Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the Great Barrier Reef: a modelling study
ARC Centre of Excellence for Climate System Science and the Australian-German Climate and Energy College, University of Melbourne, Melbourne, Australia
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
now at: the Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Matthew T. Woodhouse
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Steve Utembe
Environmental Protection Authority Victoria, Macleod, Australia
Robyn Schofield
ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Australia
Simon P. Alexander
Australian Antarctic Division, Hobart, Australia
Joel Alroe
International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
Scott D. Chambers
Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
Zhenyi Chen
Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China
Luke Cravigan
International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
Erin Dunne
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Ruhi S. Humphries
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Graham Johnson
International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
Melita D. Keywood
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Todd P. Lane
ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Australia
Branka Miljevic
International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
Yuko Omori
Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
Alain Protat
Australian Bureau of Meteorology, Melbourne, Australia
Zoran Ristovski
International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
Paul Selleck
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Hilton B. Swan
Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
Hiroshi Tanimoto
Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
Jason P. Ward
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Alastair G. Williams
Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
Related authors
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
EGUsphere, https://doi.org/10.5194/egusphere-2023-531, https://doi.org/10.5194/egusphere-2023-531, 2023
Short summary
Short summary
This study uses XGBoost, a machine learning algorithm, to predict the simulated Southern Ocean shortwave radiation bias in the ACCESS model. We used cloud property biases within ACCESS as predictors, and can explain up to 55 % of the variance in the shortwave radiation bias. We then used a novel feature importance analysis to quantify the role that each cloud bias plays in predicting the radiative bias, laying the foundations for better understanding future developments of Earth System Models.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
EGUsphere, https://doi.org/10.5194/egusphere-2023-349, https://doi.org/10.5194/egusphere-2023-349, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation, and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. Cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using in-situ observations.
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021, https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Short summary
Coral reefs are known to produce the aerosol precursor dimethyl sulfide (DMS). Currently, this source of coral DMS is unaccounted for in climate modelling, and the impact of coral reef extinction on aerosol and climate is unknown. In this study, we address this problem using a coupled chemistry–climate model for the first time. We find that coral reefs make a minimal contribution to the aerosol population and are unlikely to play a role in climate modulation.
Sonya L. Fiddes, Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, https://doi.org/10.5194/acp-18-10177-2018, 2018
Short summary
Short summary
The role of natural aerosol in the climate system is uncertain. A key contributor to marine aerosol is dimethyl sulfide (DMS), released by phytoplankton in the oceans. We study the effect of DMS on clouds and rain using a climate model with a detailed aerosol scheme. We show that DMS acts to reduce rainfall in cloud deck regions, leading to longer lived clouds and a large impact on solar energy reaching the surface. Further study of these areas will improve future climate projections.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-161, https://doi.org/10.5194/amt-2023-161, 2023
Preprint under review for AMT
Short summary
Short summary
The manuscript addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilises a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regards.
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
EGUsphere, https://doi.org/10.5194/egusphere-2023-531, https://doi.org/10.5194/egusphere-2023-531, 2023
Short summary
Short summary
This study uses XGBoost, a machine learning algorithm, to predict the simulated Southern Ocean shortwave radiation bias in the ACCESS model. We used cloud property biases within ACCESS as predictors, and can explain up to 55 % of the variance in the shortwave radiation bias. We then used a novel feature importance analysis to quantify the role that each cloud bias plays in predicting the radiative bias, laying the foundations for better understanding future developments of Earth System Models.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
EGUsphere, https://doi.org/10.5194/egusphere-2023-349, https://doi.org/10.5194/egusphere-2023-349, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation, and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. Cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using in-situ observations.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2023-181, https://doi.org/10.5194/egusphere-2023-181, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Ben A. Cala, Scott Archer-Nicholls, James Weber, Nathan Luke Abraham, Paul T. Griffiths, Lorrie Jacob, Y. Matthew Shin, Laura E. Revell, Matthew Woodhouse, and Alexander T. Archibald
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-42, https://doi.org/10.5194/acp-2023-42, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
DMS is an important trace gas emitted from the ocean recognised as setting the sulfate aerosol background. But its oxidation is complex. As a result representation in chemistry-climate models is greatly simplified. We develop & compare a new mechanism to existing mechanisms via a series of global and box model experiments. Our global model studies show our updated DMS scheme is a significant improvement. However, sensitivity studies underscore need for further lab & observational constraints.
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
M. White, X. Huang, N. Langenheim, T. Yang, R. Schofield, M. Young, S. J. Livesley, S. Seneviratne, and M. Stevenson
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W3-2022, 269–276, https://doi.org/10.5194/isprs-annals-X-4-W3-2022-269-2022, https://doi.org/10.5194/isprs-annals-X-4-W3-2022-269-2022, 2022
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022, https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Short summary
Recent improvements to global parameterisations of oceanic ozone dry deposition and lightning-generated oxides of nitrogen (LNOx) have consequent impacts on earth's radiative fluxes. Uncertainty in radiative fluxes arising from uncertainty in LNOx is of significant magnitude in comparison with the
present-dayIPCC AR6 anthropogenic effective radiative forcing (ERF) due to ozone. Hence, uncertainty in LNOx needs to be explicitly addressed in relation to the GWP and ERF of anthropogenic methane.
Youwen Sun, Hao Yin, Wei Wang, Changgong Shan, Justus Notholt, Mathias Palm, Ke Liu, Zhenyi Chen, and Cheng Liu
Atmos. Meas. Tech., 15, 4819–4834, https://doi.org/10.5194/amt-15-4819-2022, https://doi.org/10.5194/amt-15-4819-2022, 2022
Short summary
Short summary
This study summarizes an overview of the status and perspective of GHG monitoring in China. This study not only improves our understanding with respect to the status, advances, and challenges of GHG monitoring in China but also presents an outlook for further improving GHG monitoring capacity in China.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Zhenyi Chen, Robyn Schofield, Melita Keywood, Sam Cleland, Alastair G. Williams, Alan Griffiths, Stephen Wilson, Peter Rayner, and Xiaowen Shu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-104, https://doi.org/10.5194/acp-2022-104, 2022
Revised manuscript not accepted
Short summary
Short summary
This study studied the marine boundary layer (MBL) process and aerosol properties in the Southern Ocean using miniMPL, ceilometer and sodar. Compared to the gradient method, the Image Edge Detection Algorithm provides more reliable boundary layer height estimations, especially when a convective MBL with stratification existed. The diurnal characteristic of BLH with the veering of the wind vector was also observed. Under the continental sources, the MBL maintained a well-mixed layer of 0.3 km.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Jack B. Simmons, Ruhi S. Humphries, Stephen R. Wilson, Scott D. Chambers, Alastair G. Williams, Alan D. Griffiths, Ian M. McRobert, Jason P. Ward, Melita D. Keywood, and Sean Gribben
Atmos. Chem. Phys., 21, 9497–9513, https://doi.org/10.5194/acp-21-9497-2021, https://doi.org/10.5194/acp-21-9497-2021, 2021
Short summary
Short summary
Aerosols have a climate forcing effect in the Earth's atmosphere. Few measurements exist of aerosols in the Southern Ocean, a region key to our understanding of this effect. In this study, aerosol measurements from a summer 2017 campaign in the East Antarctic seasonal ice zone are examined. Higher concentrations of aerosols were found in dry air with origins from above the Antarctic continent compared to other periods of the voyage.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys., 21, 7053–7082, https://doi.org/10.5194/acp-21-7053-2021, https://doi.org/10.5194/acp-21-7053-2021, 2021
Short summary
Short summary
Lightning-generated nitrogen oxides (LNOx) greatly influence tropospheric photochemistry. The most common parameterisation of lightning flash rate used to calculate LNOx in global composition models underestimates measurements over the ocean by a factor of 20–25. We formulate and validate an alternative parameterisation to remedy this problem. The new scheme causes an increase in the ozone burden by 8.5 % and the hydroxyl radical by 13 %, and these have implications for climate and air quality.
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021, https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Short summary
Coral reefs are known to produce the aerosol precursor dimethyl sulfide (DMS). Currently, this source of coral DMS is unaccounted for in climate modelling, and the impact of coral reef extinction on aerosol and climate is unknown. In this study, we address this problem using a coupled chemistry–climate model for the first time. We find that coral reefs make a minimal contribution to the aerosol population and are unlikely to play a role in climate modulation.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhance particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Robert G. Ryan, Jeremy D. Silver, Richard Querel, Dan Smale, Steve Rhodes, Matt Tully, Nicholas Jones, and Robyn Schofield
Atmos. Meas. Tech., 13, 6501–6519, https://doi.org/10.5194/amt-13-6501-2020, https://doi.org/10.5194/amt-13-6501-2020, 2020
Short summary
Short summary
Models have identified Australasia as a formaldehyde (HCHO) hotspot from vegetation sources, but few measurement studies exist to verify this. We compare, and find good agreement between, HCHO measurements using three – two ground-based and one satellite-based – different spectroscopic techniques in Australia and New Zealand. This gives confidence in using satellite observations to study HCHO and associated air chemistry and pollution problems in this under-studied part of the world.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Joel Alroe, Luke T. Cravigan, Branka Miljevic, Graham R. Johnson, Paul Selleck, Ruhi S. Humphries, Melita D. Keywood, Scott D. Chambers, Alastair G. Williams, and Zoran D. Ristovski
Atmos. Chem. Phys., 20, 8047–8062, https://doi.org/10.5194/acp-20-8047-2020, https://doi.org/10.5194/acp-20-8047-2020, 2020
Short summary
Short summary
We present findings from an austral summer voyage across the full latitudinal width of the Southern Ocean, south of Australia. Aerosol properties were strongly influenced by marine biological activity, synoptic-scale weather systems, and long-range transport of continental-influenced air masses. The meteorological history of the sampled air masses is shown to have a vital limiting influence on cloud condensation nuclei and the accuracy of modelled sea spray aerosol concentrations.
Luke T. Cravigan, Marc D. Mallet, Petri Vaattovaara, Mike J. Harvey, Cliff S. Law, Robin L. Modini, Lynn M. Russell, Ed Stelcer, David D. Cohen, Greg Olsen, Karl Safi, Timothy J. Burrell, and Zoran Ristovski
Atmos. Chem. Phys., 20, 7955–7977, https://doi.org/10.5194/acp-20-7955-2020, https://doi.org/10.5194/acp-20-7955-2020, 2020
Short summary
Short summary
Aerosol–cloud interactions in remote marine environments are poorly represented in atmospheric modelling, particularly over the Southern Hemisphere. This work reports in situ chamber observations of sea spray aerosol composition and water uptake during the Surface Ocean Aerosol Production (SOAP) voyage. Observations were compared with currently applied models for sea spray organic enrichment. The sea spray hygroscopicity was persistently high, even at high organic fractions.
Alain Protat and Ian McRobert
Atmos. Meas. Tech., 13, 3609–3620, https://doi.org/10.5194/amt-13-3609-2020, https://doi.org/10.5194/amt-13-3609-2020, 2020
Short summary
Short summary
Three-dimensional (3D) wind motions play a major role in driving the life cycle of clouds. In this pilot study we have developed a technique to measure the 3D winds in clouds, using a shipborne Doppler cloud radar on a stabilized platform. The stabilized platform is driven to point in a series of predefined directions to collect the required measurements. Comparisons with radiosondes demonstrate that accurate 1 min resolution 3D wind motions can be obtained from this instrumental setup.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Melita Keywood, Paul Selleck, Fabienne Reisen, David Cohen, Scott Chambers, Min Cheng, Martin Cope, Suzanne Crumeyrolle, Erin Dunne, Kathryn Emmerson, Rosemary Fedele, Ian Galbally, Rob Gillett, Alan Griffiths, Elise-Andree Guerette, James Harnwell, Ruhi Humphries, Sarah Lawson, Branka Miljevic, Suzie Molloy, Jennifer Powell, Jack Simmons, Zoran Ristovski, and Jason Ward
Earth Syst. Sci. Data, 11, 1883–1903, https://doi.org/10.5194/essd-11-1883-2019, https://doi.org/10.5194/essd-11-1883-2019, 2019
Short summary
Short summary
The Sydney Particle Study increased scientific knowledge of the processes leading to particle formation and transformations in Sydney through two comprehensive observation programs which are described in detail here. The data set and its analysis underpin comprehensive chemical transport modelling tools that can be used to assist in the development of a long-term control strategy for particles in Sydney and thus reduce the impact of particles on human health.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Short summary
We present a trajectory-based model for simulating the transport of air parcels by convection. Our model extends the approach of existing models by explicitly simulating vertical updraft velocities inside the clouds and the time that an air parcel spends inside the convective event.
Dafina Kikaj, Janja Vaupotič, and Scott D. Chambers
Atmos. Meas. Tech., 12, 4455–4477, https://doi.org/10.5194/amt-12-4455-2019, https://doi.org/10.5194/amt-12-4455-2019, 2019
Short summary
Short summary
A new method was developed to identify persistent temperature inversion events in a subalpine basin using a radon-based method (RBM). By comparing with an existing pseudo-vertical temperature gradient method, the RBM was shown to be more reliable and seasonally independent. The RBM has the potential to increase the understanding of meteorological controls on air pollution episodes in complex terrain beyond the capability of contemporary atmospheric stability classification tools.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Huang Yang, Darryn W. Waugh, Clara Orbe, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, Patrick Jöckel, Susan E. Strahan, Kane A. Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019, https://doi.org/10.5194/acp-19-5511-2019, 2019
Short summary
Short summary
We evaluate the performance of a suite of models in simulating the large-scale transport from the northern midlatitudes to the Arctic using a CO-like idealized tracer. We find a large multi-model spread of the Arctic concentration of this CO-like tracer that is well correlated with the differences in the location of the midlatitude jet as well as the northern Hadley Cell edge. Our results suggest the Hadley Cell is key and zonal-mean transport by surface meridional flow needs better constraint.
Reece A. Brown, Svetlana Stevanovic, Steven Bottle, and Zoran D. Ristovski
Atmos. Meas. Tech., 12, 2387–2401, https://doi.org/10.5194/amt-12-2387-2019, https://doi.org/10.5194/amt-12-2387-2019, 2019
Short summary
Short summary
The paper details the design and characterization of a novel instrument for the measurement of particle reactivity and potential bioactivity, the PINQ. It continuously collects particles, regardless of size or composition, directly into a very small amount of liquid with a collection efficiency of > 0.97 and a cut-off size of 20 nm. PINQ has the highest time resolution, of only 1 min, and is very sensitive to various reactive species from the air.
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019, https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Short summary
The Southern Ocean is a key sink of carbon dioxide (CO2), but efforts to study trends in and the variability of the sink have been hindered by the limited number of CO2 measurements in this region. Here we describe a set of new in situ continuous (minutely) atmospheric CO2 observations. We show that this new record better captures long-term changes and seasonality than traditional 2-weekly flask records. As such, this data set will provide key insights into the changing Southern Ocean sink.
Tommaso F. Villa, Reece A. Brown, E. Rohan Jayaratne, L. Felipe Gonzalez, Lidia Morawska, and Zoran D. Ristovski
Atmos. Meas. Tech., 12, 691–702, https://doi.org/10.5194/amt-12-691-2019, https://doi.org/10.5194/amt-12-691-2019, 2019
Short summary
Short summary
This research demonstrates the use of an unmanned aerial vehicle (UAV) to characterize the gaseous and diesel particle emissions of a ship at sea. The field study was part of the research voyage “The Great Barrier Reef as a significant source of climatically relevant aerosol particles” on board the RV Investigator around the Australian Great Barrier Reef. Measurements of the RV Investigator exhaust plume were carried out while the ship was operating at sea, at a steady engine load.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Robert C. Jackson, Scott M. Collis, Valentin Louf, Alain Protat, and Leon Majewski
Atmos. Chem. Phys., 18, 17687–17704, https://doi.org/10.5194/acp-18-17687-2018, https://doi.org/10.5194/acp-18-17687-2018, 2018
Short summary
Short summary
This paper looks at a 17 year database of echo top heights of thunderstorms in Darwin retrieved by CPOL. We find that the echo top heights are generally bimodal, corresponding to cumulus congestus and deep convection, and show a greater bimodality during an inactive MJO. Furthermore, we find that convective cell areas are larger in break conditions compared to monsoon conditions, but only during MJO-inactive conditions.
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Robert G. Ryan, Steve Rhodes, Matthew Tully, Stephen Wilson, Nicholas Jones, Udo Frieß, and Robyn Schofield
Atmos. Chem. Phys., 18, 13969–13985, https://doi.org/10.5194/acp-18-13969-2018, https://doi.org/10.5194/acp-18-13969-2018, 2018
Short summary
Short summary
Nitrous acid (HONO) plays a crucial role in the self-cleansing capacity of the atmosphere but its formation mechanisms and spatial distributions are not well understood. This paper presents spectroscopic measurements of HONO, NO2 and aerosol measurements from Melbourne, Australia. HONO levels are at a maximum in the middle of the day, which is unprecedented for an urban area, and these measurements provide evidence for the existence of a strong ground-based, daytime nitrogen oxide source.
Joel Alroe, Luke T. Cravigan, Marc D. Mallet, Zoran D. Ristovski, Branka Miljevic, Chiemeriwo G. Osuagwu, and Graham R. Johnson
Atmos. Meas. Tech., 11, 4361–4372, https://doi.org/10.5194/amt-11-4361-2018, https://doi.org/10.5194/amt-11-4361-2018, 2018
Short summary
Short summary
This study describes a new volatility-based method to directly examine the composition and corresponding hygroscopic contribution of mixed aerosol components. Measurements of chamber-generated secondary organic aerosol and coastal marine aerosol demonstrated effective separation of both internal and external mixtures. In each case, the findings enabled composition-based models to reliably reproduce observed particle hygroscopicities.
Sonya L. Fiddes, Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, https://doi.org/10.5194/acp-18-10177-2018, 2018
Short summary
Short summary
The role of natural aerosol in the climate system is uncertain. A key contributor to marine aerosol is dimethyl sulfide (DMS), released by phytoplankton in the oceans. We study the effect of DMS on clouds and rain using a climate model with a detailed aerosol scheme. We show that DMS acts to reduce rainfall in cloud deck regions, leading to longer lived clouds and a large impact on solar energy reaching the surface. Further study of these areas will improve future climate projections.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Ashok K. Luhar, Matthew T. Woodhouse, and Ian E. Galbally
Atmos. Chem. Phys., 18, 4329–4348, https://doi.org/10.5194/acp-18-4329-2018, https://doi.org/10.5194/acp-18-4329-2018, 2018
Short summary
Short summary
Dry deposition at the Earth’s surface is an important sink of atmospheric ozone. A new parameterisation for ozone dry deposition to the ocean that accounts for relevant chemical and physical processes is developed and tested. It results in an ocean deposition loss that is only about a third of the current model estimates and corresponds to an increase of 5 % in the tropospheric ozone burden. This is important for tropospheric ozone budget, associated radiative forcing, and ozone mixing ratios.
Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe
Atmos. Meas. Tech., 11, 1615–1637, https://doi.org/10.5194/amt-11-1615-2018, https://doi.org/10.5194/amt-11-1615-2018, 2018
Short summary
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.
Olaf Morgenstern, Kane A. Stone, Robyn Schofield, Hideharu Akiyoshi, Yousuke Yamashita, Douglas E. Kinnison, Rolando R. Garcia, Kengo Sudo, David A. Plummer, John Scinocca, Luke D. Oman, Michael E. Manyin, Guang Zeng, Eugene Rozanov, Andrea Stenke, Laura E. Revell, Giovanni Pitari, Eva Mancini, Glauco Di Genova, Daniele Visioni, Sandip S. Dhomse, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018, https://doi.org/10.5194/acp-18-1091-2018, 2018
Short summary
Short summary
We assess how ozone as simulated by a group of chemistry–climate models responds to variations in man-made climate gases and ozone-depleting substances. We find some agreement, particularly in the middle and upper stratosphere, but also considerable disagreement elsewhere. Such disagreement affects the reliability of future ozone projections based on these models, and also constitutes a source of uncertainty in climate projections using prescribed ozone derived from these simulations.
Erin Dunne, Ian E. Galbally, Min Cheng, Paul Selleck, Suzie B. Molloy, and Sarah J. Lawson
Atmos. Meas. Tech., 11, 141–159, https://doi.org/10.5194/amt-11-141-2018, https://doi.org/10.5194/amt-11-141-2018, 2018
Short summary
Short summary
A comparison of measurements of 7 volatile organic compounds (VOCs) in urban air by 3 different methods is presented. An uncertainty was calculated for each method and VOCs measured to provide some idea of the reliability of the data. Even when this uncertainty was accounted for, the measurements from the different methods did not agree for 4 of the 7 VOCs. Thus, there is unaccounted uncertainty in VOC measurements which must be considered when utilizing the data and assessing their reliability.
Chengzhi Xing, Cheng Liu, Shanshan Wang, Ka Lok Chan, Yang Gao, Xin Huang, Wenjing Su, Chengxin Zhang, Yunsheng Dong, Guangqiang Fan, Tianshu Zhang, Zhenyi Chen, Qihou Hu, Hang Su, Zhouqing Xie, and Jianguo Liu
Atmos. Chem. Phys., 17, 14275–14289, https://doi.org/10.5194/acp-17-14275-2017, https://doi.org/10.5194/acp-17-14275-2017, 2017
Short summary
Short summary
Vertical profiles of the aerosol extinction coefficient and NO2 and HCHO concentrations were retrieved from MAX-DOAS measurement, while vertical distribution of O3 was obtained using ozone lidar. The measured O3 vertical distribution indicates that the ozone production not only occurs at surface level but also at higher altitudes (about 1.1 km), which are not directly related to horizontal and vertical transportation but are mainly influenced by the abundance of VOCs in the lower troposphere.
Marc D. Mallet, Maximilien J. Desservettaz, Branka Miljevic, Andelija Milic, Zoran D. Ristovski, Joel Alroe, Luke T. Cravigan, E. Rohan Jayaratne, Clare Paton-Walsh, David W. T. Griffith, Stephen R. Wilson, Graham Kettlewell, Marcel V. van der Schoot, Paul Selleck, Fabienne Reisen, Sarah J. Lawson, Jason Ward, James Harnwell, Min Cheng, Rob W. Gillett, Suzie B. Molloy, Dean Howard, Peter F. Nelson, Anthony L. Morrison, Grant C. Edwards, Alastair G. Williams, Scott D. Chambers, Sylvester Werczynski, Leah R. Williams, V. Holly L. Winton, Brad Atkinson, Xianyu Wang, and Melita D. Keywood
Atmos. Chem. Phys., 17, 13681–13697, https://doi.org/10.5194/acp-17-13681-2017, https://doi.org/10.5194/acp-17-13681-2017, 2017
Short summary
Short summary
Fires play an important role within atmosphere. Gaseous and aerosol emissions influence Earth's temperature but these emissions can vary drastically across region and season. The SAFIRED (Savannah Fires in the Early Dry Season) campaign was undertaken at the Australian Tropical Research Station in north Australia during the 2014 early dry season. This paper presents an overview of the fires in this region, the measurements of their emissions and the implications of these fires on the atmosphere.
Cliff S. Law, Murray J. Smith, Mike J. Harvey, Thomas G. Bell, Luke T. Cravigan, Fiona C. Elliott, Sarah J. Lawson, Martine Lizotte, Andrew Marriner, John McGregor, Zoran Ristovski, Karl A. Safi, Eric S. Saltzman, Petri Vaattovaara, and Carolyn F. Walker
Atmos. Chem. Phys., 17, 13645–13667, https://doi.org/10.5194/acp-17-13645-2017, https://doi.org/10.5194/acp-17-13645-2017, 2017
Short summary
Short summary
We carried out a multidisciplinary study to examine how aerosol production is influenced by the production and emission of trace gases and particles in the surface ocean. Phytoplankton blooms of different species composition in frontal waters southeast of New Zealand were a significant source of dimethylsulfide and other aerosol precursors. The relationships between surface ocean biogeochemistry and aerosol composition will inform the understanding of aerosol production over the remote ocean.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Dean Howard, Peter F. Nelson, Grant C. Edwards, Anthony L. Morrison, Jenny A. Fisher, Jason Ward, James Harnwell, Marcel van der Schoot, Brad Atkinson, Scott D. Chambers, Alan D. Griffiths, Sylvester Werczynski, and Alastair G. Williams
Atmos. Chem. Phys., 17, 11623–11636, https://doi.org/10.5194/acp-17-11623-2017, https://doi.org/10.5194/acp-17-11623-2017, 2017
Short summary
Short summary
Mercury, a toxic metal, can be transported globally through the atmosphere, with deposition to ecosystems an important pathway to human exposure. 2 years of atmospheric mercury monitoring in tropical Australia supports recent evidence that Southern Hemisphere concentrations are lower than previously thought. Exchange between the atmosphere and ecosystems can take place on daily scales, with night deposition offset by morning re-emission. This could be an important transport pathway for mercury.
Jesse W. Greenslade, Simon P. Alexander, Robyn Schofield, Jenny A. Fisher, and Andrew K. Klekociuk
Atmos. Chem. Phys., 17, 10269–10290, https://doi.org/10.5194/acp-17-10269-2017, https://doi.org/10.5194/acp-17-10269-2017, 2017
Short summary
Short summary
An analysis of data from ozonesondes released at three southern oceanic sites shows the impact of stratospheric ozone in this region. Using a novel method of transport classification, this work estimates the seasonality and quantity of stratospherically sourced ozone. We find that ozone is transported most frequently in summer due to regional-scale low-pressure weather systems. We also estimate a stratospheric ozone source of 2.0–3.3 Tg/year over three Southern Ocean regions.
McKenna W. Stanford, Adam Varble, Ed Zipser, J. Walter Strapp, Delphine Leroy, Alfons Schwarzenboeck, Rodney Potts, and Alain Protat
Atmos. Chem. Phys., 17, 9599–9621, https://doi.org/10.5194/acp-17-9599-2017, https://doi.org/10.5194/acp-17-9599-2017, 2017
Short summary
Short summary
Radar reflectivity is a valuable observational tool used to guide numerical weather model improvement. Biases in simulated reflectivity help identify potential errors in physical process and property representation in models. This study uniquely compares simulated and observed tropical convective systems to establish that a commonly documented high bias in radar reflectivity values at least partially results from the production of simulated ice particle sizes that are larger than observed.
Clare Paton-Walsh, Élise-Andrée Guérette, Dagmar Kubistin, Ruhi Humphries, Stephen R. Wilson, Doreena Dominick, Ian Galbally, Rebecca Buchholz, Mahendra Bhujel, Scott Chambers, Min Cheng, Martin Cope, Perry Davy, Kathryn Emmerson, David W. T. Griffith, Alan Griffiths, Melita Keywood, Sarah Lawson, Suzie Molloy, Géraldine Rea, Paul Selleck, Xue Shi, Jack Simmons, and Voltaire Velazco
Earth Syst. Sci. Data, 9, 349–362, https://doi.org/10.5194/essd-9-349-2017, https://doi.org/10.5194/essd-9-349-2017, 2017
Short summary
Short summary
The MUMBA campaign provides a detailed snapshot of the atmospheric composition in an urban coastal environment with strong biogenic sources nearby. This campaign involved collaboration between several institutes and was undertaken to provide a case study for atmospheric models in a poorly sampled region of the globe.
Dominik Schmithüsen, Scott Chambers, Bernd Fischer, Stefan Gilge, Juha Hatakka, Victor Kazan, Rolf Neubert, Jussi Paatero, Michel Ramonet, Clemens Schlosser, Sabine Schmid, Alex Vermeulen, and Ingeborg Levin
Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, https://doi.org/10.5194/amt-10-1299-2017, 2017
Short summary
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.
John L. Gras and Melita Keywood
Atmos. Chem. Phys., 17, 4419–4432, https://doi.org/10.5194/acp-17-4419-2017, https://doi.org/10.5194/acp-17-4419-2017, 2017
Short summary
Short summary
Long-term observations at regionally representative sites can be used to challenge regional or global numerical models that underpin climate projections. Analysis of multi-decadal observations of aerosol microphysical properties in the remote marine boundary layer of the Southern Hemisphere characterises production and removal of marine aerosol on both short-term weather-related and underlying seasonal scales.
Andelija Milic, Marc D. Mallet, Luke T. Cravigan, Joel Alroe, Zoran D. Ristovski, Paul Selleck, Sarah J. Lawson, Jason Ward, Maximilien J. Desservettaz, Clare Paton-Walsh, Leah R. Williams, Melita D. Keywood, and Branka Miljevic
Atmos. Chem. Phys., 17, 3945–3961, https://doi.org/10.5194/acp-17-3945-2017, https://doi.org/10.5194/acp-17-3945-2017, 2017
Short summary
Short summary
This study reports chemical characterization of fresh and processed aerosols sampled over a month-long field campaign, during the intense fire period in Australian tropical savannah region. The study illustrates diversity in fire emissions and importance of processed fire emissions and formation of secondary species, including biogenic secondary species, in northern Australia.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Marcus Thatcher
Atmos. Chem. Phys., 17, 3749–3767, https://doi.org/10.5194/acp-17-3749-2017, https://doi.org/10.5194/acp-17-3749-2017, 2017
Short summary
Short summary
Dry deposition of tropospheric ozone relates to its destruction at the Earth’s surface. An improved model scheme for such deposition to the ocean is formulated backed up by field data. It results in the oceanic dry deposition of ozone to be 12 % of the global total, which is much lower than the current model estimate of about 30 %. This result has implications for modelling global tropospheric ozone budget and its radiative forcing, and ozone mixing ratios, especially in the Southern Hemisphere.
Marc D. Mallet, Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic
Atmos. Chem. Phys., 17, 3605–3617, https://doi.org/10.5194/acp-17-3605-2017, https://doi.org/10.5194/acp-17-3605-2017, 2017
Short summary
Short summary
This paper presents data on the size, composition and concentration of aerosol particles emitted from north Australian savannah fires and how these properties influence cloud condensation nuclei (CCN) concentrations. Both the size and composition of aerosol were found to be important in determining CCN. Despite large CCNc enhancements during periods of close biomass burning, the aerosol was very weakly hygroscopic which should be accounted for in climate models to avoid large CCNc overestimates.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Hilton B. Swan, Graham B. Jones, Elisabeth S. M. Deschaseaux, and Bradley D. Eyre
Biogeosciences, 14, 229–239, https://doi.org/10.5194/bg-14-229-2017, https://doi.org/10.5194/bg-14-229-2017, 2017
Short summary
Short summary
We measured the sulfur gas dimethylsulfide (DMS) in marine air at a coral cay on the Great Barrier Reef. DMS is well known to be released from the world's oceans, but environmental evidence of coral reefs releasing DMS has not been clearly demonstrated. We showed the coral reef can sometimes release DMS to the air, which was seen as spikes above the DMS released from the ocean. The DMS from the reef supplements the DMS from the ocean to assist formation of clouds that influence local climate.
Farhad Salimi, Md. Mahmudur Rahman, Sam Clifford, Zoran Ristovski, and Lidia Morawska
Atmos. Chem. Phys., 17, 521–530, https://doi.org/10.5194/acp-17-521-2017, https://doi.org/10.5194/acp-17-521-2017, 2017
V. Holly L. Winton, Ross Edwards, Andrew R. Bowie, Melita Keywood, Alistair G. Williams, Scott D. Chambers, Paul W. Selleck, Maximilien Desservettaz, Marc D. Mallet, and Clare Paton-Walsh
Atmos. Chem. Phys., 16, 12829–12848, https://doi.org/10.5194/acp-16-12829-2016, https://doi.org/10.5194/acp-16-12829-2016, 2016
Short summary
Short summary
The deposition of soluble aerosol iron (Fe) can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from northern Australia that reflect coincident dust and biomass burning sources of soluble Fe. Our results show that while biomass burning species are not a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust with fractional Fe solubility up to 12 % in mixed aerosols.
E. N. Koffi, P. Bergamaschi, U. Karstens, M. Krol, A. Segers, M. Schmidt, I. Levin, A. T. Vermeulen, R. E. Fisher, V. Kazan, H. Klein Baltink, D. Lowry, G. Manca, H. A. J. Meijer, J. Moncrieff, S. Pal, M. Ramonet, H. A. Scheeren, and A. G. Williams
Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, https://doi.org/10.5194/gmd-9-3137-2016, 2016
Short summary
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
Alan D. Griffiths, Scott D. Chambers, Alastair G. Williams, and Sylvester Werczynski
Atmos. Meas. Tech., 9, 2689–2707, https://doi.org/10.5194/amt-9-2689-2016, https://doi.org/10.5194/amt-9-2689-2016, 2016
Short summary
Short summary
Surface-based two-filter radon detectors monitor the ambient concentration of atmospheric radon-222, a natural tracer of mixing and transport. They are sensitive, but respond slowly to ambient changes in radon concentration. In this paper, a deconvolution method is used to successfully correct observations for the instrument response. Case studies demonstrate that it is beneficial, sometimes necessary, to account for the detector response, especially when studying near-surface mixing.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Muhammad E. E. Hassim, W. W. Grabowski, and T. P. Lane
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-402, https://doi.org/10.5194/acp-2016-402, 2016
Revised manuscript not accepted
Short summary
Short summary
Model simulations show that there is more surface rainfall, less shallow clouds below 3 km and more deep clouds above 9 km in pristine air conditions than in a polluted environment, contrary to previous studies. This is due to more efficient rain processes below the freezing level, enhanced ice growth above and the off-loading of precipitation that increases cloud buoyancy aloft. Our results demonstrate that microphysical effects dominate the aerosol impact on rainfall more than cloud dynamics.
Holly Winton, Andrew Bowie, Melita Keywood, Pier van der Merwe, and Ross Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-12, https://doi.org/10.5194/amt-2016-12, 2016
Revised manuscript not accepted
Short summary
Short summary
Aerosols containing iron have been investigated over the remote Southern Ocean to constrain iron budgets in surface waters and related biological production. Protocols for the sampling of ambient air were used to assess the suitability of high-volume aerosol samplers for aerosol iron studies in pristine air masses. Significant evidence of airborne insect and local soil contamination was detected in exposure blank filters. Suggestions for future aerosol iron sampling in clean air are provided.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
R. S. Humphries, A. R. Klekociuk, R. Schofield, M. Keywood, J. Ward, and S. R. Wilson
Atmos. Chem. Phys., 16, 2185–2206, https://doi.org/10.5194/acp-16-2185-2016, https://doi.org/10.5194/acp-16-2185-2016, 2016
Short summary
Short summary
This work represents the first observational study of atmospheric sub-micron aerosols in the East Antarctic pack ice region and found springtime aerosol concentrations were higher than any observed elsewhere in the Antarctic and Southern Ocean region. Further analysis suggested these aerosols formed in the Antarctic free troposphere. Their subsequent transport to the Southern Ocean, as suggest by trajectory analyses, could help to reduce the discrepancy in the radiative budget in the region.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
M. E. E. Hassim, T. P. Lane, and W. W. Grabowski
Atmos. Chem. Phys., 16, 161–175, https://doi.org/10.5194/acp-16-161-2016, https://doi.org/10.5194/acp-16-161-2016, 2016
Short summary
Short summary
Gravity waves from deep convection along with terrain and coastal effects control the development and movement of squall lines that affect the diurnal cycle of rainfall over New Guinea and its northern coast. Days with offshore propagating systems are governed by background conditions (more mid-tropospheric moisture, CAPE, and low-level convergence) as opposed to days without offshore propagation. Our results shed some light on the physics and dynamics of Maritime Continent organised convection
F. Salimi, L. R. Crilley, S. Stevanovic, Z. Ristovski, M. Mazaheri, C. He, G. Johnson, G. Ayoko, and L. Morawska
Atmos. Chem. Phys., 15, 13475–13485, https://doi.org/10.5194/acp-15-13475-2015, https://doi.org/10.5194/acp-15-13475-2015, 2015
S. J. Lawson, M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, P. J. Fraser, L. P. Steele, S. T. Bentley, C. P. Meyer, Z. Ristovski, and A. H. Goldstein
Atmos. Chem. Phys., 15, 13393–13411, https://doi.org/10.5194/acp-15-13393-2015, https://doi.org/10.5194/acp-15-13393-2015, 2015
Short summary
Short summary
Biomass burning (BB) plumes were opportunistically measured at the Cape Grim Baseline Station in Tasmania, Australia. We provide a unique set of trace gas and particle emission factors for temperate Australian coastal heathland fires, and attribute a major short-lived enhancement in emission ratios to a minor rainfall event. The ability of BB particles to act as cloud condensation nuclei, and the contribution of BB emissions to observed particle growth and ozone enhancements are discussed.
R. S. Humphries, R. Schofield, M. D. Keywood, J. Ward, J. R. Pierce, C. M. Gionfriddo, M. T. Tate, D. P. Krabbenhoft, I. E. Galbally, S. B. Molloy, A. R. Klekociuk, P. V. Johnston, K. Kreher, A. J. Thomas, A. D. Robinson, N. R. P. Harris, R. Johnson, and S. R. Wilson
Atmos. Chem. Phys., 15, 13339–13364, https://doi.org/10.5194/acp-15-13339-2015, https://doi.org/10.5194/acp-15-13339-2015, 2015
Short summary
Short summary
An atmospheric new particle formation event that was observed in the pristine East Antarctic pack ice during a springtime voyage in 2012 is characterised in terms of formation and growth rates. Known nucleation mechanisms (e.g. those involving sulfate, iodine and organics) were unable to explain observations; however, correlations with total gaseous mercury were found, leading to the suggestion of a possible mercury-driven nucleation mechanism not previously described.
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
A. M. Pourkhesalian, S. Stevanovic, M. M. Rahman, E. M. Faghihi, S. E. Bottle, A. R. Masri, R. J. Brown, and Z. D. Ristovski
Atmos. Chem. Phys., 15, 9099–9108, https://doi.org/10.5194/acp-15-9099-2015, https://doi.org/10.5194/acp-15-9099-2015, 2015
Short summary
Short summary
This study investigates the effects of biodiesel's chemical composition on the volatility and reactive oxygenate species of fresh and aged diesel particulate matter.
Using a potential aerosol mass chamber, changes of volatility and reactive oxygenated species are studied. The study concludes that more saturated and more oxygenated diesel fuels can cause more volatile particles carrying more reactive oxygenated species whether before or after aging.
W. Frey, R. Schofield, P. Hoor, D. Kunkel, F. Ravegnani, A. Ulanovsky, S. Viciani, F. D'Amato, and T. P. Lane
Atmos. Chem. Phys., 15, 6467–6486, https://doi.org/10.5194/acp-15-6467-2015, https://doi.org/10.5194/acp-15-6467-2015, 2015
Short summary
Short summary
This study examines the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system, using the WRF model. Passive tracers are initialised to study the impact of the deep convection on the tracers and water vapour. We use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.
F. Slemr, H. Angot, A. Dommergue, O. Magand, M. Barret, A. Weigelt, R. Ebinghaus, E.-G. Brunke, K. A. Pfaffhuber, G. Edwards, D. Howard, J. Powell, M. Keywood, and F. Wang
Atmos. Chem. Phys., 15, 3125–3133, https://doi.org/10.5194/acp-15-3125-2015, https://doi.org/10.5194/acp-15-3125-2015, 2015
Short summary
Short summary
• Longer-term mercury measurement in the Southern Hemisphere is compared.
• Mercury, in terms of monthly and annual medians and averages, is more evenly distributed than hitherto believed.
• Consequently, trends observed at one or a few sites are likely to be representative of the whole hemisphere, and smaller trends can be detected in shorter time periods.
• We report a change in the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing ones since 2007.
R. Schofield, L. M. Avallone, L. E. Kalnajs, A. Hertzog, I. Wohltmann, and M. Rex
Atmos. Chem. Phys., 15, 2463–2472, https://doi.org/10.5194/acp-15-2463-2015, https://doi.org/10.5194/acp-15-2463-2015, 2015
Short summary
Short summary
Ozone measurements onboard three Concordiasi balloons flown in the stratosphere in
the Antarctic spring of 2010 are presented. These measurements are the first long-duration in situ measurements of Antarctic springtime stratospheric ozone. By matching air parcels, ozone loss rates where derived. Downwind of the Antarctic Peninsula, very large ozone losses of up to 230 ppb per day or 16 ppbv per sunlit hour were observed. These high rates are consistent with almost complete chlorine activation.
K. Stone, M. B. Tully, S. K. Rhodes, and R. Schofield
Atmos. Meas. Tech., 8, 1043–1053, https://doi.org/10.5194/amt-8-1043-2015, https://doi.org/10.5194/amt-8-1043-2015, 2015
R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams
Geosci. Model Dev., 8, 129–150, https://doi.org/10.5194/gmd-8-129-2015, https://doi.org/10.5194/gmd-8-129-2015, 2015
S. D. Chambers, A. G. Williams, J. Crawford, and A. D. Griffiths
Atmos. Chem. Phys., 15, 1175–1190, https://doi.org/10.5194/acp-15-1175-2015, https://doi.org/10.5194/acp-15-1175-2015, 2015
Z. M. Loh, R. M. Law, K. D. Haynes, P. B. Krummel, L. P. Steele, P. J. Fraser, S. D. Chambers, and A. G. Williams
Atmos. Chem. Phys., 15, 305–317, https://doi.org/10.5194/acp-15-305-2015, https://doi.org/10.5194/acp-15-305-2015, 2015
Short summary
Short summary
The paper compares methane observations at Cape Grim, Tasmania, with model-simulated methane to better constrain methane fluxes from southeastern Australia. Inventory estimates of anthropogenic methane emissions appear to be supported by observed atmospheric methane. A missing methane source in springtime (October to November) is tentatively attributed to wetland emissions.
S. J. Lawson, P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski
Atmos. Chem. Phys., 15, 223–240, https://doi.org/10.5194/acp-15-223-2015, https://doi.org/10.5194/acp-15-223-2015, 2015
Short summary
Short summary
Glyoxal and methylglyoxal are short-lived organic trace gases and important precursors of secondary organic aerosol. Measurements over oceans are sparse. We present the first in situ glyoxal and methylglyoxal observations over remote temperate oceans, alongside observations of precursor gases. Precursor gases cannot explain observed mixing ratios, highlighting an unknown source. We show a large discrepancy between calculated vertical column densities of glyoxal and those retrieved by satellite.
A. D. Griffiths, F. Conen, E. Weingartner, L. Zimmermann, S. D. Chambers, A. G. Williams, and M. Steinbacher
Atmos. Chem. Phys., 14, 12763–12779, https://doi.org/10.5194/acp-14-12763-2014, https://doi.org/10.5194/acp-14-12763-2014, 2014
Short summary
Short summary
Radon detectors at Bern and Jungfraujoch were used to monitor the transport of radon-rich boundary layer air from the Swiss Plateau to the Alpine ridge. Radon was successfully used to discriminate between different types of vertical transport, using the shape of the diurnal cycle to identify days with upslope mountain winds. For many air-mass properties, however, the total land-surface influence (indicated by the radon concentration) was more decisive than the type of vertical transport.
F. Salimi, Z. Ristovski, M. Mazaheri, R. Laiman, L. R. Crilley, C. He, S. Clifford, and L. Morawska
Atmos. Chem. Phys., 14, 11883–11892, https://doi.org/10.5194/acp-14-11883-2014, https://doi.org/10.5194/acp-14-11883-2014, 2014
T. P. C. van Noije, P. Le Sager, A. J. Segers, P. F. J. van Velthoven, M. C. Krol, W. Hazeleger, A. G. Williams, and S. D. Chambers
Geosci. Model Dev., 7, 2435–2475, https://doi.org/10.5194/gmd-7-2435-2014, https://doi.org/10.5194/gmd-7-2435-2014, 2014
S. D. Chambers, S.-B. Hong, A. G. Williams, J. Crawford, A. D. Griffiths, and S.-J. Park
Atmos. Chem. Phys., 14, 9903–9916, https://doi.org/10.5194/acp-14-9903-2014, https://doi.org/10.5194/acp-14-9903-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
M. T. Woodhouse, G. W. Mann, K. S. Carslaw, and O. Boucher
Atmos. Chem. Phys., 13, 2723–2733, https://doi.org/10.5194/acp-13-2723-2013, https://doi.org/10.5194/acp-13-2723-2013, 2013
A. D. Griffiths, S. D. Parkes, S. D. Chambers, M. F. McCabe, and A. G. Williams
Atmos. Meas. Tech., 6, 207–218, https://doi.org/10.5194/amt-6-207-2013, https://doi.org/10.5194/amt-6-207-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The underappreciated role of transboundary pollution in future air quality and health improvements in China
The export of African mineral dust across the Atlantic and its impact over the Amazon Basin
Assimilation of POLDER observations to estimate aerosol emissions
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia
Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing
Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon
Superimposed effects of typical local circulations driven by mountainous topography and aerosol–radiation interaction on heavy haze in the Beijing–Tianjin–Hebei central and southern plains in winter
Multi-model ensemble projection of the global dust cycle by the end of 21st century using the Coupled Model Intercomparison Project version 6 data
A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Change from aerosol-driven to cloud-feedback-driven trend in short-wave radiative flux over the North Atlantic
A new process-based and scale-aware desert dust emission scheme for global climate models – Part I: Description and evaluation against inverse modeling emissions
Biomass-burning smoke properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns
Transported aerosols regulate the pre-monsoon rainfall over north-east India: a WRF-Chem modelling study
Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model
Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
Air pollution trapping in the Dresden Basin induced by natural and urban topography
Model-based insights into aerosol perturbation on pristine continental convective precipitation
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Local and remote climate impacts of future African aerosol emissions
The dependence of aerosols' global and local precipitation impacts on the emitting region
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Aggravated air pollution and health burden due to traffic congestion in urban China
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations
Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
The Impact of Aerosols on the Stratiform Clouds over southern West Africa: A Large-Eddy Simulation Study
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires
Where does the dust deposited over the Sierra Nevada snow come from?
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Dust pollution in China affected by different spatial and temporal types of El Niño
An improved representation of aerosol mixing state for air quality–weather interactions
Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Athanasios Tsikerdekis, Otto P. Hasekamp, Nick A. J. Schutgens, and Qirui Zhong
Atmos. Chem. Phys., 23, 9495–9524, https://doi.org/10.5194/acp-23-9495-2023, https://doi.org/10.5194/acp-23-9495-2023, 2023
Short summary
Short summary
Aerosols are tiny particles of different substances (species) that can be emitted into the atmosphere by natural processes or by anthropogenic activities. However, the actual aerosol emission amount per species is highly uncertain. Thus in this work we correct the aerosol emissions used to drive a global aerosol–climate model using satellite observations through a process called data assimilation. These more accurate aerosol emissions can lead to a more accurate weather and climate prediction.
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364, https://doi.org/10.5194/acp-23-9347-2023, https://doi.org/10.5194/acp-23-9347-2023, 2023
Short summary
Short summary
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on pollutant concentrations than aerosol processes (18 %). Additionally, our results showed that with solar radiation included, pollutant concentrations were closer to observations (−13 %) than with only aerosol processes (+98 %). This has implications when planning simulations under calm conditions such as in our case and when deciding whether or not simulations need to include these processes.
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Yue Peng, Hong Wang, Xiaoye Zhang, Zhaodong Liu, Wenjie Zhang, Siting Li, Chen Han, and Huizheng Che
Atmos. Chem. Phys., 23, 8325–8339, https://doi.org/10.5194/acp-23-8325-2023, https://doi.org/10.5194/acp-23-8325-2023, 2023
Short summary
Short summary
This study demonstrates a strong link between local circulation, aerosol–radiation interaction (ARI), and haze pollution. Under the weak weather-scale systems, the typical local circulation driven by mountainous topography is the main cause of pollutant distribution in the Beijing–Tianjin–Hebei region, and the ARI mechanism amplifies this influence of local circulation on pollutants, making haze pollution aggravated by the superposition of both.
Yuan Zhao, Xu Yue, Yang Cao, Jun Zhu, Chenguang Tian, Hao Zhou, Yuwen Chen, Yihan Hu, Weijie Fu, and Xu Zhao
Atmos. Chem. Phys., 23, 7823–7838, https://doi.org/10.5194/acp-23-7823-2023, https://doi.org/10.5194/acp-23-7823-2023, 2023
Short summary
Short summary
We project the future changes of dust emissions and loading using an ensemble of model outputs from the Coupled Model Intercomparison Project version 6 under four scenarios. We find increased dust emissions and loading in North Africa, due to increased drought and strengthened surface wind, and decreased dust loading over Asia, following enhanced precipitation. Such a spatial pattern remains similar, though the regional intensity varies among different scenarios.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023, https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Daniel P. Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys., 23, 6743–6773, https://doi.org/10.5194/acp-23-6743-2023, https://doi.org/10.5194/acp-23-6743-2023, 2023
Short summary
Short summary
We determine what causes long-term trends in short-wave (SW) radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol, and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute to changes in clouds caused by greenhouse gas-induced warming.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Nicole Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg McFarquhar, Jens Redemann, Arther J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
EGUsphere, https://doi.org/10.5194/egusphere-2023-886, https://doi.org/10.5194/egusphere-2023-886, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare WRF-CAM5 with observations from ORACLES, CLARIFY, and LASIC field campaigns in the Southeastern Atlantic in August 2017. The model transports and mixes smoke well but is not fully capturing some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, new particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Neeldip Barman and Sharad Gokhale
Atmos. Chem. Phys., 23, 6197–6215, https://doi.org/10.5194/acp-23-6197-2023, https://doi.org/10.5194/acp-23-6197-2023, 2023
Short summary
Short summary
The study shows that during the pre-monsoon season transported aerosols, especially from the Indo-Gangetic Plain (IGP), have a greater impact with respect to air pollution, radiative forcing and rainfall over north-east (NE) India than emissions from within NE India itself. Hence, controlling emissions in the IGP will be significantly more fruitful in reducing pollution as well as climatic impacts over this region.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 23, 5993–6009, https://doi.org/10.5194/acp-23-5993-2023, https://doi.org/10.5194/acp-23-5993-2023, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, accounting for long-range interactions. The model is verified against atomistic simulations of typical acid–base clusters participating in atmospheric new particle formation (NPF). Compared to non-interacting models, accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such interactions in NPF modeling.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Michael Weger and Bernd Heinold
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-33, https://doi.org/10.5194/acp-2023-33, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
This study investigates the effects of complex terrain on air pollution trapping using a numerical model, which simulates the dispersion of emissions under real meteorological conditions. The additionally simulated aerosol age allows distinguishing areas that accumulate aerosol over time from the areas that are more influenced by fresh emissions. The Dresden Basin, a widened section of the Elbe Valley in eastern Germany, is selected as the target area in a case study to demonstrate the concept.
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023, https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
Short summary
Relatively clean background aerosol over the Tibetan Plateau makes the study of aerosol–cloud–precipitation interactions distinctive. A convection on 24 July 2014 in Naqu was selected using the Weather Research Forecasting (WRF) model, including the Thompson aerosol-aware microphysical scheme. Our study uses a compromise approach to the limited observations. We show that the transformation of cloud water to graupel and the development of convective clouds are favored in a polluted situation.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023, https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Short summary
Human-induced aerosol pollution has major impacts on both local and global precipitation. This study demonstrates using a global climate model that both the strength and localization of aerosols' precipitation impacts are highly dependent on which region the aerosols are emitted from. The findings highlight that the geographic distribution of human-induced aerosol emissions must be accounted for when quantifying their influence on global precipitation.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2023-317, https://doi.org/10.5194/egusphere-2023-317, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFP) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry climate model, and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° x 0.1°.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-856, https://doi.org/10.5194/acp-2022-856, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Low-Level Stratiform Clouds (LLSC) appear frequently over southern West Africa and during West African Monsoon local and remote aerosol sources (biomass burning aerosol from Central Africa) play a significant role in LLSC life cycle. Based on measurements of DACCIWA campaign, Large Eddy Simulations (LES) were driven using different aerosols scenarios showing indirect effect depends on microphysics and cloud-void spaces. Absorbing particles produced a strong semi-direct effect stabilizing clouds.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-818, https://doi.org/10.5194/acp-2022-818, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Although the temporal-scale effects on Meteorology-PM2.5 associations have been discussed, no quantitative evidence proved this before. Based on a rare 3 h-meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scale presented large variations. This research suggested that data sources of different temporal scales should be comprehensively considered for better attribution and prevention airborne pollution.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2.
Multiple aerosol types, J. Geophys. Res.-Atmos., 105,
6837–6844, https://doi.org/10.1029/1999JD901161, 2000. a
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3.
Sectional representation, J. Geophys. Res.-Atmos., 107,
1–6, https://doi.org/10.1029/2001jd000483, 2002. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Alexander, S. P. and Protat, A.: Cloud Properties Observed From the Surface
and by Satellite at the Northern Edge of the Southern Ocean, J. Geophys. Res.-Atmos., 123, 443–456, https://doi.org/10.1002/2017JD026552,
2018. a, b
Alexander, S. P. and Protat, A.: Vertical Profiling of Aerosols With a
Combined Raman‐Elastic Backscatter Lidar in the Remote Southern Ocean
Marine Boundary Layer (43–66∘ S, 132–150∘ E),
J. Geophys. Res.-Atmos., 124, 12107–12125,
https://doi.org/10.1029/2019JD030628, 2019. a
Alexander, S. P., McFarquhar, G. M., Marchand, R., Protat, A., Vignon, E.,
Mace, G. G., and Klekociuk, A. R.: Mixed‐Phase Clouds and Precipitation in
Southern Ocean Cyclones and Cloud Systems Observed Poleward of
64∘ S by Ship‐Based Cloud Radar and Lidar, J. Geophys. Res.-Atmos., 126, e2020JD033626, https://doi.org/10.1029/2020JD033626, 2021. a
Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from Aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922,
https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004. a
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. a, b
Barker, H., Pincus, R., and Morcrette, J.-J.: The Monte-Carlo Independent
Column Approximation: Application within large-scale models, in: Proceedings
of the GCSS/ARM Workshop on the Representation of Cloud Systems in
Large-Scale Models, p. 10, May 2002, Kananaskis, Alberta, Canada,
https://www.researchgate.net/publication/247932508_The_Monte_Carlo_Independent_Column_Approximation_Application_within_large-scale_models (last access: 11 February 2022),
2003. a
Bell, T. G., Landwehr, S., Miller, S. D., de Bruyn, W. J., Callaghan, A. H., Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds, Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017. a
Blichner, S. M., Sporre, M. K., and Berntsen, T. K.: Reduced effective radiative forcing from cloud–aerosol interactions (ERFaci) with improved treatment of early aerosol growth in an Earth system model, Atmos. Chem. Phys., 21, 17243–17265, https://doi.org/10.5194/acp-21-17243-2021, 2021. a, b
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small
Particles, Wiley, Weinheim, Germany, https://doi.org/10.1002/9783527618156, 1998. a
Brean, J., Dall’Osto, M., Simó, R., Shi, Z., Beddows, D. C. S., and
Harrison, R. M.: Open ocean and coastal new particle formation from sulfuric
acid and amines around the Antarctic Peninsula, Nat. Geosci., 14, 383–388,
https://doi.org/10.1038/s41561-021-00751-y, 2021. a
Breider, T. J., Chipperfield, M. P., Richards, N. A., Carslaw, K. S., Mann,
G. W., and Spracklen, D. V.: Impact of BrO on dimethylsulfide in the remote
marine boundary layer, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2009GL040868, 2010. a
Broadbent, A., Jones, G. B., and Jones, R. J.: DMSP in Corals and Benthic
Algae from the Great Barrier Reef, Estuar. Coast. Shelf S., 55,
547–555, https://doi.org/10.1006/ecss.2002.1021, 2002. a
Broadbent, A. D. and Jones, G. B.: DMS and DMSP in mucus ropes, coral mucus,
surface films and sediment pore waters from coral reefs in the Great Barrier
Reef, Mar. Freshwater Res., 55, 849–855, https://doi.org/10.1071/MF04114,
2004. a
Burdett, H. L., Hatton, A. D., and Kamenos, N. A.: Coralline algae as a
globally significant pool of marine dimethylated sulfur, Global
Biogeochem. Cy., 29, 1845–1853, https://doi.org/10.1002/2015GB005274, 2015. a
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model
Validation, Mon. Weather Rev., 129, 587–604,
https://doi.org/10.1175/1520-0493(2001)129<0587:caalsh>2.0.co;2, 2002. a
Chen, G., Li, S., Knibbs, L. D., Hamm, N. A., Cao, W., Li, T., Guo, J., Ren,
H., Abramson, M. J., and Guo, Y.: A machine learning method to estimate
PM2.5 concentrations across China with remote sensing, meteorological and
land use information, Sci. Total Environ., 636, 52–60,
https://doi.org/10.1016/j.scitotenv.2018.04.251, 2018. a, b
Chen, Z., Schofield, R., Rayner, P., Zhang, T., Liu, C., Vincent, C., Fiddes,
S., Ryan, R. G., Alroe, J., Ristovski, Z. D., Humphries, R. S., Keywood,
M. D., Ward, J., Paton-Walsh, C., Naylor, T., and Shu, X.: Characterization
of aerosols over the Great Barrier Reef: The influence of transported
continental sources, Sci. Total Environ., 690, 426–437,
https://doi.org/10.1016/j.scitotenv.2019.07.007, 2019. a, b, c, d
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.:
Atmospheric sulfur cycle simulated in the global model GOCART: Model
description and global properties, J. Geophys. Res.-Atmos., 105, 24671–24687, https://doi.org/10.1029/2000JD900384, 2000. a
Cropp, R., Gabric, A., van Tran, D., Jones, G., Swan, H., and Butler, H.:
Coral reef aerosol emissions in response to irradiance stress in the Great
Barrier Reef, Australia, Ambio, 47, 671–681, https://doi.org/10.1007/s13280-018-1018-y, 2018. a, b, c, d
CSIRO National Collections and Marine Infrastructure:
Marlin Metadata System, https://marlin.csiro.au/, last access:
11 February 2022. a
Deschaseaux, E., Jones, G. B., Miljevic, B., Ristovski, Z., and Swan, H.: Can
corals form aerosol particles through volatile sulphur compound emissions?,
in: Proceedings of the 12th International Coral Reef Symposium, edited by:
Yellowlees, D. and Hughes, T., James Cook University, Cairns, QLD, Australia,
2012. a
Deschaseaux, E., Stoltenberg, L., Hrebien, V., Koveke, E. P., Toda, K., and
Eyre, B. D.: Dimethylsulfide (DMS) fluxes from permeable coral reef
carbonate sediments, Mar. Chem., 208, 1–10,
https://doi.org/10.1016/j.marchem.2018.11.008, 2019. a
Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4 modeling
system, Tech. rep., National Oceanic Atmospheric Administration, Silver
Spring, Maryland, USA, https://www.arl.noaa.gov/documents/reports/arl-224.pdf (last access: 11 February 2022), 1997. a
Draxler, R. R. and Hess, G. D.: An Overview of the HYSPLIT_4 Modelling
System for Trajectories, Dispersion, and Deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998. a
Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer, K.,
Weimer, S., Jimenez, J. L., Demerjian, K. L., Borrmann, S., and Worsnop,
D. R.: A new time-of-flight aerosol mass spectrometer (TOF-AMS) – Instrument
description and first field deployment, Aerosol Sci. Tech., 39,
637–658, https://doi.org/10.1080/02786820500182040, 2005. a, b
Emmerson, K. M., Possell, M., Aspinwall, M. J., Pfautsch, S., and Tjoelker, M. G.: Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050, Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020, 2020. a
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
European Commission Joint Research Centre and Netherlands Environmental
Assessment Agency: Emission Database for Global Atmospheric Research
(EDGAR), https://edgar.jrc.ec.europa.eu/ (last access: 11 February 2022), 2012. a
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of Houston
using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, 1–29, https://doi.org/10.1029/2005JD006721,
2006. a, b
Fröhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Prévôt, A. S. H., Baltensperger, U., Schneider, J., Kimmel, J. R., Gonin, M., Rohner, U., Worsnop, D. R., and Jayne, J. T.: The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection, Atmos. Meas. Tech., 6, 3225–3241, https://doi.org/10.5194/amt-6-3225-2013, 2013. a, b
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 1: Source fluxes, Atmos. Chem. Phys., 10, 9295–9317, https://doi.org/10.5194/acp-10-9295-2010, 2010. a, b
Gong, S. L., Barrie, L. A., and Blanchet, J.-P.: Modeling sea-salt aerosols in
the atmosphere: 1. Model development, J. Geophys. Res.-Atmos., 102, 3805–3818, https://doi.org/10.1029/96jd02953, 1997. a, b, c
Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C.,
Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen,
T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A.,
Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X.,
Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin,
A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen,
H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kürten, A.,
Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks,
S. A., Onnela, A., Peräkylä, O., Piel, F., Petäjä,
T., Praplan, A. P., Pringle, K. J., Richards, N. A. D., Rissanen, M. P.,
Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H.,
Sharma, S., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F.,
Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E.,
Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A.,
Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M.,
Curtius, J., and Carslaw, K. S.: Reduced anthropogenic aerosol radiative
forcing caused by biogenic new particle formation, P.
Natl. Acad. Sci. USA, 113, 12053–12058,
https://doi.org/10.1073/pnas.1602360113, 2016. a
Gordon, H., Field, P. R., Abel, S. J., Dalvi, M., Grosvenor, D. P., Hill, A. A., Johnson, B. T., Miltenberger, A. K., Yoshioka, M., and Carslaw, K. S.: Large simulated radiative effects of smoke in the south-east Atlantic, Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, 2018. a
Green, T. K. and Hatton, A. D.: The Claw Hypothesis: A New Perspective on the
Role of Biogenic Sulphur in the Regulation of Global Climate, Oceanogr. Mar. Biol., 52, 315–336, https://doi.org/10.1201/b17143-7, 2014. a
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 38-1–38-4,
https://doi.org/10.1029/2002gl015311, 2002. a
Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural volatile organic
compound emission rate estimates for U.S. woodland landscapes, Atmos.
Environ., 28, 1197–1210, https://doi.org/10.1016/1352-2310(94)90297-6, 1994. a
Gustafson, W. I., Chapman, E. G., Ghan, S. J., Easter, R. C., and Fast, J. D.:
Impact on modeled cloud characteristics due to simplified treatment of
uniform cloud condensation nuclei during NEAQS 2004, Geophys. Res.
Lett., 34, 1–5, https://doi.org/10.1029/2007GL030021, 2007. a
Hopkins, F. E., Bell, T. G., Yang, M., Suggett, D. J., and Steinke, M.: Air
exposure of coral is a significant source of dimethylsulfide (DMS) to the
atmosphere, Sci. Rep.-UK, 6, 36031, https://doi.org/10.1038/srep36031, 2016. a
Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner, D.,
Yang, P., Nasiri, S. L., Baum, B., Holz, R., Sun, W., Liu, Z., Wang, Z.,
Young, S., Stamnes, K., Huang, J., and Kuehn, R.: CALIPSO/CALIOP Cloud Phase
Discrimination Algorithm, J. Atmos. Ocean. Tech., 26,
2293–2309, https://doi.org/10.1175/2009JTECHA1280.1, 2009. a
Hulswar, S., Simo, R., Galí, M., Bell, T., Lana, A., Inamdar, S., Halloran, P. R., Manville, G., and Mahajan, A. S.: Third Revision of the Global Surface Seawater Dimethyl Sulfide Climatology (DMS-Rev3), Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-236, in review, 2021. a, b, c
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, 2–9, https://doi.org/10.1029/2008JD009944, 2008. a
Jackson, R. L., Gabric, A., and Cropp, R.: Effects of ocean warming and coral
bleaching on aerosol emissions in the Great Barrier Reef, Australia,
Sci. Rep.-UK, 8, 1–11, https://doi.org/10.1038/s41598-018-32470-7, 2018. a, b, c
Jackson, R. L., Gabric, A. J., Cropp, R., and Woodhouse, M. T.: Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs, Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, 2020a. a
Jackson, R. L., Gabric, A. J., Woodhouse, M. T., Swan, H. B., Jones, G. B.,
Cropp, R., and Deschaseaux, E. S.: Coral Reef Emissions of Atmospheric
Dimethylsulfide and the Influence on Marine Aerosols in the Southern Great
Barrier Reef, Australia, J. Geophys. Res.-Atmos., 125, e2019JD031837,
https://doi.org/10.1029/2019JD031837, 2020b. a, b, c, d, e
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B.: Modeling
coagulation among particles of different composition and size, Atmos.
Environ., 28, 1327–1338, https://doi.org/10.1016/1352-2310(94)90280-1, 1994. a
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a
Janjić, Z. I.: The surface layer parameterization in the NCEP Eta Model, World Meteorological Organization-Publications-WMO TD, 4–16, 1996. a
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb,
C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer for
Size and Composition Analysis of Submicron Particles, Aerosol Sci.
Tech., 33, 49–70, https://doi.org/10.1080/027868200410840, 2000. a
Jones, G., Curran, M., Swan, H., and Deschaseaux, E.: Dimethylsulfide and
Coral Bleaching: Links to Solar Radiation, Low Level Cloud and the Regulation
of Seawater Temperatures and Climate in the Great Barrier Reef, American
Journal of Climate Change, 6, 328–359, https://doi.org/10.4236/ajcc.2017.62017, 2017. a, b, c
Jones, G. B.: Coral animals combat stress with sulphur, Nature, 502,
634–635, https://doi.org/10.1038/nature12698, 2013. a, b
Jones, G. B. and Trevena, A. J.: The influence of coral reefs on atmospheric
dimethylsulphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and
Solomon and Bismarck Seas, Mar. Freshwater Res., 56, 85–93,
https://doi.org/10.1071/MF04097, 2005. a
Jones, G. B., Curran, M., Broadbent, A., King, S., Fischer, E., and Jones,
R. J.: Factors affecting the cycling of dimethylsulfide and
dimethylsulfoniopropionate in coral reef waters of the great barrier reef,
Environ. Chem., 4, 310–322, https://doi.org/10.1071/EN06065, 2007. a, b
Jung, E. and Shao, Y.: An intercomparison of four wet deposition schemes used
in dust transport modeling, Global Planet. Change, 52, 248–260,
https://doi.org/10.1016/j.gloplacha.2006.02.008, 2006. a
Kameyama, S., Tanimoto, H., Inomata, S., Tsunogai, U., Ooki, A., Yokouchi, Y.,
Takeda, S., Obata, H., and Uematsu, M.: Equilibrator inlet-proton transfer
reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution
measurement of dimethyl sulfide dissolved in seawater, Anal. Chem.,
81, 9021–9026, https://doi.org/10.1021/ac901630h, 2009. a, b
Kanaya, Y., Taketani, F., Komazaki, Y., Liu, X., Kondo, Y., Sahu, L. K., Irie,
H., and Takashima, H.: Comparison of black carbon mass concentrations
observed by multi-angle absorption photometer (MAAP) and continuous
soot-monitoring system (COSMOS) on fukue Island and in Tokyo, Japan, Aerosol
Sci. Tech., 47, 1–10, https://doi.org/10.1080/02786826.2012.716551, 2013. a, b, c
Kettle, A. J. and Andreae, M.: Flux of dimethylsulfide from the oceans : A
comparison of updated data sets and flux models, J. Geophys.
Res., 105, 26793–26808, https://doi.org/10.1029/2000JD900252, 2000. a, b
Kettle, A. J., Amouroux, D., Andreae, T. W., Bates, T. S., Berresheim, H.,
Bingemer, H., Boniforti, R., Helas, G., Leck, C., Maspero, M., Matrai, P.,
McTaggart, A. R., Mihalopoulos, N., Nguyen, B. C., Novo, A., Putaud, J. P.,
Rapsomanikis, S., Roberts, G., Schebeske, G., Sharma, S., Simó, R.,
Staubes, R., Turner, S., and Uher, G.: A global data base of sea surface
dimethyl sulfide (DMS) measurements and a simple model to predict sea surface
DMS as a function of latitude, longitude, and month, Global Biogeochem.
Cy., 13, 399–444, 1999. a
Khan, M. A., Gillespie, S. M., Razis, B., Xiao, P., Davies-Coleman, M. T.,
Percival, C. J., Derwent, R. G., Dyke, J. M., Ghosh, M. V., Lee, E. P., and
Shallcross, D. E.: A modelling study of the atmospheric chemistry of DMS
using the global model, STOCHEM-CRI, Atmos. Environ., 127, 69–79,
https://doi.org/10.1016/j.atmosenv.2015.12.028, 2016. a, b, c
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study, Biogeosciences, 3, 29–51, https://doi.org/10.5194/bg-3-29-2006, 2006. a
Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W., and Woodhouse,
M. T.: Influence of oceanic dimethyl sulfide emissions on cloud condensation
nuclei concentrations and seasonality over the remote Southern Hemisphere
oceans: A global model study, J. Geophys. Res.-Atmos.,
113, 1–16, https://doi.org/10.1029/2007JD009718, 2008. a, b
Kulmala, M., Laaksonen, A., and Pirjola, L.: Parameterizations for sulfuric
acid/water nucleation rates, J. Geophys. Res., 103, 8301,
https://doi.org/10.1029/97JD03718, 1998. a
Ladwig, W.: wrf-python (Version 1.3.2), UCAR/NCAR [software], Boulder, Colorado, https://doi.org/10.5065/D6W094P1, 2017. a
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global
Biogeochem. Cy., 25, 1–17, https://doi.org/10.1029/2010GB003850, 2011. a, b, c, d
Leahy, S. M., Kingsford, M. J., and Steinberg, C. R.: Do Clouds Save the Great
Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the
Local Scale, PLoS ONE, 8, e70400, https://doi.org/10.1371/journal.pone.0070400,
2013. a
Lee, S., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.:
New Particle Formation in the Atmosphere: From Molecular Clusters to Global
Climate, J. Geophys. Res.-Atmos., 124, 7098–7146,
https://doi.org/10.1029/2018JD029356, 2019. a, b
Lee, Y. H., Pierce, J. R., and Adams, P. J.: Representation of nucleation mode microphysics in a global aerosol model with sectional microphysics, Geosci. Model Dev., 6, 1221–1232, https://doi.org/10.5194/gmd-6-1221-2013, 2013 a
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T.,
Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler,
T.: Transmission Efficiency of an Aerodynamic Focusing Lens System:
Comparison of Model Calculations and Laboratory Measurements for the Aerodyne
Aerosol Mass Spectrometer, Aerosol Sci. Tech., 41, 721–733,
https://doi.org/10.1080/02786820701422278, 2007. a
Longo, K. M., Freitas, S. R., Andreae, M. O., Setzer, A., Prins, E., and Artaxo, P.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories, Atmos. Chem. Phys., 10, 5785–5795, https://doi.org/10.5194/acp-10-5785-2010, 2010. a
Mahajan, A. S., Fadnavis, S., Thomas, M. a., Pozzoli, L., Gupta, S., Royer,
S.-j., Saiz-Lopez, A., and Simó, R.: Quantifying the impacts of an
updated global dimethyl sulfide climatology on cloud microphysics and aerosol
radiative forcing, J. Geophys. Res.-Atmos., 120,
2524–2536, https://doi.org/10.1002/2014JD022687, 2015. a
Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Wiedensohler, A., Fast, J. D.,
and Zaveri, R. A.: Impact of new particle formation on the concentrations of
aerosols and cloud condensation nuclei around Beijing, J.
Geophys. Res., 116, D19208, https://doi.org/10.1029/2011JD016025, 2011. a
McCormick, R. A. and Ludwig, J. H.: Climate Modification by Atmospheric
Aerosols, Science, 156, 1358–1359, https://doi.org/10.1126/science.156.3780.1358,
1967. a
Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009. a
Metzger, A., Verheggen, B., Dommen, J., Duplissy, J., Prevot, A. S. H.,
Weingartner, E., Riipinen, I., Kulmala, M., Spracklen, D. V., Carslaw, K. S.,
and Baltensperger, U.: Evidence for the role of organics in aerosol particle
formation under atmospheric conditions, P. Natl. Acad. Sci. USA, 107, 6646–6651,
https://doi.org/10.1073/pnas.0911330107, 2010. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2008. a, b
Muñiz-Unamunzaga, M., Borge, R., Sarwar, G., Gantt, B., de la Paz, D.,
Cuevas, C. A., and Saiz-Lopez, A.: The influence of ocean halogen and sulfur
emissions in the air quality of a coastal megacity: The case of Los Angeles,
Sci. Total Environ., 610–611, 1536–1545,
https://doi.org/10.1016/j.scitotenv.2017.06.098, 2018. a, b, c
Noh, Y. J., Miller, S. D., Heidinger, A. K., Mace, G. G., Protat, A., and
Alexander, S. P.: Satellite-Based Detection of Daytime Supercooled
Liquid-Topped Mixed-Phase Clouds Over the Southern Ocean Using the Advanced
Himawari Imager, J. Geophys. Res.-Atmos., 124,
2677–2701, https://doi.org/10.1029/2018JD029524, 2019. a
O'Connor, E. J., Illingworth, A. J., and Hogan, R. J.: A Technique for
Autocalibration of Cloud Lidar, J. Atmos. Ocean.
Tech., 21, 777–786,
https://doi.org/10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2, 2004. a
O'Dowd, C. D., Aalto, P., Hmeri, K., Kulmala, M., and Hoffmann, T.:
Atmospheric particles from organic vapours, Nature, 416, 497–498,
https://doi.org/10.1038/416497a, 2002. a
Omori, Y., Tanimoto, H., Inomata, S., Kameyama, S., Takao, S., and Suzuki, K.:
Evaluation of using unfiltered seawater for underway measurement of dimethyl
sulfide in the ocean by online mass spectrometry, Limnol.
Oceanogr.-Meth., 11, 549–560, https://doi.org/10.4319/lom.2013.11.549, 2013. a, b
Omori, Y., Tanimoto, H., Inomata, S., Ikeda, K., Iwata, T., Kameyama, S.,
Uematsu, M., Gamo, T., Ogawa, H., and Furuya, K.: Sea-to-air flux of
dimethyl sulfide in the South and North Pacific Ocean as measured by proton
transfer reaction-mass spectrometry coupled with the gradient flux
technique, J. Geophys. Res., 122, 7216–7231,
https://doi.org/10.1002/2017JD026527, 2017. a, b
Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo
susceptibility of clouds in the marine boundary layer, Nature, 372,
250–252, https://doi.org/10.1038/372250a0, 1994. a
Rahn, D. A. and Garreaud, R.: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 1: Mean structure and diurnal cycle, Atmos. Chem. Phys., 10, 4491–4506, https://doi.org/10.5194/acp-10-4491-2010, 2010. a
Saide, P. E., Spak, S. N., Carmichael, G. R., Mena-Carrasco, M. A., Yang, Q., Howell, S., Leon, D. C., Snider, J. R., Bandy, A. R., Collett, J. L., Benedict, K. B., de Szoeke, S. P., Hawkins, L. N., Allen, G., Crawford, I., Crosier, J., and Springston, S. R.: Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx, Atmos. Chem. Phys., 12, 3045–3064, https://doi.org/10.5194/acp-12-3045-2012, 2012. a, b, c, d
Semeniuk, K. and Dastoor, A.: Current state of aerosol nucleation
parameterizations for air-quality and climate modeling, Atmos.
Environ., 179, 77–106, https://doi.org/10.1016/j.atmosenv.2018.01.039, 2018. a, b, c, d
Shao, Y., Ishizuka, M., Mikami, M., and Leys, J. F.: Parameterization of
size-resolved dust emission and validation with measurements, J. Geophys. Res.-Atmos., 116, 1–19, https://doi.org/10.1029/2010JD014527,
2011. a
Simmel, M. and Wurzler, S.: Condensation and activation in sectional cloud
microphysical models, Atmos. Res., 80, 218–236,
https://doi.org/10.1016/j.atmosres.2005.08.002, 2006. a
Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R.: Biogenic
emissions in Europe: 1. Estimates and uncertainties, J. Geophys.
Res., 100, 22875, https://doi.org/10.1029/95JD02368, 1995. a
Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geosci. Model Dev., 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019. a
Sullivan, R. C., Crippa, P., Matsui, H., Leung, L. R., Zhao, C., Thota, A., and
Pryor, S. C.: New particle formation leads to cloud dimming, npj Climate
and Atmospheric Science, 1, 9, https://doi.org/10.1038/s41612-018-0019-7, 2018. a, b
Swan, H. B., Ivey, J. P., Jones, G. B., and Eyre, B. D.: The validation and
measurement uncertainty of an automated gas chromatograph for marine studies
of atmospheric dimethylsulfide, Anal. Meth., 7, 3893–3902,
https://doi.org/10.1039/c5ay00269a, 2015. a, b
Swan, H. B., Jones, G. B., Deschaseaux, E. S. M., and Eyre, B. D.: Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia, Biogeosciences, 14, 229–239, https://doi.org/10.5194/bg-14-229-2017, 2017. a
Thomas, M. A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J., and Lenton, T. M.: Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario, Atmos. Chem. Phys., 10, 7425–7438, https://doi.org/10.5194/acp-10-7425-2010, 2010. a
Tie, X.: Effect of clouds on photolysis and oxidants in the troposphere,
J. Geophys. Res., 108, 4642, https://doi.org/10.1029/2003jd003659, 2003. a
Trounce, H., Ristovsky, Z., Miljevic, B., Cravigan, L., Alroe, J., Osuagwa, C.,
Harvey, M., Bromley, T., Grey, S., Dunne, E., Humphries, R., Keywood, M.,
Ward, J., Lawson, S., Protat, A., Alexander, S., Schofield, R., Ryan, R.,
Fiddes, S., Vincent, C., Griffith, D., Murphy, C., Naylor, T., Jones, G.,
Omori, Y., and Tanimoto, H.: Great Barrier Reef aerosol and cloud data from
the Reef to Rainforest campaign, Earth Syst. Sci. Data Discuss., in preparation, 2022. a
Twomey, S.: Pollution and the Planetary Albedo, Atmos. Environ., 8,
1251–1256, 1974. a
Vallina, S. M., Simó, R., and Gassó, S.: What controls CCN
seasonality in the Southern Ocean? A statistical analysis based on
satellite-derived chlorophyll and CCN and model-estimated OH radical and
rainfall, Global Biogeochem. Cy., 20, 1–13,
https://doi.org/10.1029/2005GB002597, 2006. a
Vlahos, P. and Monahan, E. C.: A generalized model for the air-sea transfer of
dimethyl sulfide at high wind speeds, Geophys. Res. Lett., 36,
L21605, https://doi.org/10.1029/2009GL040695, 2009. a
Warner, J.: A Reduction in Rainfall Associated with Smoke from Sugar-Cane
Fires – An Inadvertent Weather Modification?, J. Appl.
Meteorol., 7, 247–251,
https://doi.org/10.1175/1520-0450(1968)007<0247:ARIRAW>2.0.CO;2, 1968. a
Wexler, A. S., Lurmann, F. W., and Seinfeld, J. H.: Modelling urban and
regional aerosols – I. model development, Atmos. Environ., 28,
531–546, https://doi.org/10.1016/1352-2310(94)90129-5, 1994. a, b
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Elsevier, 3rd
Edn., https://doi.org/10.1016/B978-0-12-385022-5.00026-9, 2011. a
Williams, A. G. and Chambers, S. D.: A History of Radon Measurements at Cape Grim, Baseline History and Recollections: 40th Anniversary Special Edition, edited by: Derek, N., Krummel, P., and Cleland, S., CSIRO 2016, 131–146, https://doi.org/10.25919/1e94-dx04, 2016. a, b, c
Xiang, Y., Zhang, T., Liu, J., Lv, L., Dong, Y., and Chen, Z.: Atmosphere
boundary layer height and its effect on air pollutants in Beijing during
winter heavy pollution, Atmos. Res., 215, 305–316,
https://doi.org/10.1016/j.atmosres.2018.09.014, 2019. a, b
Xu, K.-M. and Randall, D. A.: A Semiempirical Cloudiness Parameterization for
Use in Climate Models, J. Atmos. Sci., 53, 3084–3102,
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996. a
Yang, Q., W. I. Gustafson Jr., Fast, J. D., Wang, H., Easter, R. C., Morrison, H., Lee, Y.-N., Chapman, E. G., Spak, S. N., and Mena-Carrasco, M. A.: Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem, Atmos. Chem. Phys., 11, 11951–11975, https://doi.org/10.5194/acp-11-11951-2011, 2011. a, b, c
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci.
Lett., 7, 26–34, https://doi.org/10.1002/asl.125, 2006. a, b
Zaveri, R. A.: Development and Evaluation of a Comprehensive Tropospheric
Chemistry Model for Regional and Global Applications Development and
Evaluation of a Comprehensive Tropospheric Chemistry Model for Regional and
Global Applications, PhD thesis, Virginia Polytechnic Institute and State
University, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.363&rep=rep1&type=pdf (last access: 11 February 2022),
1997. a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, 1–29, https://doi.org/10.1029/2007JD008782,
2008.
a, b, c, d
Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling,
J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet, B., Liu,
Y., Fan, J., and Fast, J. D.: High concentration of ultrafine particles in
the Amazon free troposphere produced by organic new particle formation,
P. Natl. Acad. Sci. USA, 117, 25344–25351,
https://doi.org/10.1073/pnas.2006716117, 2020. a
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl...
Altmetrics
Final-revised paper
Preprint