Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-3655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-3655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Kristian Klumpp
CORRESPONDING AUTHOR
Department of Environmental Systems Science, Institute for Atmospheric and Climate Sciences, ETH Zurich, 8092 Zurich,
Switzerland
Claudia Marcolli
CORRESPONDING AUTHOR
Department of Environmental Systems Science, Institute for Atmospheric and Climate Sciences, ETH Zurich, 8092 Zurich,
Switzerland
Thomas Peter
Department of Environmental Systems Science, Institute for Atmospheric and Climate Sciences, ETH Zurich, 8092 Zurich,
Switzerland
Related authors
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Andrin Jörimann, Timofei Sukhodolov, Beiping Luo, Gabriel Chiodo, Graham Mann, and Thomas Peter
Geosci. Model Dev., 18, 6023–6041, https://doi.org/10.5194/gmd-18-6023-2025, https://doi.org/10.5194/gmd-18-6023-2025, 2025
Short summary
Short summary
Aerosol particles in the stratosphere affect our climate. Climate models therefore need an accurate description of their properties and evolution. Satellites measure how strongly aerosol particles extinguish light passing through the stratosphere. We describe a method to use such aerosol extinction data to retrieve the number and sizes of the aerosol particles and calculate their optical effects. The resulting data sets for models are validated against ground-based and balloon observations.
Yu Wang, Beiping Luo, Judith Kleinheins, Gang I. Chen, Liine Heikkinen, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4319, https://doi.org/10.5194/egusphere-2025-4319, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Ubiquitous semi-volatile compounds can co-condense on aerosol particles with water vapour when relative humidity increases. Simulations of cloud formation at a boreal forest site with a cloud parcel model that accounts for non-ideal organic–inorganic interactions yield an enhancement of cloud droplet number concentration from co-condensing NH3, HNO3, and organics up to 39–52 %, with strong sensitivities to volatility distributions, aerosol size distribution, and updraft velocity.
Nadia Shardt, Florin N. Isenrich, Julia Nette, Christopher Dreimol, Ning Ma, Zamin A. Kanji, Andrew J. deMello, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2958, https://doi.org/10.5194/egusphere-2025-2958, 2025
Short summary
Short summary
In the atmosphere, minerals suspended in cloud droplets promote the formation of ice. We investigated ice formation in the presence of pure and binary mixtures of common minerals using a microfluidic device. The mineral with the best ability to initiate ice formation alone (that is, at the highest temperature) typically determined when ice formed in the binary mixture.
Yann Poltera, Beiping Luo, Frank G. Wienhold, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2003, https://doi.org/10.5194/egusphere-2025-2003, 2025
Short summary
Short summary
Frost point hygrometers are the most reliable instruments for measuring water vapor in the upper troposphere and lower stratosphere. Their greatest source of uncertainty arises from controller instabilities, which have been poorly investigated to date. The “Golden Points” and nonequilibrium correction is a new chilled mirror processing technique that enables existing instruments to measure the water vapor mixing ratio from the ground to the middle stratosphere with an unprecedented 4 % accuracy.
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025, https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary
Short summary
We analyzed the ability of silver iodide particles (a commonly used cloud-seeding agent) to form ice crystals in naturally occurring liquid clouds at −5 to −8 °C and found that only ≈ 0.1 %−1 % of particles nucleate ice, with a negative dependence on temperature. By contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments, which also helps to inform future cloud-seeding projects.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025, https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Short summary
We model the cloud condensation nuclei (CCN) activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants, and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updraughts.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Sandro Vattioni, Andrea Stenke, Beiping Luo, Gabriel Chiodo, Timofei Sukhodolov, Elia Wunderlin, and Thomas Peter
Geosci. Model Dev., 17, 4181–4197, https://doi.org/10.5194/gmd-17-4181-2024, https://doi.org/10.5194/gmd-17-4181-2024, 2024
Short summary
Short summary
We investigate the sensitivity of aerosol size distributions in the presence of strong SO2 injections for climate interventions or after volcanic eruptions to the call sequence and frequency of the routines for nucleation and condensation in sectional aerosol models with operator splitting. Using the aerosol–chemistry–climate model SOCOL-AERv2, we show that the radiative and chemical outputs are sensitive to these settings at high H2SO4 supersaturations and how to obtain reliable results.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023, https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century, disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.7 K global surface warming and a poleward shift in storm tracks.
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023, https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
Short summary
Previously, it has been suggested that springtime Arctic ozone depletion might worsen in the coming decades due to climate change, which might counteract the effect of reduced ozone-depleting substances. Here, we show with different chemistry–climate models that springtime Arctic ozone depletion will likely decrease in the future. Further, we explain why models show a large spread in the projected development of Arctic ozone depletion and use the model spread to constrain future projections.
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023, https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Short summary
Smectites are a major class of clay minerals that are ice nucleation (IN) active. They form platelets that swell or even delaminate in water by intercalation of water between their layers. We hypothesize that at least three smectite layers need to be stacked together to host a critical ice embryo on clay mineral edges and that the larger the surface edge area is, the higher the freezing temperature. Edge sites on such clay particles play a crucial role in imparting IN ability to such particles.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, and Thomas Peter
Atmos. Chem. Phys., 23, 4801–4817, https://doi.org/10.5194/acp-23-4801-2023, https://doi.org/10.5194/acp-23-4801-2023, 2023
Short summary
Short summary
The future ozone evolution in SOCOLv4 simulations under SSP2-4.5 and SSP5-8.5 scenarios has been assessed for the period 2015–2099 and subperiods using the DLM approach. The SOCOLv4 projects a decline in tropospheric ozone in the 2030s in SSP2-4.5 and in the 2060s in SSP5-8.5. The stratospheric ozone increase is ~3 times higher in SSP5-8.5, confirming the important role of GHGs in ozone evolution. We also showed that tropospheric ozone strongly impacts the total column in the tropics.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022, https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Short summary
Applying the dynamic linear model, we confirm near-global ozone recovery (55°N–55°S) in the mesosphere, upper and middle stratosphere, and a steady increase in the troposphere. We also show that modern chemistry–climate models (CCMs) like SOCOLv4 may reproduce the observed trend distribution of lower stratospheric ozone, despite exhibiting a lower magnitude and statistical significance. The obtained ozone trend pattern in SOCOLv4 is generally consistent with observations and reanalysis datasets.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022, https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017, https://doi.org/10.5194/acp-22-13997-2022, https://doi.org/10.5194/acp-22-13997-2022, 2022
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called final stratospheric warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone shifts the FSW to earlier and later dates in years with high and low ozone via the absorption of UV light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Florin N. Isenrich, Nadia Shardt, Michael Rösch, Julia Nette, Stavros Stavrakis, Claudia Marcolli, Zamin A. Kanji, Andrew J. deMello, and Ulrike Lohmann
Atmos. Meas. Tech., 15, 5367–5381, https://doi.org/10.5194/amt-15-5367-2022, https://doi.org/10.5194/amt-15-5367-2022, 2022
Short summary
Short summary
Ice nucleation in the atmosphere influences cloud properties and lifetimes. Microfluidic instruments have recently been used to investigate ice nucleation, but these instruments are typically made out of a polymer that contributes to droplet instability over extended timescales and relatively high temperature uncertainty. To address these drawbacks, we develop and validate a new microfluidic instrument that uses fluoropolymer tubing to extend droplet stability and improve temperature accuracy.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Debra K. Weisenstein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Gabriel Chiodo, Thomas Peter, and David W. Keith
Atmos. Chem. Phys., 22, 2955–2973, https://doi.org/10.5194/acp-22-2955-2022, https://doi.org/10.5194/acp-22-2955-2022, 2022
Short summary
Short summary
This paper explores a potential method of geoengineering that could be used to slow the rate of change of climate over decadal scales. We use three climate models to explore how injections of accumulation-mode sulfuric acid aerosol change the large-scale stratospheric particle size distribution and radiative forcing response for the chosen scenarios. Radiative forcing per unit sulfur injected and relative to the change in aerosol burden is larger with particulate than with SO2 injections.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021, https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions play an important role in climate change. Simulations of the competition between homogeneous solution droplet freezing and heterogeneous ice nucleation can be compromised by the misapplication of ice-active particle fractions frequently derived from laboratory measurements or parametrizations. Our study frames the problem and establishes a solution that is easy to implement in cloud models.
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021, https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Short summary
This paper features the new atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0 and its validation. The model performance is evaluated against reanalysis products and observations of atmospheric circulation and trace gas distribution, with a focus on stratospheric processes. Although we identified some problems to be addressed in further model upgrades, we demonstrated that SOCOLv4.0 is already well suited for studies related to chemistry–climate–aerosol interactions.
Claudia Marcolli, Fabian Mahrt, and Bernd Kärcher
Atmos. Chem. Phys., 21, 7791–7843, https://doi.org/10.5194/acp-21-7791-2021, https://doi.org/10.5194/acp-21-7791-2021, 2021
Short summary
Short summary
Pores are aerosol particle features that trigger ice nucleation, as they take up water by capillary condensation below water saturation that freezes at low temperatures. The pore ice can then grow into macroscopic ice crystals making up cirrus clouds. Here, we investigate the pores in soot aggregates responsible for pore condensation and freezing (PCF). Moreover, we present a framework to parameterize soot PCF that is able to predict the ice nucleation activity based on soot properties.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, https://doi.org/10.5194/amt-14-1365-2021, 2021
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. The accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Cited articles
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K., Whale, T. F.,
Baustian, K., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance
of feldspar for ice nucleation by mineral dust in mixed-phase clouds,
Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013.
Baker, M. B. and Baker, M.: A new look at homogeneous freezing of water,
Geophys. Res. Lett., 31, L19102, https://doi.org/10.1029/2004GL020483, 2004.
Barbaro E., Zangrando R., Moret I., Barbante C., Cescon P., and Gambaro A.: Free
amino acids in atmospheric particulate matter of Venice, Italy, Atmos.
Environ., 45, 5050–5057, https://doi.org/10.1016/j.atmosenv.2011.01.068,
2011.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Cairns, W. R. L.,
Capodaglio, G., Barbante, C., and Gambaro, A.: Free amino acids in Antarctic
aerosol: potential markers for the evolution and fate of marine aerosol,
Atmos. Chem. Phys., 15, 5457–5469, https://doi.org/10.5194/acp-15-5457-2015, 2015.
Bevan, J. and Savage, D.: The effect of organic acids on the dissolution of
feldspar under conditions relevant to burial diagenesis, Mineral.
Mag., 53, 415–425, https://doi.org/10.1180/minmag.1989.053.372.02, 1989
Bogler, S. and Borduas-Dedekind, N.: Lignin's ability to nucleate ice via
immersion freezing and its stability towards physicochemical treatments and
atmospheric processing, Atmos. Chem. Phys., 20, 14509–14522,
https://doi.org/10.5194/acp-20-14509-2020, 2020.
Boose, Y., Welti, A., Atkinson, J., Ramelli, F., Danielczok, A., Bingemer,
H. G., Plötze, M., Sierau, B., Kanji, Z. A., and Lohmann, U.:
Heterogeneous ice nucleation on dust particles sourced from 9 deserts
worldwide – Part 1: Immersion freezing, Atmos. Chem. Phys., 16,
15075–15095, https://doi.org/10.5194/acp-16-15075-2016, 2016.
Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger,
V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the
ability of dissolved organic matter to activate cloud droplets and to
nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412,
https://doi.org/10.5194/acp-19-12397-2019, 2019.
Cascajo-Castresana, M., David, R. O., Iriarte-Alonso, M. A., Bittner, A. M.,
and Marcolli, C.: Protein aggregates nucleate ice: the example of
apoferritin, Atmos. Chem. Phys., 20, 3291–3315,
https://doi.org/10.5194/acp-20-3291-2020, 2020.
Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell, C.:
Biological residues de- fine the ice nucleation properties of soil dust,
Atmos. Chem. Phys., 11, 9643–9648, https://doi.org/10.5194/acp-11-9643-2011, 2011.
DeMott, P. J. and Prenni, A. J.: New directions: need for defining the
numbers and sources of biological aerosols acting as ice nuclei, Atmos.
Environ., 44, 1944–1945, https://doi.org/10.1016/j.atmosenv.2010.02.032, 2010.
Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O.,
Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in
the atmosphere: a review, Tellus B, 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Du, R., Du, P., Lu, Z., Ren, W., Liang, Z., Qin, S., Li, Z., Wang, Y., and
Fu, P.: Evidence for a missing source of efficient ice nuclei, Sci. Rep., 7,
39673, https://doi.org/10.1038/srep39673, 2017.
Durant, A. J. and Shaw, R. A.: Evaporation freezing by contact nucleation
inside-out, Geophys. Res. Lett., 32, L20814, https://doi.org/10.1029/2005GL024175, 2005.
Field, P. R. and Heymsfield, A. J.: Importance of snow to global
precipitation, Geophys. Res. Lett., 42, 9512–9520,
https://doi.org/10.1002/2015GL065497, 2015.
Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and
Prather, K. A.: Comparison of the mixing state of long-range transported
Asian and African mineral dust, Atmos. Environ., 115, 19–25,
https://doi.org/10.1016/j.atmosenv.2015.04.031, 2015.
Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A.: Heterogeneous
freezing of ice on atmospheric aerosols containing ash, soot, and soil, J.
Geophys. Res.-Atmos., 114, D13201, https://doi.org/10.1029/2009jd011958, 2009.
Ganbavale, G., Marcolli, C., Krieger, U. K., Zuend, A., Stratmann, G., and
Peter, T.: Experimental determination of the temperature dependence of water
activities for a selection of aqueous organic solutions, Atmos. Chem. Phys.,
14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, 2014.
Govindarajan, A. G. and Lindow, S. E.: Size of bacterial ice-nucleation
sites measured in situ by radiation inactivation analysis, P. Natl. Acad.
Sci. USA, 85, 1334–1338, https://doi.org/10.1073/pnas.85.5.1334, 1988.
Harrison, A. D., Whale, T. F., Carpenter, M. A., Holden, M. A., Neve, L.,
O'Sullivan, D., Vergara Temprado, J., and Murray, B. J.: Not all feldspars
are equal: a survey of ice nucleating properties across the feldspar group
of minerals, Atmos. Chem. Phys., 16, 10927–10940,
https://doi.org/10.5194/acp-16-10927-2016, 2016.
Harrison, A. D., Lever, K., Sanchez-Marroquin, A., Holden, M. A., Whale, T.
F., Tarn, M. D., McQuaid, J. B., and Murray, B. J.: The ice-nucleating
ability of quartz immersed in water and its atmospheric importance compared
to K-feldspar, Atmos. Chem. Phys., 19, 11343–11361,
https://doi.org/10.5194/acp-19-11343-2019, 2019.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang,
H., and Hao, J.: Mineral dust and NOx promote the conversion of
SO2 to sulfate in heavy pollution days, Sci. Rep., 4, 4172,
https://doi.org/10.1038/srep04172, 2014.
Hedges, J. I. and Hare, P. E.: Amino acid adsorption by clay minerals in
distilled water, Geochim. Cosmochim. Ac., 51, 255–259,
doiI:10.1016/0016-7037(87)90237-7, 1987.
Heymsfield, A. J. and Sabin, R. M.: Cirrus Crystal Nucleation by
Homogeneous Freezing of Solution Droplets, J. Atmos. Sci., 46,
2252–2264, https://doi.org/10.1175/1520-0469(1989)046<2252:CCNBHF>2.0.CO;2, 1989.
Hill, T. C. J., DeMott, P. J., Tobo, Y., Fröhlich-Nowoisky, J., Moffett,
B. F., Franc, G. D., and Kreidenweis, S. M.: Sources of organic ice
nucleating particles in soils, Atmos. Chem. Phys., 16, 7195–7211,
https://doi.org/10.5194/acp-16-7195-2016, 2016.
Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J.,
Danielczok, A., Diehl, K., Dreischmeier, K., Ebert, M., Frank, F., Hoffmann,
N., Kandler, K., Kiselev, A., Koop, T., Leisner, T., Möhler, O.,
Nillius, B., Peckhaus, A., Rose, D., Weinbruch, S., Wex, H., Boose, Y.,
DeMott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G.,
Levin, E. J. T., McCluskey, C. S., Murakami, M., Murray, B. J., Niedermeier,
D., Petters, M. D., O'Sullivan, D., Saito, A., Schill, G. P., Tajiri, T.,
Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P., and Yamashita, K.: A
comprehensive laboratory study on the immersion freezing behavior of illite
NX particles: a comparison of 17 ice nucleation measurement techniques,
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, 2015a.
Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev,
A., Hoffmann, N., Hoose, C., Jantsch, E., Koop, T., and Murakami, M.: Ice
nucleation by cellulose and its potential contribution to ice formation in
clouds, Nat. Geosci., 8, 273–277, https://doi.org/10.1038/ngeo2374, 2015b.
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B.,
Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J.,
DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N.,
Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A.,
Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen,
M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T.,
Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C.,
Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R.,
Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk,
A., and Möhler, O.: A comprehensive characterization of ice nucleation
by three different types of cellulose particles immersed in water, Atmos.
Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019.
Holden, M. A., Whale, T. F., Tarn, M. D., O'Sullivan, D., Walshaw, R. D., Murray,
B. J., Meldrum, F. C., and Christenson, H. K.: High-speed imaging of ice nucleation
in water proves the existence of active sites, Sci. Adv., 5, eaav4316,
https://doi.org/10.1126/sciadv.aav4316, 2019.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric
aerosols: a review of results from laboratory experiments, Atmos. Chem.
Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Hoose, C., Kristjansson, J. E., Chen, J. P., and Hazra, A.: A
classical-theory-based parameterization of heterogeneous ice nucleation by
mineral dust, soot, and biological particles in a global climate model, J.
Atmos. Sci., 67, 2483–2503, https://doi.org/10.1175/2010JAS3425.1, 2010.
Hu, Q, Yun, J., and Yang, G.: Toward the origin of life over feldspar
surfaces: Adsorption of amino acids and catalysis of conformational
interconversions, Int. J. Quantum. Chem., 120, e26175, https://doi.org/10.1002/qua.26175,
2020.
Huang, S., Hu, W., Chen, J., Wu, Z. J., Zhang, D. Z., and Fu, P. Q.:
Overview of biological ice nucleating particles in the atmosphere, Environ.
Int., 146, 106197, https://doi.org/10.1016/j.envint.2020.106197, 2021.
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation
theory of homogeneous freezing of water: Thermodynamic and kinetic
parameters, Phys. Chem. Chem. Phys., 17, 5514–5537, https://doi.org/10.1039/C4CP04184D,
2015.
IPCC: Climate change 2013: The physical science basis. Contribution of
working group I to the fifth assessment report of the intergovernmental
panel on climate change, Cambridge University Press, Cambridge, UK and New
York, NY, USA, 1535 pp., 2013.
Johari, G. P., Fleissner, G., Hallbrucker, A., and Mayer, E.: Thermodynamic
continuity between glassy and normal water, J. Phys. Chem., 98, 4719–4725,
https://doi.org/10.1021/j100068a038, 1994.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteor.
Monogr., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Kanji, Z. A., Sullivan, R. C., Niemand, M., DeMott, P. J., Prenni, A. J.,
Chou, C., Saathoff, H., and Möhler, O.: Heterogeneous ice nucleation
properties of natural desert dust particles coated with a surrogate of
secondary organic aerosol, Atmos. Chem. Phys., 19, 5091–5110,
https://doi.org/10.5194/acp-19-5091-2019, 2019.
Kaufmann, L., Marcolli, C., Hofer, J., Pinti, V., Hoyle, C. R., and Peter,
T.: Ice nucleation efficiency of natural dust samples in the immersion mode,
Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, 2016.
Kaufmann, L., Marcolli, C., Luo, B., and Peter, T.: Refreeze experiments
with water droplets containing different types of ice nuclei interpreted by
classical nucleation theory, Atmos. Chem. Phys., 17, 3525–3552,
https://doi.org/10.5194/acp-17-3525-2017, 2017.
Kim, H. K., Orser, C., Lindow, S. E., and Sands, D. C.: Xanthomonas
campestris pv. translucens strains active in ice nucleation, Plant Dis., 71,
994–997, https://doi.org/10.1094/PD-71-0994, 1987.
Klumpp, K.: The impact of (bio-)organic substances on the ice nucleation activi-ty of the K-feldspar microcline in aqueous solutions, ETH Zurich [data set], https://doi.org/10.3929/ethz-b-000530486, 2022.
Knopf, D. A. and Alpert, P. A.: A water activity based model of
heterogeneous ice nucleation kinetics for freezing of water and aqueous
solution droplets, Faraday Discuss., 165, 513–534, https://doi.org/10.1039/C3FD00035D,
2013.
Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J.,
Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D.
R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M. J.,
Rudich, Y.,Wagner, P. E.,Winkler, P. M.,Worsnop, D. R., and O' Dowd, C. D.:
An overview of current issues in the uptake of atmospheric trace gases by
aerosols and clouds, Atmos. Chem. Phys., 10, 10561–10605,
https://doi.org/10.5194/acp-10-10561-2010, 2010.
Koop, T. and Zobrist, B.: Parameterizations for ice nucleation in biological
and atmospheric systems, Phys. Chem. Chem. Phys., 11, 10839–10850,
https://doi.org/10.1039/B914289D, 2009.
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Kumar, A., Marcolli, C., Luo, B., and Peter, T.: Ice nucleation activity of
silicates and aluminosilicates in pure water and aqueous solutions – Part
1: The K-feldspar microcline, Atmos. Chem. Phys., 18, 7057–7079,
https://doi.org/10.5194/acp-18-7057-2018, 2018.
Kumar, A., Marcolli, C., and Peter, T.: Ice nucleation activity of silicates
and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz
and amorphous silica, Atmos. Chem. Phys., 19, 6035–6058,
https://doi.org/10.5194/acp-19-6035-2019, 2019a.
Kumar, A., Marcolli, C., and Peter, T.: Ice nucleation activity of silicates
and aluminosilicates in pure water and aqueous solutions – Part 3:
Aluminosilicates, Atmos. Chem. Phys., 19, 6059–6084,
https://doi.org/10.5194/acp-19-6059-2019, 2019b.
Lindow, S. E., Arny, D. C., and Upper, C. D.: Erwinia herbicola: a bacterial
ice nucleus active in increasing frost injury to corn, Phytopathology, 68,
523–527, https://doi.org/10.1094/Phyto-68-523, 1978.
Lohmann, U.: Aerosol effects on clouds and climate, Space Sci. Rev., 125,
129–137, https://doi.org/10.1007/s11214-006-9051-8, 2006.
Lohmann, U., Lüönd, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, 1st Edn., Cambridge University Press,
Cambridge, UK, ISBN 978-1-107-01822-8, 2016.
Ma, Q., Liu, Y., Liu, C., Ma, J., and He, H.: A case study of Asian dust
storm particles: Chemical composition, reactivity to SO2 and
hygroscopic properties, J. Environ. Sci., 24, 62–71,
https://doi.org/10.1016/S1001-0742(11)60729-8, 2012.
Maki, L. R., Galyan, E. L., Chang-Chien, M.-M., and Caldwell, D. R.: Ice
nucleation induced by Pseudomonas syringae, Appl. Microbiol., 28, 456–459,
https://doi.org/10.1128/AEM.28.3.456-459.1974, 1974.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion
freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104,
https://doi.org/10.5194/acp-14-2071-2014, 2014.
Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B.: Efficiency of
immersion mode ice nucleation on surrogates of mineral dust, Atmos. Chem.
Phys., 7, 5081–5091, https://doi.org/10.5194/acp-7-5081-2007, 2007.
Min, Y., Kubicki, J. D., and Jun, Y.: Plagioclase dissolution during
CO2–SO2 cosequestration: Effects of sulfate, Environ. Sci.
Technol., 49, 1946–1954, https://doi.org/10.1021/es504586u, 2015.
Morris, C. E., Sands, D. C., Glaux, C., Samsatly, J., Asaad, S., Moukahel,
A. R., Gonçalves, F. L. T., and Bigg, E. K.: Urediospores of rust fungi
are ice nucleation active at >−10 ∘C and harbor ice
nucleation active bacteria, Atmos. Chem. Phys., 13, 4223–4233,
https://doi.org/10.5194/acp-13-4223-2013, 2013.
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.:
Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds
derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502–6509, https://doi.org/10.1002/2015GL064604, 2015.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chem. Soc.
Rev., 41, 6519–6554, doiI:10.1039/c2cs35200a, 2012.
Nagare, B., Marcolli, C., Welti, A., Stetzer, O., and Lohmann, U.: Comparing
contact and immersion freezing from continuous flow diffusion chambers,
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, 2016.
Oelkers, E. H. and Schott, J.: Experimental study of anorthite dissolution
and the relative mechanism of feldspar hydrolysis, Geochim. Cosmochim. Ac.,
59, 5039–5053, https://doi.org/10.1016/0016-7037(95)00326-6, 1995.
Oelkers, E. H., Golubev, S. V., Chairat, C., Pokrovsky, O. S., and Schott,
J.: The surface chemistry of multioxide silicates, Geochim. Cosmochim. Ac.,
73, 4617–4634, https://doi.org/10.1016/j.gca.2009.05.028, 2009.
O'Sullivan, D., Murray, B. J., Malkin, T. L., Whale, T. F., Umo, N. S.,
Atkinson, J. D., Price, H. C., Baustian, K. J., Browse, J., and Webb, M. E.:
Ice nucleation by fertile soil dusts: relative importance of mineral and
biogenic components, Atmos. Chem. Phys., 14, 1853-1867,
https://doi.org/10.5194/acp-14-1853-2014, 2014.
O'Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H. C.,
Atkinson, J. D., Umo, N. S., and Webb, M. E.: The relevance of nanoscale
biological fragments for ice nucleation in clouds, Sci. Rep., 5, 8082,
https://doi.org/10.1038/srep08082, 2015.
O'Sullivan, D., Murray, B. J., Ross, J. F., and Webb, M. E.: The adsorption
of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir
of atmospheric ice-nucleating particles, Atmos. Chem. Phys., 16, 7879–7887,
https://doi.org/10.5194/acp-16-7879-2016, 2016.
O'Sullivan, D., Adams, M. P., Tarn, M. D., Harrison, A. D., Vergara-Temprado, J., Porter, G. C. E., Holden, M. A., Sanchez-Marroquin, A., Carotenuto, F., Whale, T. F., McQuaid, J. B., Walshaw, R., Hedges, D. H. P., Burke, I. T., Cui, Z., and Murray, B. J.: Contributions of biogenic material
to the atmospheric ice-nucleating particle population in North Western
Europe, Sci. Rep., 8, 13821, https://doi.org/10.1038/s41598-018-31981-7, 2018.
Paramonov, M., David, R. O., Kretzschmar, R., and Kanji, Z. A.: A laboratory
investigation of the ice nucleation efficiency of three types of mineral and
soil dust, Atmos. Chem. Phys., 18, 16515–16536,
https://doi.org/10.5194/acp-18-16515-2018, 2018.
Peckhaus, A., Kiselev, A., Hiron, T., Ebert, M., and Leisner, T.: A
comparative study of K-rich and -rich feldspar icenucleating particles
in a nanoliter droplet freezing assay, Atmos. Chem. Phys., 16, 11477–11496,
https://doi.org/10.5194/acp-16-11477-2016, 2016.
Perkins, R. J., Gillette, S. M., Hill, T. C. J., and Demott, P. J.: The Labile
Nature of Ice Nucleation by Arizona Test Dust, ACS Earth Sp Chem., 4, 133–141,
https://doi.org/10.1021/acsearthspacechem.9b00304, 2020.
Pinti, V., Marcolli, C., Zobrist, B., Hoyle, C. R., and Peter, T.: Ice
nucleation efficiency of clay minerals in the immersion mode, Atmos. Chem.
Phys., 12, 5859–5878, https://doi.org/10.5194/acp-12-5859-2012, 2012.
Polen, M., Lawlis, E., and Sullivan, R. C.: The unstable ice nucleation
properties of Snomax® bacterial particles, J. Geophys.
Res.-Atmos., 121, 11666–11678, https://doi.org/10.1002/2016JD025251, 2016.
Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z.,Westphal, D. L.,
Heymsfield, A. J., Twohy, C. H., Prenni, A. J., and Prather, K. A.: In situ
detection of biological particles in cloud ice-crystals, Nat. Geosci., 2,
398–401, https://doi.org/10.1038/NGEO521, 2009.
Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.:
Suspendable macromolecules are responsible for ice nucleation activity of
birch and conifer pollen, Atmos. Chem. Phys.,12, 2541–2550,
https://doi.org/10.5194/acp-12-2541-2012, 2012.
Reid, E. A., Reid, J. S., Meier, M. M., Dunlap, M. R., Cliff, S S., Broumas,
A., Perry K., and Maring H.: Characterization of African dust transported to
Puerto Rico by individual particle and size segregated bulk analysis, J.
Geophys. Res., 108, 8591, https://doi.org/10.1029/2002JD002935, 2003.
Rigg, Y. J., Alpert, P. A., and Knopf, D. A.: Immersion freezing of water
and aqueous ammonium sulfate droplets initiated by humic-like substances as
a function of water activity, Atmos. Chem. Phys., 13, 6603–6622,
https://doi.org/10.5194/acp-13-6603-2013, 2013.
Sassen, K. and Dodd, G. C.: Homogeneous Nucleation Rate for Highly
Supercooled Cirrus Cloud Droplets, J. Atmos. Sci., 45, 1357–1369,
1987.
Schnell, R. C. and Vali, G.: Biogenic ice nuclei: Part I. Terrestrial and
marine sources, J. Atmos. Sci., 33, 1554–1564,
https://doi.org/10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2,
1976.
Shaw, R. A., Durant, A. J., and Mi, Y.: Heterogeneous surface
crystallization observed in undercooled water, J. Phys. Chem. B, 109,
9865–9868, https://doi.org/10.1021/jp0506336, 2005.
Speedy, R. J.: Thermodynamic properties of supercooled water at 1 atm, J.
Phys. Chem., 91, 3354–3358, https://doi.org/10.1021/j100296a049, 1987.
Steinke, I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo,
N. S., Weidler, P. G., Möhler, O., and Leisner, T.: Complex plant
derived organic aerosol as ice-nucleating particles – more than the sums of
their parts?, Atmos. Chem. Phys., 20, 11387–11397,
https://doi.org/10.5194/acp-20-11387-2020, 2020.
Stoessell, R. K. and Pittman, E. D.: Secondary porosity revisited: the
chemistry of feldspar dissolution by carboxylic acids and anions, AAPG, Bull., 74, 1795–1805, 1990.
Stopelli, E., Conen, F., Guilbaud, C., Zopfi, J., Alewell, C., and Morris,
C. E.: Ice nucleators, bacterial cells and Pseudomonas syringae in precipitation at
Jungfraujoch, Biogeosciences, 14, 1189–1196, https://doi.org/10.5194/bg-14-1189-2017,
2017.
Suski, K. J., Hill, T. C. J., Levin, E. J. T., Miller, A., DeMott, P. J.,
and Kreidenweis, S. M.: Agricultural harvesting emissions of ice-nucleating
particles, Atmos. Chem. Phys., 18, 13755–13771,
https://doi.org/10.5194/acp-18-13755-2018, 2018.
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of water with
mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation,
and ice nucleation, Chem. Rev., 116, 4205–4259,
https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Tobo, Y., DeMott, P. J., Raddatz, M., Niedermeier, D., Hartmann, S.,
Kreidenweis, S. M., Stratmann, F., and Wex, H.: Impacts of chemical
reactivity on ice nucleation of kaolinite particles: A case study of
levoglucosan and sulfuric acid, Geophys. Res. Lett., 39, L19803,
https://doi.org/10.1029/2012GL053007, 2012.
Tobo, Y., DeMott, P. J., Hill, T. C. J., Prenni, A. J., Swoboda-Colberg, N.
G., Franc, G. D., and Kreidenweis, S. M.: Organic matter matters for ice
nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521–8531,
https://doi.org/10.5194/acp-14-8521-2014, 2014.
Tobo, Y., Adachi, K., DeMott, P. J., Hill, T. C. J., Hamilton, D. S.,
Mahowald, N. M., Nagatsuka, N., Ohata, S., Uetake, J., Kondo, Y., and Koike,
M.: Glacially sourced dust as a potentially significant source of ice
nucleating particles, Nat. Geosci., 12, 253–258,
https://doi.org/10.1038/s41561-019-0314-x, 2019.
Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C.
J., Burrows, S. M., Kulkarni, G. R., Tanarhte, M., Kafle, D. N., and Toohey,
D. W.: Abundance of fluorescent biological aerosol particles at temperatures
conducive to the formation of mixed-phase and cirrus clouds, Atmos. Chem.
Phys., 16, 8205–8225, https://doi.org/10.5194/acp-16-8205-2016, 2016.
Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on mineral dust,
Chem. Rev., 103, 4883–4940, https://doi.org/10.1021/cr020657y, 2003.
Vali, G.: Interpretation of freezing nucleation experiments: singular and
stochastic; sites and surfaces, Atmos. Chem. Phys., 14, 5271–5294,
https://doi.org/10.5194/acp-14-5271-2014, 2014.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A
proposal for ice nucleation terminology, Atmos. Chem. Phys., 15,
10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vidyadhar, A. and Hanumantha Rao, K.: Adsorption mechanism of mixed
cationic/anionic collectors in feldspar-quartz flotation system, J. Colloid
Interface Sci., 306, 195–204, https://doi.org/10.1016/j.jcis.2006.10.047, 2007.
Wang, B. and Knopf, D. A.: Heterogeneous ice nucleation on particles
composed of humic-like substances impacted by O3, J. Geophys. Res.-Atmos.,
116, D03205, https://doi.org/10.1029/2010jd014964, 2011.
Welti, A., Lohmann, U., and Kanji, Z. A.: Ice nucleation properties of
K-feldspar polymorphs and plagioclase feldspars, Atmos. Chem. Phys., 19,
10901–10918, https://doi.org/10.5194/acp-19-10901-2019, 2019.
Wex, H., DeMott, P. J., Tobo, Y., Hartmann, S., Rösch, M., Clauss, T.,
Tomsche, L., Niedermeier, D., and Stratmann, F.: Kaolinite particles as ice
nuclei: learning from the use of different kaolinite samples and different
coatings, Atmos. Chem. Phys., 14, 5529– 5546, https://doi.org/10.5194/acp-14-5529-2014,
2014.
Whale, T. F., Holden, M. A., Kulak, A. N., Kim, Y.-Y., Meldrum, F. C.,
Christenson, H. K., and Murray, B. J.: The role of phase separation and
related topography in the exceptional ice-nucleating ability of alkali
feldspars, Phys. Chem. Chem. Phys., 19, 31186–31193,
https://doi.org/10.1039/C7CP04898J, 2017.
Whale, T. F., Holden, M. A., Wilson, T. W., O'Sullivan, D., and Murray, B. J.: The
enhancement and suppression of immersion mode heterogeneous ice-nucleation
by solutes, Chem. Sci., 9, 4142–4151, https://doi.org/10.1039/c8sc90139b, 2018.
Yun, J., Link, N., Kumar, A., Shchukarev, A., Davidson, J., Lam, A.,
Walters, C., Xi, Y., Boily, J.-F., and Bertram, A. K.: Surface composition
dependence on the ice nucleating ability of potassium-rich feldspar, ACS
Earth Sp. Chem., 4, 873–881, https://doi.org/10.1021/acsearthspacechem.0c00077, 2020.
Yun, J., Kumar A., Removski, N., Shchukarev, A., Link, N., Boily, J.-F., and
Bertram, A. K.: Effects of inorganic acids and organic solutes on the ice
nucleating ability and surface properties of potassium-rich feldspar, ACS
Earth Sp. Chem., 5, 1212–1222, https://doi.org/10.1021/acsearthspacechem.1c00034, 2021.
Zachariassen, K. E. and Kristiansen, E.: Ice nucleation and antinucleation
in Nature, Cryobiology, 41, 257–279, https://doi.org/10.1006/cryo.2000.2289, 2000.
Zobrist, B., Marcolli, C., Peter, T., and Koop, T.: Heterogeneous ice
nucleation in aqueous solutions: The role of water activity, J. Phys. Chem.
A, 112, 3965–3975, https://doi.org/10.1021/jp7112208, 2008a.
Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmospheric
aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–5244,
https://doi.org/10.5194/acp-8-5221-2008, 2008b.
Zolles, T., Burkart, J., Häusler, T., Pummer, B., Hitzenberger, R., and
Grothe, H.: Identification of ice nucleation active sites on feldspar dust
particles, J. Phys. Chem. A, 119, 2692–2700,
https://doi.org/10.1021/jp509839x, 2015.
Short summary
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral dust. Past studies revealed the sensitivity of microcline, one of the most ice-active types of dust in the atmosphere, to inorganic solutes. This study focuses on the interaction of microcline with bio-organic substances and the resulting effects on its ice nucleation activity. We observe strongly hampered ice nucleation activity due to the presence of carboxylic and amino acids but not for polyols.
Surface interactions with solutes can significantly alter the ice nucleation activity of mineral...
Altmetrics
Final-revised paper
Preprint