N., Poisson, L., Atlan, S., Larrain, D.,
Prêtre, D., Blank, I., and Yeretzian, C.: Temperature dependence of Henry's
law constants: An automated, high-throughput gas stripping cell design
coupled to PTR-ToF-MS, Int. J. Mass Spectrom., 387, 69–77,
https://doi.org/10.1016/J.IJMS.2015.07.015, 2015.
Wieser, F., Sander, R., and Taraborrelli, D.: Development of a multiphase
chemical mechanism to improve secondary organic aerosol formation in
CAABA/MECCA (version 4.5.6-rc.1), Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/GMD-2023-102, in review, 2023.
Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases
in liquid water, Chem. Rev., 77, 219–262, https://doi.org/10.1021/CR60306A003, 1977.
Willey, J. D., Powell, J. P., Avery, G. B., Kieber, R. J., and Mead, R. N.: Use
of experimentally determined Henry's Law and salting-out constants for
ethanol in seawater for determination of the saturation state of ethanol in
coastal waters, Chemosphere, 182, 426–432,
https://doi.org/10.1016/J.CHEMOSPHERE.2017.05.044, 2017.
Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N.,
Enderle, K.-H., and Jaeschke, W.: Organic acid gas and liquid-phase
measurements in Po valley fall-winter conditions in the presence of fog,
Tellus, 40B, 348–357, https://doi.org/10.1111/J.1600-0889.1988.TB00109.X, 1988.
Winkler, L.: A gázok oldhatósága vízben (Solubility of gases in water),
Math. Termész. Értesitö, 25, 86–108, 1907.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (erste Abhandlung), Ber.
Dtsch. Chem. Ges., 24, 89–101, https://doi.org/10.1002/CBER.18910240116,
1891a.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (zweite Abhandlung), Ber.
Dtsch. Chem. Ges., 24, 3602–3610, https://doi.org/10.1002/CBER.189102402237,
1891b.
Winkler, L. W.: Löslichkeit des Broms in Wasser, Chem. Ztg., 23, 687–689,
1899.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (dritte Abhandlung), Ber.
Dtsch. Chem. Ges., 34, 1408–1422, https://doi.org/10.1002/CBER.19010340210, 1901.
Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in
Flüssigkeiten, Z. Phys. Chem., 55, 344–354, https://doi.org/10.1515/ZPCH-1906-5518,
1906.
Wisegarver, D. P. and Cline, J. D.: Solubility of trichlorofluoromethane (F-11)
and dichlorodifluoromethane (F-12) in seawater and its relationship to
surface concentrations in the North Pacific, Deep-Sea Res. A, 32, 97–106,
1985.
Wittig, R., Lohmann, J., Joh, R., Horstmann, S., and Gmehling, J.: Vapor-liquid
equilibria and enthalpies of mixing in a temperature range from 298.15 to
413.15 K for the further development of modified UNIFAC (Dortmund), Ind.
Eng. Chem. Res., 40, 5831–5838, https://doi.org/10.1021/IE010444J, 2001.
Wolfe, N. L., Burns, L. A., and Steen, W. C.: Use of linear free energy
relationships and an evaluative model to assess the fate and transport of
phthalate esters in the aquatic environment, Chemosphere, 9, 393–402,
https://doi.org/10.1016/0045-6535(80)90022-3, 1980.
Wolfe, N. L., Zepp, R. G., Schlotzhauer, P., and Sink, M.: Transformation
pathways of hexachlorocyclopentadiene in the aquatic environment,
Chemosphere, 11, 91–101, https://doi.org/10.1016/0045-6535(82)90160-6, 1982.
Wolfenden, R.: Free energies of hydration and hydrolysis of gaseous acetamide,
J. Am. Chem. Soc., 98, 1987–1988, https://doi.org/10.1021/JA00423A068, 1976.
Wolfenden, R. and Williams, R.: Affinities of phosphoric acids, esters, and
amides for solvent water, J. Am. Chem. Soc., 105, 1028–1031,
https://doi.org/10.1021/JA00342A063, 1983.
Wong, P. K. and Wang, Y. H.: Determination of the Henry's law constant for
dimethyl sulfide in seawater, Chemosphere, 35, 535–544,
https://doi.org/10.1016/S0045-6535(97)00118-5, 1997.
Woo, J. L. and McNeill, V. F.: simpleGAMMA v1.0 – a reduced model of secondary
organic aerosol formation in the aqueous aerosol phase (aaSOA), Geosci. Model
Dev., 8, 1821–1829, https://doi.org/10.5194/GMD-8-1821-2015, 2015.
Woodrow, J. E., McChesney, M. M., and Seiber, J. N.: Modeling the
volatilization of pesticides and their distribution in the atmosphere, in:
Long Range Transport of Pesticides, edited by: Kurtz, D. A., CRC
Press, 61–81, 1990.
Worthington, E. K. and Wade, E. A.: Henry's Law coefficients of chloropicrin
and methyl isothiocyanate, Atmos. Environ., 41, 5510–5515,
https://doi.org/10.1016/J.ATMOSENV.2007.02.019, 2007.
Wright, D. A., Sandler, S. I., and DeVoll, D.: Infinite dilution activity
coefficients and solubilities of halogenated hydrocarbons in water at ambient
temperatures, Environ. Sci. Technol., 26, 1828–1831,
https://doi.org/10.1021/ES00033A018, 1992.
Wu, S., Hayati, S. K., Kim, E., de la Mata, A. P., Harynuk, J. J., Wang, C.,
and Zhao, R.: Henry's law constants and indoor partitioning of microbial
volatile organic compounds, Environ. Sci. Technol., 56, 7143–7152,
https://doi.org/10.1021/ACS.EST.1C07882, 2022a.
Wu, S., Kim, E., Vethanayagam, D., and Zhao, R.: Indoor partitioning and
potential thirdhand exposure to carbonyl flavoring agents added in
e-cigarettes and hookah tobacco, Environ. Sci. Processes Impacts, 24,
2294–2309, https://doi.org/10.1039/D2EM00365A, 2022b.
Wu, Y. and Chang, V. W.-C.: The effect of surface adsorption and molecular
geometry on the determination of Henry's law constants for fluorotelomer
alcohols, J. Chem. Eng. Data, 56, 3442–3448, https://doi.org/10.1021/JE200466W, 2011.
Xiao, H., Li, N., and Wania, F.: Compilation, evaluation, and selection of
physical-chemical property data for α-, β-, and
γ-hexachlorocyclohexane, J. Chem. Eng. Data, 49, 173–185,
https://doi.org/10.1021/JE034214I, 2004.
Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D.,
Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric
concentrations of halogenated flame retardants at two remote locations: The
Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161,
154–161, https://doi.org/10.1016/J.ENVPOL.2011.09.041, 2012.
Xie, Z., Le Calvé, S., Feigenbrugel, V., Preuß, T. G., Vinken, R.,
Ebinghaus, R., and Ruck, W.: Henry's law constants measurements of the
nonylphenol isomer 4(3',5'-dimethyl-3'-heptyl)-phenol, tertiary octylphenol
and γ-hexachlorocyclohexane between 278 and 298 K, Atmos.
Environ., 38, 4859–4868, https://doi.org/10.1016/J.ATMOSENV.2004.05.013, 2004.
Xu, S. and Kropscott, B.: A method for simultaneous determination of partition
coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol,
Anal. Chem., 84, 1948–1955, https://doi.org/10.1021/AC202953T, 2012.
Xu, S. and Kropscott, B.: Evaluation of the three-phase equilibrium method for
measuring temperature dependence of internally consistent partition
coefficients (KOW, KOA, and KAW) for
volatile methylsiloxanes and trimethylsilanol, Environ. Toxicol. Chem., 33,
2702–2710, https://doi.org/10.1002/ETC.2754, 2014.
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., and Giralt, F.: A fuzzy
ARTMAP-based quantitative structure-property relationship (QSPR) for the
Henry's law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43,
85–112, https://doi.org/10.1021/CI025561J, 2003.
Yakovkin, A. A.: About the hydrolysis of chlorine, J. Russ. Phys. Chem. Soc.,
32, 673–721, (in Russian), 1900.
Yao, X., aand X. Zhang, M. L., Hu, Z., and Fan, B.: Radial basis function
network-based quantitative structure-property relationship for the prediction
of Henry's law constant, Anal. Chim. Acta, 462, 101–117,
https://doi.org/10.1016/S0003-2670(02)00273-8, 2002.
Yates, S. R. and Gan, J. Y.: Volatility, adsorption, and degradation of
propargyl bromide as a soil fumigant, J. Agric. Food Chem., 46, 755–761,
https://doi.org/10.1021/JF9707849, 1998.
Yaws, C. L.: Chemical Properties Handbook, McGraw-Hill, Inc., ISBN
0070734011, 1999.
Yaws, C. L.: Yaws' Handbook of Thermodynamic and Physical Properties of
Chemical Compounds, Knovel: Norwich, NY, USA, ISBN 1591244447, 2003.
Yaws, C. L. and Yang, H.-C.: Henry's law constant for compound in water, in:
Thermodynamic and Physical Property Data, edited by: Yaws, C. L.,
Gulf Publishing Company, Houston, TX, 181–206, ISBN 0884150313, 1992.
Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., and Pike, R. W.: Solubility
and Henry's law constant for alcohols in water, Waste Manage., 17, 541–547,
https://doi.org/10.1016/S0956-053X(97)10057-5, 1997.
Yaws, C. L., Sheth, S. D., and Han, M.: Using solubility and Henry's law
constant data for ketones in water, Pollut. Eng., 30, 44–46, 1998.
Yaws, C. L., Hopper, J. R., Wang, X., Rathinsamy, A. K., and Pike, R. W.:
Calculating solubility & Henry's law constants for gases in water, Chem.
Eng., 102–105, 1999.
Yaws, C. L., Hopper, J. R., Mishra, S. R., and Pike, R. W.: Solubility and
Henry's law constants for amines in water, Chem. Eng., 108, 84–88, 2001.
Yaws, C. L., Bajaj, P., Singh, H., and Pike, R. W.: Solubility & Henry's law
constants for sulfur compounds in water, Chem. Eng., 60–64, 2003.
Yaws, C. L., Narasimhan, P. K., Lou, H. H., and Pike, R. W.: Solubility &
Henry's law constants for chlorinated compounds in water, Chem. Eng., 112,
50–56, 2005.
Yin, C. and Hassett, J. P.: Gas-partitioning approach for laboratory and fiels
studies of mirex fugacity in water, Environ. Sci. Technol., 20, 1213–1217,
https://doi.org/10.1021/ES00154A003, 1986.
Yoo, K.-P., Lee, S. Y., and Lee, W. H.: Ionization and Henry's law constants
for volatile, weak electrolyte water pollutants, Korean J. Chem. Eng., 3,
67–72, https://doi.org/10.1007/BF02697525, 1986.
Yoshida, K., Shigeoka, T., and Yamauchi, F.: Non-steady state equilibrium model
for the preliminary prediction of the fate of chemicals in the environment,
Ecotoxicol. Environ. Saf., 7, 179–190, https://doi.org/10.1016/0147-6513(83)90064-7,
1983.
Yoshida, K., Shigeoka, T., and Yamauchi, F.: Evaluation of aquatic
environmental fate of 2,4,6-trichlorophenol with a mathematical model,
Chemosphere, 16, 2531–2544, https://doi.org/10.1016/0045-6535(87)90311-0, 1987.
Yoshizumi, K., Aoki, K., Nouchi, I., Okita, T., Kobayashi, T., Kamakura, S.,
and Tajima, M.: Measurements of the concentration in rainwater and of the
Henry's law constant of hydrogen peroxide, Atmos. Environ., 18, 395–401,
https://doi.org/10.1016/0004-6981(84)90114-8, 1984.
Young, C. L.: IUPAC Solubility Data Series, Vol. 5/6, Hydrogen and Deuterium,
Pergamon Press, Oxford, ISBN 0080239277, 1981a.
Young, C. L.: IUPAC Solubility Data Series, Vol. 8, Oxides of Nitrogen,
Pergamon Press, Oxford, https://doi.org/10.1016/C2009-0-00222-0, 1981b.
Young, C. L.: IUPAC Solubility Data Series, Vol. 12, Sulfur Dioxide,
Chlorine, Fluorine and Chlorine Oxides, Pergamon Press, Oxford,
https://doi.org/10.1016/C2013-0-03419-6, 1983.
Yu, H.-Z.: The use of Henry's law constants in the determination of factors
that influence VOC concentration in aqueous and gaseous phases in wastewater
treatment plant, Master's thesis, New Jersey Institute of Technology, USA,
1992.
Yurteri, C., Ryan, D. F., Callow, J. J., and Gurol, M. D.: The effect of
chemical composition of water on Henry's law constant, J. Water Pollut.
Control Fed., 59, 950–956, 1987.
Zafiriou, O. C. and McFarland, M.: Determination of trace levels of nitric
oxide in aqueous solution, Anal. Chem., 52, 1662–1667,
https://doi.org/10.1021/AC50061A029, 1980.
Zhang, S. B. L., Wang, S., and Franzblau, A.: Partition coefficients for the
trihalomethanes among blood, urine, water, milk and air, Sci. Total Environ.,
284, 237–247, https://doi.org/10.1016/S0048-9697(01)00890-7, 2002.
Zhang, W., Huang, L., Yang, C., and Ying, W.: Experimental method for
estimating Henry's law constant of volatile organic compound, Asian J. Chem.,
25, 2647–2650, https://doi.org/10.14233/AJCHEM.2013.13584, 2013.
Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., and Goss, K.-U.:
Assessment of chemical screening outcomes based on different partitioning
property estimation methods, Environ. Int., 36, 514–520,
https://doi.org/10.1016/J.ENVINT.2010.03.010, 2010.
Zhang, Z. and Pawliszyn, J.: Headspace solid-phase microextraction, Anal.
Chem., 65, 1843–1852, https://doi.org/10.1021/AC00062A008, 1993.
Zheng, D.-Q., Guo, T.-M., and Knapp, H.: Experimental and modeling studies on
the solubility of CO2, CHClF2, CHF3, C2H2F4
and C2H4F2 in water and aqueous NaCl solutions under low
pressures, Fluid Phase Equilib., 129, 197–209,
https://doi.org/10.1016/S0378-3812(96)03177-9, 1997.
Zhou, X. and Lee, Y.-N.: Aqueous solubility and reaction kinetics of
hydroxymethyl hydroperoxide, J. Phys. Chem., 96, 265–272,
https://doi.org/10.1021/J100180A051, 1992.
Zhou, X. and Mopper, K.: Apparent partition coefficients of 15 carbonyl
compounds between air and seawater and between air and freshwater;
Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869,
https://doi.org/10.1021/ES00082A013, 1990.
Zhu, J. Y., Liu, P. H., Chai, X. S., Bullock, K. R., and Teja, A. S.: Henry's
law constant of methanol in pulping spent liquors, Environ. Sci. Technol.,
34, 1742–1746, https://doi.org/10.1021/ES990415O, 2000.
Zin, R. M., Coquelet, C., Valtz, A., Abdul Mutalib, M. I., and Sabil, K. M.:
Measurement of Henry's Law constant and infinite dilution activity
coefficient of isopropyl mercaptan and isobutyl mercaptan in
(methyldiethanolamine (1) + water (2)) with w1 = 0.25 and 0.50 at
temperature of (298 to 348) K using inert gas stripping method, J. Chem.
Thermodyn., 93, 193–199, https://doi.org/10.1016/J.JCT.2015.10.005, 2016.
Download
- Article
(8051 KB) - Metadata XML
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in...
Altmetrics
Final-revised paper
Preprint