Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13467-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13467-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Significant formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface
Tao Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Yangyang Liu
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Hanyun Cheng
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Zhenzhen Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Hongbo Fu
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Jianmin Chen
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
National Observations and Research Station for Wetland Ecosystems of the
Yangtze Estuary, IRDR international Center of Excellence on Risk
Interconnectivity and Governance on Weather, Department of Environmental
Science & Engineering, Fudan University, Shanghai, 200433, Peoples'
Republic of China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai,
200092, Peoples' Republic of China
Related authors
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Qianqian Gao, Guochao Chen, Xiaohui Lu, Jianmin Chen, Hongliang Zhang, and Xiaofei Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-596, https://doi.org/10.5194/egusphere-2025-596, 2025
Short summary
Short summary
Numerous lakes are shrinking due to climate change and human activities, releasing pollutants from dried lakebeds as dust aerosols. The health risks remain unclear. Recently, Poyang and Dongting Lakes faced record droughts, exposing 99 % and 88 % of their areas. We show lakebed dust can raise PM10 to 637.5 μg/m³ and exceed non-carcinogenic (HQ=4.13) and Cr carcinogenic (~2.10×10⁻⁶) risk thresholds, posing growing health threats.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Hannah J. Rubin, Joshua S. Fu, Frank Dentener, Rui Li, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 23, 7091–7102, https://doi.org/10.5194/acp-23-7091-2023, https://doi.org/10.5194/acp-23-7091-2023, 2023
Short summary
Short summary
We update the 2010 global deposition budget for nitrogen (N) and sulfur (S) with new regional wet deposition measurements, improving the ensemble results of 11 global chemistry transport models from HTAP II. Our study demonstrates that a global measurement–model fusion approach can substantially improve N and S deposition model estimates at a regional scale and represents a step forward toward the WMO goal of global fusion products for accurately mapping harmful air pollution.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Jian-yan Lu, Sunling Gong, Chun-hong Zhou, Jian Zhang, Jian-min Chen, and Lei Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-716, https://doi.org/10.5194/acp-2022-716, 2022
Revised manuscript not accepted
Short summary
Short summary
A regional online chemical weather model WRF/ CUACE was used to assess the contributions of cloud chemistry to the SO2 and sulfate levels in typical regions in China. The cloud chemistry scheme in CUACE was evaluated, and well reproduces the cloud chemistry processes. During cloud availability in a heavy pollution episode, the sulfate production increases 40–80 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021, https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
Rui Li, Yilong Zhao, Hongbo Fu, Jianmin Chen, Meng Peng, and Chunying Wang
Atmos. Chem. Phys., 21, 8677–8692, https://doi.org/10.5194/acp-21-8677-2021, https://doi.org/10.5194/acp-21-8677-2021, 2021
Short summary
Short summary
Based on a random forest model, the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p < 0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol including SO42− (29 %), NO3− (29 %), and NH4+ (21 %) (p < 0.05). The natural experiment suggested that the NH3 emission should be strictly controlled.
Rui Li, Lulu Cui, Yilong Zhao, Wenhui Zhou, and Hongbo Fu
Earth Syst. Sci. Data, 13, 2147–2163, https://doi.org/10.5194/essd-13-2147-2021, https://doi.org/10.5194/essd-13-2147-2021, 2021
Short summary
Short summary
A unique monthly NO3− dataset at 0.25° resolution over China during 2005–2015 was developed by assimilating multi-source variables. The newly developed product featured an excellent cross-validation R2 value (0.78) and relatively lower RMSE (1.19 μg N m−3) and mean absolute error (MAE: 0.81 μg N m−3). The dataset also exhibited relatively robust performance at the spatial and temporal scales. The dataset over China could deepen knowledge of the status of N pollution in China.
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Cited articles
Abou-Ghanem, M., Oliynyk, A. O., Chen, Z., Matchett, L. C., McGrath, D. T.,
Katz, M. J., Locock, A. J., and Styler, S. A.: Significant Variability in
the Photocatalytic Activity of Natural Titanium-Containing Minerals:
Implications for Understanding and Predicting Atmospheric Mineral Dust
Photochemistry, Environ. Sci. Technol., 54, 13509–13516,
https://doi.org/10.1021/acs.est.0c05861, 2020.
Adams, J. W., Rodriguez, D., and Cox, R. A.: The uptake of SO2 on Saharan dust: a flow tube study, Atmos. Chem. Phys., 5, 2679–2689, https://doi.org/10.5194/acp-5-2679-2005, 2005.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition
metal-catalyzed oxidation of atmospheric sulfur: Global implications for the
sulfur budget, J. Geophys. Res., 114, D2309,
https://doi.org/10.1029/2008JD010486, 2009.
Alexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg,
D. A., and Sletten, R. S.: Isotopic constraints on the formation pathways of
sulfate aerosol in the marine boundary layer of the subtropical northeast
Atlantic Ocean, J. Geophys. Res.-Atmos., 117, D6304,
https://doi.org/10.1029/2011JD016773, 2012.
Antoniou, M. G., Boraei, I., Solakidou, M., Deligiannakis, Y., Abhishek, M.,
Lawton, L. A., and Edwards, C.: Enhancing photocatalytic degradation of the
cyanotoxin microcystin-LR with the addition of sulfate-radical generating
oxidants, J. Hazard. Mater., 360, 461–470,
https://doi.org/10.1016/j.jhazmat.2018.07.111, 2018.
Ault, A. P.: Aerosol Acidity: Novel Measurements and Implications for
Atmospheric Chemistry, Accounts Chem. Res., 53, 1703–1714,
https://doi.org/10.1021/acs.accounts.0c00303, 2020.
Baltrusaitis, J., Cwiertny, D. M., and Grassian, V. H.: Adsorption of sulfur
dioxide on hematite and goethite particle surfaces, Phys. Chem. Chem. Phys.,
9, 5542–5554, https://doi.org/10.1039/b709167b, 2007.
Baltrusaitis, J., Jayaweera, P. M., and Grassian, V. H.: Sulfur Dioxide
Adsorption on TiO2 Nanoparticles: Influence of Particle Size,
Coadsorbates, Sample Pretreatment, and Light on Surface Speciation and
Surface Coverage, J. Phys. Chem. C, 115, 492–500,
https://doi.org/10.1021/jp108759b, 2010.
Berglen, T. F., Berntsen, T. K., Isaksen, I. S. A., and Sundet, J. K.: A
global model of the coupled sulfur/oxidant chemistry in the troposphere: The
sulfur cycle, J. Geophys. Res., 109, D19310,
https://doi.org/10.1029/2003JD003948, 2004.
Bian, H. and Zender, C. S.: Mineral dust and global tropospheric chemistry:
Relative roles of photolysis and heterogeneous uptake, J. Geophys. Res.-Atmos., 108, 4672, https://doi.org/10.1029/2002JD003143, 2003.
Chen, H., Nanayakkara, C. E., and Grassian, V. H.: Titanium dioxide
photocatalysis in atmospheric chemistry, Chem. Rev., 112, 5919–5948,
https://doi.org/10.1021/cr3002092, 2012.
Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., and
Alexander, B.: Sulfate production by reactive bromine: Implications for the
global sulfur and reactive bromine budgets, Geophys. Res. Lett., 44,
7069–7078, https://doi.org/10.1002/2017GL073812, 2017.
Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., and Sun, J.:
Photocatalytic Oxidation of SO2 by TiO2: Aerosol Formation and the
Key Role of Gaseous Reactive Oxygen Species, Environ. Sci. Technol., 55,
9784–9793, https://doi.org/10.1021/acs.est.1c01608, 2021.
Chen, Z., Liu, P., Wang, W., Cao, X., Liu, Y., Zhang, Y., and Ge, M.: Rapid
Sulfate Formation via Uncatalyzed Autoxidation of Sulfur Dioxide in Aerosol
Microdroplets, Environ. Sci. Technol., 56, 7637–7646,
https://doi.org/10.1021/acs.est.2c00112, 2022.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang,
Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen
chemistry in aerosol water as a source of sulfate during haze events in
China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016.
Chu, B., Wang, Y., Yang, W., Ma, J., Ma, Q., Zhang, P., Liu, Y., and He, H.:
Effects of NO2 and C3H6 on the heterogeneous oxidation of
SO2 on TiO2 in the presence or absence of UV–Vis irradiation,
Atmos. Chem. Phys., 19, 14777–14790,
https://doi.org/10.5194/acp-19-14777-2019, 2019.
Chughtai, A. R., Brooks, M. E., and Smith, D. M.: Effect of metal oxides and
black carbon (soot) on SO2 O2 H2O reaction systems, Aerosol
Sci. Tech., 19, 121–132, https://doi.org/10.1080/02786829308959626,
1993.
Clegg, M. and Abbatt, D.: Uptake of Gas-Phase SO2 and H2O2
by Ice Surfaces: Dependence on Partial Pressure, Temperature, and Surface
Acidity, J. Phys. Chem. A, 105, 6630–6636,
https://doi.org/10.1021/jp010062r, 2001a.
Clegg, S. M. and Abbatt, J. P. D.: Oxidation of SO2 by H2O2
on ice surfaces at 228 K: a sink for SO2 in ice clouds, Atmos. Chem.
Phys., 1, 73–78, https://doi.org/10.5194/acp-1-73-2001, 2001b.
Darif, B., Ojala, S., Pirault-Roy, L., Bensitel, M., Brahmi, R., and Keiski,
R. L.: Study on the catalytic oxidation of DMDS over Pt-Cu catalysts
supported on Al2O3, AlSi20 and SiO2, Appl. Catal. B,
181, 24–33, https://doi.org/10.1016/j.apcatb.2015.07.050, 2016.
Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D.
R.: Mass Accommodation and Chemical Reactions at Gas-Liquid Interfaces,
Chem. Rev., 106, 1323–1354, https://doi.org/10.1021/cr040366k, 2006.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and
its driving factors in Beijing, Atmos. Chem. Phys., 19, 7939–7954,
https://doi.org/10.5194/acp-19-7939-2019, 2019.
Du, C., Kong, L., Zhanzakova, A., Tong, S., Yang, X., Wang, L., Fu, H.,
Cheng, T., Chen, J., and Zhang, S.: Impact of adsorbed nitrate on the
heterogeneous conversion of SO2 on α-Fe2O3 in the
absence and presence of simulated solar irradiation, Sci. Total Environ.,
649, 1393–1402, https://doi.org/10.1016/j.scitotenv.2018.08.295, 2019.
Dupart, Y., King, S. M., Nekat, B., Nowak, A., Wiedensohler, A., Herrmann,
H., David, G., Thomas, B., Miffre, A., Rairoux, P., Anna, B. D., and George,
C.: Mineral dust photochemistry induces nucleation events in the presence of
SO2, P. Natl. Acad. Sci. USA, 109, 20842–20847,
https://doi.org/10.1073/pnas.1212297109, 2012.
Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van
Donkelaar, A., and Zhang, L.: Impact of mineral dust on nitrate, sulfate,
and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10,
3999–4012, https://doi.org/10.5194/acp-10-3999-2010, 2010.
Fan, M., Zhang, Y., Lin, Y., Li, J., Cheng, H., An, N., Sun, Y., Qiu, Y.,
Cao, F., and Fu, P.: Roles of Sulfur Oxidation Pathways in the Variability
in Stable Sulfur Isotopic Composition of Sulfate Aerosols at an Urban Site
in Beijing, China, Environ. Sci. Technol. Lett., 7, 883–888,
https://doi.org/10.1021/acs.estlett.0c00623, 2020.
Filonchyk, M.: Characteristics of the severe March 2021 Gobi Desert dust
storm and its impact on air pollution in China, Chemosphere, 287, 132219,
https://doi.org/10.1016/j.chemosphere.2021.132219, 2022.
Fu, H., Cwiertny, D. M., Carmichael, G. R., Scherer, M. M., and Grassian, V.
H.: Photoreductive dissolution of Fe-containing mineral dust particles in
acidic media, J. Geophys. Res., 115, D11304,
https://doi.org/10.1029/2009JD012702, 2010.
Fu, H., Wang, X., Wu, H., Yin, Y., and Chen, J.: Heterogeneous uptake and
oxidation of SO2 on iron oxides, J. Phys. Chem. C, 111, 6077–6085,
https://doi.org/10.1021/jp070087b, 2007.
Fu, H., Xu, T., Yang, S., Zhang, S., and Chen, J.: Photoinduced formation of
Fe(III)-sulfato complexes on the surface of α-Fe2O3 and
their photochemical performance, J. Phys. Chem. C, 113, 11316–11322,
https://doi.org/10.1021/jp8088275, 2009.
Gao, J., Shi, G., Zhang, Z., Wei, Y., Tian, X., Feng, Y., Russell, A. G.,
and Nenes, A.: Targeting Atmospheric Oxidants Can Better Reduce Sulfate
Aerosol in China: H2O2 Aqueous Oxidation Pathway Dominates Sulfate
Formation in Haze, Environ. Sci. Technol., 56, 10608–10618,
https://doi.org/10.1021/acs.est.2c01739, 2022.
Gaston, C. J., Pratt, K. A., Suski, K. J., May, N. W., Gill, T. E., and
Prather, K. A.: Laboratory Studies of the Cloud Droplet Activation
Properties and Corresponding Chemistry of Saline Playa Dust, Environ. Sci.
Technol., 51, 1348–1356, https://doi.org/10.1021/acs.est.6b04487, 2017.
Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C. K.: Heterogeneous
Oxidation of SO2 in Sulfate Production during Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence
of Organic Compounds, Environ. Sci. Technol., 53, 8757–8766,
https://doi.org/10.1021/acs.est.9b01623, 2019.
Goodman, A. L., Li, P., Usher, C. R., and Grassian, V. H.: Heterogeneous
uptake of sulfur dioxide on aluminum and magnesium oxide particles, J. Phys.
Chem. A, 105, 6109–6120, https://doi.org/10.1021/jp004423z, 2001.
Guan, C., Li, X., Luo, Y., and Huang, Z.: Heterogeneous Reaction of NO2
on α-Al2O3 in the Dark and Simulated Sunlight, J. Phys.
Chem. A, 118, 6999–7006, https://doi.org/10.1021/jp503017k, 2014.
Han, L., Liu, X., Chen, Y., Xiang, X., Cheng, S., and Wang, H.: Key factors
influencing the formation of sulfate aerosol on the surface of mineral
aerosols: Insights from laboratory simulations and ACSM measurements, Atmos.
Environ., 253, 118341, https://doi.org/10.1016/j.atmosenv.2021.118341, 2021.
Hanson, D. R., Ravishankara, A. R., and Solomon, S.: Heterogeneous reactions
in sulfuric acid aerosols: A framework for model calculations, J. Geophys.
Res.-Atmos., 99, 3615–3629, https://doi.org/10.1029/93JD02932, 1994.
Harris, E., Sinha, B., Foley, S., Crowley, J. N., Borrmann, S., and Hoppe,
P.: Sulfur isotope fractionation during heterogeneous oxidation of SO2
on mineral dust, Atmos. Chem. Phys., 12, 4867–4884,
https://doi.org/10.5194/acp-12-4867-2012, 2012.
Haynes, W. M.: Handbook of Chemistry and Physics, CRC Press, New York, ISBN 084930458X, 2014.
He, G. and He, H.: Water Promotes the Oxidation of SO2 by O2 over
Carbonaceous Aerosols, Environ. Sci. Technol., 54, 7070–7077,
https://doi.org/10.1021/acs.est.0c00021, 2020.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang,
H., and Hao, J.: Mineral dust and NOx promote the conversion of
SO2 to sulfate in heavy pollution days, Sci. Rep.-UK, 4, 4172,
https://doi.org/10.1038/srep04172, 2014.
He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H.,
Zheng, G., Cheng, Y., Su, H., Liu, C., and Xie, Z.: Isotopic constraints on
heterogeneous sulfate production in Beijing haze, Atmos. Chem. Phys., 18,
5515–5528, https://doi.org/10.5194/acp-18-5515-2018, 2018.
He, X. and Zhang, Y.: Influence of relative humidity on SO2 oxidation
by O3 and NO2 on the surface of TiO2 particles: Potential for
formation of secondary sulfate aerosol, Spectrochim. Acta Pt. A, 219,
121–128, https://doi.org/10.1016/j.saa.2019.04.046, 2019.
Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A
critical evaluation of proxy methods used to estimate the acidity of
atmospheric particles, Atmos. Chem. Phys., 15, 2775–2790,
https://doi.org/10.5194/acp-15-2775-2015, 2015.
Himmelblau, D. M.: Diffusion of dissolved gases in liquids, Chem. Rev., 64,
527–550, https://doi.org/10.1021/cr60231a002, 1964.
Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of heterogeneous
reaction of sulfur dioxide on authentic mineral dust: effects of relative
humidity and hydrogen peroxide, Environ. Sci. Technol., 49, 10797–10805,
https://doi.org/10.1021/acs.est.5b03930, 2015.
Huang, L., Zhao, Y., Li, H., and Chen, Z.: Hydrogen peroxide maintains the
heterogeneous reaction of sulfur dioxide on mineral dust proxy particles,
Atmos. Environ., 141, 552–559,
https://doi.org/10.1016/j.atmosenv.2016.07.035, 2016.
Huang, L., An, J., Koo, B., Yarwood, G., Yan, R., Wang, Y., Huang, C., and Li, L.: Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 14311–14328, https://doi.org/10.5194/acp-19-14311-2019, 2019.
Huang, Z., Zhang, Z., Kong, W., Feng, S., Qiu, Y., Tang, S., Xia, C., Ma,
L., Luo, M., and Xu, D.: Synergistic effect among Cl2, SO2 and
NO2 in their heterogeneous reactions on gamma-alumina, Atmos. Environ.,
166, 403–411, https://doi.org/10.1016/j.atmosenv.2017.06.041, 2017.
Hung, H. and Hoffmann, M. R.: Oxidation of Gas-Phase SO2 on the
Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate
Radical Anion Formation in the Atmospheric Liquid Phase, Environ. Sci.
Technol., 49, 13768–13776, https://doi.org/10.1021/acs.est.5b01658, 2015.
Hung, H., Hsu, M., and Hoffmann, M. R.: Quantification of SO2 Oxidation
on Interfacial Surfaces of Acidic Micro-Droplets: Implication for Ambient
Sulfate Formation, Environ. Sci. Technol., 52, 9079–9086,
https://doi.org/10.1021/acs.est.8b01391, 2018.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8,
2000.
Jayne, J. T. and Davidovits, P.: Uptake of SO2(g) by Aqueous Surfaces
as a Function of pH: The Effect of Chemical Reaction at the Interface, J.
Phys. Chem., 94, 6041–6048, https://doi.org/10.1021/j100378a076, 1990.
Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G.,
Wu, H., Ren, J., Wang, Q., and Cribb, M.: Significant contribution of
organics to aerosol liquid water content in winter in Beijing, China, Atmos.
Chem. Phys., 20, 901–914, https://doi.org/10.5194/acp-20-901-2020, 2020.
Ke, Z., Liu, X., Wu, M., Shan, Y., and Shi, Y.: Improved Dust Representation
and Impacts on Dust Transport and Radiative Effect in CAM5, J. Adv. Model.
Earth Sy., 14, e2021MS002845, https://doi.org/10.1029/2021MS002845, 2022.
Keene, W. C., Pszenny, A. A. P., Maben, J. R., Stevenson, E., and Wall, A.:
Closure evaluation of size-resolved aerosol pH in the New England coastal
atmosphere during summer, J. Geophys. Res.-Atmos., 109, D23307,
https://doi.org/10.1029/2004JD004801, 2004.
Kim, J., Choe, Y. J., Kim, S. H., and Jeong, K.: Enhancing the decomposition
of refractory contaminants on SO -functionalized iron oxide to
accommodate surface SO -generated via radical transfer
from ⚫OH, Appl. Catal. B, 252, 62–76,
https://doi.org/10.1016/j.apcatb.2019.04.015, 2019.
Kong, L. D., Zhao, X., Sun, Z. Y., Yang, Y. W., Fu, H. B., Zhang, S. C.,
Cheng, T. T., Yang, X., Wang, L., and Chen, J. M.: The effect of nitrate on
the heterogeneous uptake of sulfur dioxide on hematite, Atmos. Chem. Phys.,
14, 9451–9467, https://doi.org/10.5194/acp-14-9451-2014, 2014.
Kumar, R., Barth, M. C., Madronich, S., Naja, M., Carmichael, G. R.,
Pfister, G. G., Knote, C., Brasseur, G. P., Ojha, N., and Sarangi, T.:
Effects of dust aerosols on tropospheric chemistry during a typical
pre-monsoon season dust storm in northern India, Atmos. Chem. Phys., 14,
6813–6834, https://doi.org/10.5194/acp-14-6813-2014, 2014.
Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S.
D., and Finlayson-Pitts, B. J.: Reactions at Interfaces as a Source of
Sulfate Formation in Sea-Salt Particles, Science, 301, 340–344,
https://doi.org/10.1126/science.1085374, 2003.
Li, G., Bei, N., Cao, J., Huang, R., and Wu, J.: A possible pathway for
rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17,
3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, G., Lu, D., Yang, X., Zhang, H., Guo, Y., Qu, G., Wang, P., Chen, L.,
Ruan, T., Hou, X., Jin, X., Zhang, R., Tan, Q., Zhai, S., Ma, Y., Yang, R.,
Fu, J., Shi, J., Liu, G., Wang, Q., Liang, Y., Zhang, Q., Liu, Q., and
Jiang, G.: Resurgence of Sandstorms Complicates China's Air Pollution
Situation, Environ. Sci. Technol., 55, 11467–11469,
https://doi.org/10.1021/acs.est.1c03724, 2021.
Li, J., Shang, J., and Zhu, T.: Heterogeneous reactions of SO2 on ZnO
particle surfaces, Sci. China: Chem., 54, 161–166,
https://doi.org/10.1007/s11426-010-4167-9, 2010.
Li, J., Zhang, Y., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.:
Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal
Ion-Catalyzed SO2 Oxidation in Haze Episodes, Environ. Sci. Technol.,
54, 2626–2634, https://doi.org/10.1021/acs.est.9b07150, 2020.
Li, K., Fang, X., Wang, T., Gong, K., Ali Tahir, M., Wang, W., Han, J.,
Cheng, H., Xu, G., and Zhang, L.: Atmospheric organic complexation enhanced
sulfate formation and iron dissolution on nano α-Fe2O3,
Environ. Sci. Nano, 8, 698–710, https://doi.org/10.1039/D0EN01220C, 2021.
Li, K., Kong, L., Zhanzakova, A., Tong, S., Shen, J., Wang, T., Chen, L.,
Li, Q., Fu, H., and Zhang, L.: Heterogeneous Conversion of SO2 on Nano
α-Fe2O3: the Effect of Morphology, Light Illumination and
Relative Humidity, Environ. Sci. Nano, 6, 1838–1851,
https://doi.org/10.1039/C9EN00097F, 2019.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, J. L., and Ding, J.:
Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone
on surface of calcium carbonate, Atmos. Chem. Phys., 6, 2453–2464,
https://doi.org/10.5194/acp-6-2453-2006, 2006.
Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, S., Li, H. J., Zhu, L. H.,
and Xu, B. Y.: Heterogeneous oxidation of sulfur dioxide by ozone on the
surface of sodium chloride and its mixtures with other components, J.
Geophys. Res., 112, D18301, https://doi.org/10.1029/2006JD008207, 2007.
Li, T., Wang, X., Chen, Y., Liang, J., and Zhou, L.: Producing ⚫OH, SO and ⚫O in heterogeneous
Fenton reaction induced by Fe3O4-modified schwertmannite, Chem.
Eng. J., 393, 124735, https://doi.org/10.1016/j.cej.2020.124735, 2020.
Li, S., Zhang, F., Jin, X., Sun, Y., Wu, H., Xie, C., Chen, L., Liu, J., Wu,
T., Jiang, S., Cribb, M., and Li, Z.: Characterizing the ratio of nitrate to
sulfate in ambient fine particles of urban Beijing during 2018–2019, Atmos.
Environ., 237, 117662, https://doi.org/10.1016/j.atmosenv.2020.117662,
2020.
Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of
sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,
J. Geophys. Res., 92, 4171–4177,
https://doi.org/10.1029/JD092iD04p04171, 1987.
Liu, C., Ma, Q., Liu, Y., Ma, J., and He, H.: Synergistic reaction between
SO2 and NO2 on mineral oxides: a potential formation pathway of
sulfate aerosol, Phys. Chem. Chem. Phys., 14, 1668–1676,
https://doi.org/10.1039/C1CP22217A, 2012.
Liu, J., Wu, D., Fan, S., Mao, X., and Chen, H.: A one-year, on-line,
multi-site observational study on water-soluble inorganic ions in PM2.5
over the Pearl River Delta region, China, Sci. Total Environ., 601/602,
1720–1732, https://doi.org/10.1016/j.scitotenv.2017.06.039, 2017.
Liu, T. and Abbatt, J. P. D.: Oxidation of sulfur dioxide by nitrogen
dioxide accelerated at the interface of deliquesced aerosol particles, Nat.
Chem., 13, 1173–1177, https://doi.org/10.1038/s41557-021-00777-0, 2021.
Liu, T., Clegg, S. L., and Abbatt, J. P. D.: Fast oxidation of sulfur
dioxide by hydrogen peroxide in deliquesced aerosol particles, P. Natl.
Acad. Sci. USA, 117, 1354–1359,
https://doi.org/10.1073/pnas.1916401117, 2020.
Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase Oxidation of
Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in
Polluted Environments, Environ. Sci. Technol., 55, 4227–4242,
https://doi.org/10.1021/acs.est.0c06496, 2021.
Liu, W., He, X., Pang, S., and Zhang, Y.: Effect of relative humidity on
O3 and NO2 oxidation of SO2 on α-Al2O3
particles, Atmos. Environ., 167, 245–253,
https://doi.org/10.1016/j.atmosenv.2017.08.028, 2017.
Liu, X., Chen, W., and Jiang, H.: Facile synthesis of
Ag Ag3PO4 AMB composite with improved photocatalytic performance,
Chem. Eng. J., 308, 889–896, https://doi.org/10.1016/j.cej.2016.09.125,
2017.
Liu, Y., Wang, T., Fang, X., Deng, Y., Cheng, H., Fu, H., and Zhang, L.:
Impact of greenhouse gas CO2 on the heterogeneous reaction of SO2
on alpha-Al2O3, Chinese Chem. Lett., 31, 2712–2716,
https://doi.org/10.1016/j.cclet.2020.04.037, 2020.
Liu, Y., Feng, Z., Zheng, F., Bao, X., Liu, P., Ge, Y., Zhao, Y., Jiang, T.,
Liao, Y., Zhang, Y., Fan, X., Yan, C., Chu, B., Wang, Y., Du, W., Cai, J.,
Bianchi, F., Petäjä, T., Mu, Y., He, H., and Kulmala, M.: Ammonium
nitrate promotes sulfate formation through uptake kinetic regime, Atmos.
Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021,
2021.
Liu, Y., Deng, Y., Liu, J., Fang, X., Wang, T., Li, K., Gong, K., Bacha, A.
U., Nabi, I., Ge, Q., Zhang, X., George, C., and Zhang, L.: A novel pathway
of atmospheric sulfate formation through carbonate radicals, Atmos. Chem.
Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, 2022.
Ma, Q., Liu, Y., and He, H.: Synergistic effect between NO2 and
SO2 in their adsorption and reaction on γ-Alumina, J. Phys.
Chem. A, 112, 6630–6635, https://doi.org/10.1021/jp802025z, 2008.
Ma, Q., Liu, Y., Liu, C., Ma, J., and He, H.: A case study of Asian dust
storm particles: Chemical composition, reactivity to SO2 and
hygroscopic properties, J. Environ. Sci., 24, 62–71,
https://doi.org/10.1016/S1001-0742(11)60729-8, 2012.
Ma, Q., Wang, T., Liu, C., He, H., Wang, Z., Wang, W., and Liang, Y.:
SO2 initiates the efficient conversion of NO2 to HONO on MgO
surface, Environ. Sci. Technol., 51, 3767–3775,
https://doi.org/10.1021/acs.est.6b05724, 2017.
Ma, Q., Wang, L., Chu, B., Ma, J., and He, H.: Contrary Role of H2O and
O2 in the Kinetics of Heterogeneous Photochemical Reactions of SO2
on TiO2, J. Phys. Chem. A, 123, 1311–1318,
https://doi.org/10.1021/acs.jpca.8b11433, 2018.
Martin, M. A., Childers, J. W., and Palmer, R. A.: Fourier transform
infrared photoacoustic spectroscopy characterization of sulfur-oxygen
species resulting from the reaction of SO2 with CaO and CaCO3,
Appl. Spectrosc., 41, 120–126, https://doi.org/10.1366/0003702874868151,
1987.
Maters, E. C., Delmelle, P., Rossi, M. J., and Ayris, P. M.: Reactive Uptake
of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient
Temperature, J. Geophys. Res.-Atmos., 122, 10077–10088,
https://doi.org/10.1002/2017JD026993, 2017.
Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P.,
Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V. M.,
and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,
Nature, 488, 193–196, https://doi.org/10.1038/nature11278, 2012.
Nanayakkara, C. E., Pettibone, J., and Grassian, V. H.: Sulfur dioxide
adsorption and photooxidation on isotopically-labeled titanium dioxide
nanoparticle surfaces: roles of surface hydroxyl groups and adsorbed water
in the formation and stability of adsorbed sulfite and sulfate, Phys. Chem.
Chem. Phys., 14, 6957–6966, https://doi.org/10.1039/c2cp23684b, 2012.
Nanayakkara, C. E., Larish, W. A., and Grassian, V. H.: Titanium dioxide
nanoparticle surface reactivity with atmospheric gases, CO2, SO2,
and NO2: roles of surface hydroxyl groups and adsorbed water in the
formation and stability of adsorbed products, J. Phys. Chem. C, 118,
23011–23021, https://doi.org/10.1021/jp504402z, 2014.
Ndour, M., Nicolas, M., D'Anna, B., Ka, O., and George, C.: Photoreactivity
of NO2 on mineral dusts originating from different locations of the
Sahara desert, Phys. Chem. Chem. Phys., 11, 1312–1319,
https://doi.org/10.1039/b806441e, 2009.
Park, J. and Jang, M.: Heterogeneous photooxidation of sulfur dioxide in
the presence of airborne mineral dust particles, RSC Adv., 6, 58617–58627,
https://doi.org/10.1039/C6RA09601H, 2016.
Park, J., Ivanov, A. V., and Molina, M. J.: Effect of Relative Humidity on
OH Uptake by Surfaces of Atmospheric Importance, J. Phys. Chem. A, 112,
6968–6977, https://doi.org/10.1021/jp8012317, 2008.
Park, J., Jang, M., and Yu, Z.: Heterogeneous Photo-oxidation of SO2 in
the Presence of Two Different Mineral Dust Particles: Gobi and Arizona Dust,
Environ. Sci. Technol., 51, 9605–9613,
https://doi.org/10.1021/acs.est.7b00588, 2017.
Peak, D., Ford, R. G., and Sparks, D. L.: An in situ ATR-FTIR investigation
of sulfate bonding mechanisms on Goethite., J. Colloid Interf. Sci., 218,
289–299, https://doi.org/10.1006/jcis.1999.6405, 1999.
Persson, P. and Vgren, L. L.: Potentiometric and spectroscopic studies of
sulfate complexation at the goethite-water interface, Geochim. Cosmochim.
Ac., 60, 2789–2799, https://doi.org/10.1016/0016-7037(96)00124-X, 1996.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg,
S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H.,
Kanakidou, M., Kelly, J. T., Ku, I., McNeill, V. F., Riemer, N., Schaefer,
T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J.,
Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and
clouds, Atmos. Chem. Phys., 20, 4809–4888,
https://doi.org/10.5194/acp-20-4809-2020, 2020.
Ravishankara, A. R.: Heterogeneous and Multiphase Chemistry in the
Troposphere, Science, 276, 1058–1064,
https://doi.org/10.1126/science.276.5315.1058, 1997.
Ren, Y., Wei, J., Wu, Z., Ji, Y., Bi, F., Gao, R., Wang, X., Wang, G., and
Li, H.: Chemical components and source identification of PM2.5 in
non-heating season in Beijing: The influences of biomass burning and dust,
Atmos. Res., 251, 105412, https://doi.org/10.1016/j.atmosres.2020.105412,
2021.
Rindelaub, J. D., Craig, R. L., Nandy, L., Bondy, A. L., Dutcher, C. S.,
Shepson, P. B., and Ault, A. P.: Direct Measurement of pH in Individual
Particles via Raman Microspectroscopy and Variation in Acidity with Relative
Humidity, J. Phys. Chem. A, 120, 911–917,
https://doi.org/10.1021/acs.jpca.5b12699, 2016.
Rossi, M. J.: Heterogeneous Reactions on Salts, Chem. Rev., 103, 4823–4882,
https://doi.org/10.1021/cr020507n, 2003.
Rubasinghege, G. and Grassian, V. H.: Role(s) of adsorbed water in the
surface chemistry of environmental interfaces, Chem. Commun., 49, 3071–3094,
https://doi.org/10.1039/C3CC38872G, 2013.
Sakata, K., Takahashi, Y., Takano, S., Matsuki, A., Sakaguchi, A., and
Tanimoto, H.: First X-ray Spectroscopic Observations of Atmospheric Titanium
Species: Size Dependence and the Emission Source, Environ. Sci. Technol.,
55, 10975–10986, https://doi.org/10.1021/acs.est.1c02000, 2021.
Sarwar, G., Fahey, K., Kwok, R., Gilliam, R. C., Roselle, S. J., Mathur, R.,
Xue, J., Yu, J., and Carter, W. P. L.: Potential impacts of two SO2
oxidation pathways on regional sulfate concentrations: Aqueous-phase
oxidation by NO2 and gas-phase oxidation by Stabilized Criegee
Intermediates, Atmos. Environ., 68, 186–197,
https://doi.org/10.1016/j.atmosenv.2012.11.036, 2013.
Scheinhardt, S., Müller, K., Spindler, G., and Herrmann, H.:
Complexation of trace metals in size-segregated aerosol particles at nine
sites in Germany, Atmos. Environ., 74, 102–109,
https://doi.org/10.1016/j.atmosenv.2013.03.023, 2013.
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, 3rd Edn., Wiley, ISBN 978-1-118-94740-1, 2016.
Shang, J., Li, J., and Zhu, T.: Heterogeneous reaction of SO2 on
TiO2 particles, Sci. China Chem., 53, 2637–2643,
https://doi.org/10.1007/s11426-010-4160-3, 2010.
Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R.
V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.:
Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese
haze events: air quality model assessment using observations of sulfate
oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107–6123,
https://doi.org/10.5194/acp-19-6107-2019, 2019.
Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S.,
Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron
solubility in the mineral dust by processes in the source region and the
atmosphere: A review, Aeolian Res., 5, 21–42,
https://doi.org/10.1016/j.aeolia.2012.03.001, 2012.
Song, S., Nenes, A., Gao, M., Zhang, Y., Liu, P., Shao, J., Ye, D., Xu, W.,
Lei, L., Sun, Y., Liu, B., Wang, S., and McElroy, M. B.: Thermodynamic
Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols
in Beijing Winter Haze Events during 2014/2015–2018/2019, Environ. Sci.
Technol. Lett., 6, 752–760, https://doi.org/10.1021/acs.estlett.9b00621,
2019.
Song, H., Lu, K., Ye, C., Dong, H., Li, S., Chen, S., Wu, Z., Zheng, M.,
Zeng, L., Hu, M., and Zhang, Y.: A comprehensive observation-based
multiphase chemical model analysis of sulfur dioxide oxidations in both
summer and winter, Atmos. Chem. Phys., 21, 13713–13727,
https://doi.org/10.5194/acp-21-13713-2021, 2021.
Stelson, A. W. and Seinfeld, J. H.: Chemical Mass Accounting of Urban
Aerosol, Environ. Sci. Technol., 15, 671–679,
https://doi.org/10.1021/es00088a005, 1981.
Su, H., Cheng, Y., and Pöschl, U.: New Multiphase Chemical Processes
Influencing Atmospheric Aerosols, Air Quality, and Climate in the
Anthropocene, Accounts Chem. Res., 53, 2034–2043,
https://doi.org/10.1021/acs.accounts.0c00246, 2020.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.:
Direct observations of the atmospheric processing of Asian mineral dust,
Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007,
2007.
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of water with
mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation,
and ice nucleation, Chem. Rev., 116, 4205–4259,
https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A.,
Zhang, Y., Gligorovski, S., Song, W., Ding, X., Bi, X., and Wang, X.:
Heterogeneous reactions of mineral dust aerosol: implications for
tropospheric oxidation capacity, Atmos. Chem. Phys., 17, 11727–11777,
https://doi.org/10.5194/acp-17-11727-2017, 2017.
Tang, M., Zhang, H., Gu, W., Gao, J., Jian, X., Shi, G., Zhu, B., Xie, L.,
Guo, L., Gao, X., Wang, Z., Zhang, G., and Wang, X.: Hygroscopic Properties
of Saline Mineral Dust From Different Regions in China: Geographical
Variations, Compositional Dependence, and Atmospheric Implications, J.
Geophys. Res.-Atmos., 124, 10844–10857,
https://doi.org/10.1029/2019JD031128, 2019.
Tao, W., Su, H., Zheng, G., Wang, J., Wei, C., Liu, L., Ma, N., Li, M.,
Zhang, Q., Pöschl, U., and Cheng, Y.: Aerosol pH and chemical regimes of
sulfate formation in aerosol water during winter haze in the North China
Plain, Atmos. Chem. Phys., 20, 11729–11746,
https://doi.org/10.5194/acp-20-11729-2020, 2020.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.,
Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T.,
Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S.,
Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, T.,
Kloster, S., Koch, D., A. Kirkevag, Kristjansson, J. E., Krol, M., Lauer,
A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari,
G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis
and quantification of the diversities of aerosol life cycles within AeroCom,
Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006,
2006.
Tian, R., Ma, X., Sha, T., Pan, X., and Wang, Z.: Exploring dust
heterogeneous chemistry over China: Insights from field observation and
GEOS-Chem simulation, Sci. Total Environ., 798, 149307,
https://doi.org/10.1016/j.scitotenv.2021.149307, 2021.
Tilgner, A., Schaefer, T., Alexander, B., Barth, M., Collett Jr., J. L.,
Fahey, K. M., Nenes, A., Pye, H. O. T., Herrmann, H., and McNeill, V. F.:
Acidity and the multiphase chemistry of atmospheric aqueous particles and
clouds, Atmos. Chem. Phys., 21, 13483–13536,
https://doi.org/10.5194/acp-21-13483-2021, 2021.
Tutsak, E. and Koçak, M.: High time-resolved measurements of
water-soluble sulfate, nitrate and ammonium in PM2.5 and their
precursor gases over the Eastern Mediterranean, Sci. Total Environ., 672,
212–226, https://doi.org/10.1016/j.scitotenv.2019.03.451, 2019.
Ullerstam, M., Vogt, R., Langer, S., and Ljungström, E.: The kinetics
and mechanism of SO2 oxidation by O3 on mineral dust, Phys. Chem.
Chem. Phys., 4, 4694–4699, https://doi.org/10.1039/B203529B, 2002.
Ullerstam, M., Johnson, M. S., Vogt, R., and Ljungstrom, E.: DRIFTS and
Knudsen cell study of the heterogeneous reactivity of SO2 and NO2
on mineral dust, Atmos. Chem. Phys., 3, 2043–2051,
https://doi.org/10.5194/acp-3-2043-2003, 2003.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M.,
Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one
full circuit around the globe, Nat. Geosci., 2, 557–560,
https://doi.org/10.1038/ngeo583, 2009.
Urupina, D., Lasne, J., Romanias, M. N., Thiery, V., Dagsson-Waldhauserova,
P., and Thevenet, F.: Uptake and surface chemistry of SO2 on natural
volcanic dusts, Atmos. Environ., 217, 116942,
https://doi.org/10.1016/j.atmosenv.2019.116942, 2019.
Urupina, D., Gaudion, V., Romanias, M. N., Verriele, M., and Thevenet, F.:
Method development and validation for the determination of sulfites and
sulfates on the surface of mineral atmospheric samples using reverse-phase
liquid chromatography, Talanta, 219, 121318,
https://doi.org/10.1016/j.talanta.2020.121318, 2020.
Urupina, D., Romanias, M. N., and Thevenet, F.: How Relevant Is It to Use
Mineral Proxies to Mimic the Atmospheric Reactivity of Natural Dust Samples?
A Reactivity Study Using SO2 as Probe Molecule, Minerals, 11, 282,
https://doi.org/10.3390/min11030282, 2021.
Urupina, D., Gaudion, V., Romanias, M. N., and Thevenet, F.: Surface
Distribution of Sulfites and Sulfates on Natural Volcanic and Desert Dusts:
Impact of Humidity and Chemical Composition, ACS Earth Space Chem., 6,
642–655, https://doi.org/10.1021/acsearthspacechem.1c00321, 2022.
Usher, C. R., Al-Hosney, H., Carlos-Cuellar, S., and Grassian, V. H.: A
laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide
on mineral dust particles, J. Geophys. Res.-Atmos., 107, 4713,
https://doi.org/10.1029/2002JD002051, 2002.
Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on mineral dust,
Chem. Rev., 103, 4883–4940, https://doi.org/10.1021/cr020657y, 2003.
Volkamer, R., San Martini, F., Molina, L. T., Salcedo, D., Jimenez, J. L.,
and Molina, M. J.: A missing sink for gas-phase glyoxal in Mexico City:
Formation of secondary organic aerosol, Geophys. Res. Lett., 34, L19807,
https://doi.org/10.1029/2007GL030752, 2007.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin,
Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang,
Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,
Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L.,
Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B.,
Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R.
A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London
Fog to Chinese haze, P. Natl. Acad. Sci. USA, 113, 13630–13635,
https://doi.org/10.1073/pnas.1616540113, 2016.
Wang, H., Zhong, C., Ma, Q., Ma, J., and He, H.: The adsorption and
oxidation of SO2 on MgO surface: experimental and DFT calculation
studies, Environ. Sci. Nano, 7, 1092–1101,
https://doi.org/10.1039/C9EN01474H, 2020.
Wang, K., Zhang, Y., Nenes, A., and Fountoukis, C.: Implementation of dust
emission and chemistry into the Community Multiscale Air Quality modeling
system and initial application to an Asian dust storm episode, Atmos. Chem.
Phys., 12, 10209–10237, https://doi.org/10.5194/acp-12-10209-2012, 2012.
Wang, K., Hattori, S., Lin, M., Ishino, S., Alexander, B., Kamezaki, K.,
Yoshida, N., and Kang, S.: Isotopic constraints on atmospheric sulfate
formation pathways in the Mt. Everest region, southern Tibetan Plateau,
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021,
2021.
Wang, R., Yang, N., Li, J., Xu, L., Tsona, N. T., Du, L., and Wang, W.:
Heterogeneous reaction of SO2 on CaCO3 particles: Different
impacts of NO2 and acetic acid on the sulfite and sulfate formation, J.
Environ. Sci., 114, 149–159, https://doi.org/10.1016/j.jes.2021.08.017, 2022.
Wang, S., Wang, L., Fan, X., Wang, N., Ma, S., and Zhang, R.: Formation
pathway of secondary inorganic aerosol and its influencing factors in
Northern China: Comparison between urban and rural sites, Sci. Total
Environ., 840, 156404, https://doi.org/10.1016/j.scitotenv.2022.156404,
2022.
Wang, T.: Date for “Significant formation of sulfate aerosols contributed
by the heterogeneous drivers of dust surface”, Mendeley Data [data set],
https://doi.org/10.17632/hyvdz7khs6.1, 2022.
Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: The influence
of temperature on the heterogeneous uptake of SO2 on hematite
particles, Sci. Total Environ., 644, 1493–1502,
https://doi.org/10.1016/j.scitotenv.2018.07.046, 2018a.
Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: Emerging
investigator series: heterogeneous reactions of sulfur dioxide on mineral
dust nanoparticles: from single component to mixed components, Environ.
Sci. Nano, 5, 1821–1833, https://doi.org/10.1039/C8EN00376A, 2018b.
Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: Adsorption of
SO2 on mineral dust particles influenced by atmospheric moisture,
Atmos. Environ., 191, 153–161,
https://doi.org/10.1016/j.atmosenv.2018.08.008, 2018c.
Wang, T., Liu, Y., Deng, Y., Cheng, H., Fang, X., and Zhang, L.:
Heterogeneous Formation of Sulfur Species on Manganese Oxides: Effects of
Particle Type and Moisture Condition, J. Phys. Chem. A, 124, 7300–7312,
https://doi.org/10.1021/acs.jpca.0c04483, 2020a.
Wang, T., Liu, Y., Deng, Y., Cheng, H., Yang, Y., Feng, Y., Zhang, L., Fu,
H., and Chen, J.: Photochemical Oxidation of Water-Soluble Organic Carbon
(WSOC) on Mineral Dust and Enhanced Organic Ammonium Formation, Environ.
Sci. Technol., 54, 15631–15642, https://doi.org/10.1021/acs.est.0c04616,
2020b.
Wang, T., Liu, M., Liu, M., Song, Y., Xu, Z., Shang, F., Huang, X., Liao,
W., Wang, W., Ge, M., Cao, J., Hu, J., Tang, G., Pan, Y., Hu, M., and Zhu,
T.: Sulfate Formation Apportionment during Winter Haze Events in North
China, Environ. Sci. Technol., 56, 7771–7778,
https://doi.org/10.1021/acs.est.2c02533, 2022.
Wang, W., Liu, M., Wang, T., Song, Y., Zhou, L., Cao, J., Hu, J., Tang, G.,
Chen, Z., Li, Z., Xu, Z., Peng, C., Lian, C., Chen, Y., Pan, Y., Zhang, Y.,
Sun, Y., Li, W., Zhu, T., Tian, H., and Ge, M.: Sulfate formation is
dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces
during haze events, Nat. Commun., 12, 1993,
https://doi.org/10.1038/s41467-021-22091-6, 2021.
Wang, X., Gemayel, R., Hayeck, N., Perrier, S., Charbonnel, N., Xu, C.,
Chen, H., Zhu, C., Zhang, L., Wang, L., Nizkorodov, S. A., Wang, X., Wang,
Z., Wang, T., Mellouki, A., Riva, M., Chen, J., and George, C.: Atmospheric
Photosensitization: A New Pathway for Sulfate Formation, Environ. Sci.
Technol., 54, 3114–3120, https://doi.org/10.1021/acs.est.9b06347, 2020.
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang,
Q., Philip, S., and Xie, Y.: Enhanced sulfate formation during China's
severe winter haze episode in January 2013 missing from current models, J.
Geophys. Res., 119, 10425–10440, https://doi.org/10.1002/2013jd021426, 2014.
Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V.
H., and Chen, J.: Enhanced heterogeneous uptake of sulfur dioxide on mineral
particles through modification of iron speciation during simulated cloud
processing, Atmos. Chem. Phys., 19, 12569–12585,
https://doi.org/10.5194/acp-19-12569-2019, 2019.
Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du,
W., Meng, J., Qiao, L., Zhou, M., Huang, C., and Wang, H.: Efficient
Heterogeneous Formation of Ammonium Nitrate on the Saline Mineral Particle
Surface in the Atmosphere of East Asia during Dust Storm Periods, Environ.
Sci. Technol., 54, 15622–15630, https://doi.org/10.1021/acs.est.0c04544,
2020.
Wu, L., Tong, S., Zhou, L., Wang, W., and Ge, M.: Synergistic effects
between SO2 and HCOOH on α-Fe2O3, J. Phys. Chem. A,
117, 3972–3979, https://doi.org/10.1021/jp400195f, 2013.
Wu, L. Y., Tong, S. R., Wang, W. G., and Ge, M. F.: Effects of temperature
on the heterogeneous oxidation of sulfur dioxide by ozone on calcium
carbonate, Atmos. Chem. Phys., 11, 6593–6605,
https://doi.org/10.5194/acp-11-6593-2011, 2011.
Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K.,
Guo, S., Zeng, L., and Zhang, Y.: Aerosol Liquid Water Driven by
Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over
the North China Plain, Environ. Sci. Technol. Lett., 5, 160–166,
https://doi.org/10.1021/acs.estlett.8b00021, 2018.
Xu, M., Qiu, P., He, Y., Guo, S., Bai, Y., Zhang, H., Zhao, S., Shen, X.,
Zhu, B., Guo, Q., and Guo, Z.: Sulfur isotope composition during
heterogeneous oxidation of SO2 on mineral dust: The effect of
temperature, relative humidity, and light intensity, Atmos. Res., 254,
105513, https://doi.org/10.1016/j.atmosres.2021.105513, 2021.
Xu, W., Kuang, Y., Liang, L., He, Y., Cheng, H., Bian, Y., Tao, J., Zhang,
G., Zhao, P., Ma, N., Zhao, H., Zhou, G., Su, H., Cheng, Y., Xu, X., Shao,
M., and Sun, Y.: Dust-Dominated Coarse Particles as a Medium for Rapid
Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air,
Environ. Sci. Technol., 54, 15710–15721,
https://doi.org/10.1021/acs.est.0c07243, 2020.
Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.:
Sulfate formation enhanced by a cocktail of high NOx, SO2,
particulate matter, and droplet pH during haze-fog events in megacities in
China: an observation-based modeling investigation, Environ. Sci. Technol.,
50, 7325–7334, https://doi.org/10.1021/acs.est.6b00768, 2016.
Yang, L., Yu, L. E., and Ray, M. B.: Degradation of paracetamol in aqueous
solutions by TiO2 photocatalysis, Water Res., 42, 3480–3488,
https://doi.org/10.1016/j.watres.2008.04.023, 2008.
Yang, N., Tsona, N. T., Cheng, S., Li, S., Xu, L., Wang, Y., Wu, L., and Du,
L.: Competitive reactions of SO2 and acetic acid on α-Al2O3 and CaCO3 particles, Sci. Total Environ., 699,
134362, https://doi.org/10.1016/j.scitotenv.2019.134362, 2020.
Yang, W., He, H., Ma, Q., Ma, J., Liu, Y., Liu, P., and Mu, Y.: Synergistic
formation of sulfate and ammonium resulting from reaction between SO2
and NH3 on typical mineral dust, Phys. Chem. Chem. Phys., 18, 956–964,
https://doi.org/10.1039/C5CP06144J, 2016.
Yang, W., Zhang, J., Ma, Q., Zhao, Y., Liu, Y., and He, H.: Heterogeneous
reaction of SO2 on manganese oxides: the effect of crystal structure
and relative humidity, Sci. Rep.-UK, 7, 4550,
https://doi.org/10.1038/s41598-017-04551-6, 2017.
Yang, W., Chen, M., Xiao, W., Guo, Y., Ding, J., Zhang, L., and He, H.:
Molecular Insights into NO-Promoted Sulfate Formation on Model TiO2
Nanoparticles with Different Exposed Facets, Environ. Sci. Technol., 52,
14110–14118, https://doi.org/10.1021/acs.est.8b02688, 2018a.
Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., Wang, L., and He, H.: Role of
NH3 in the Heterogeneous Formation of Secondary Inorganic Aerosols on
Mineral Oxides, J. Phys. Chem. A, 122, 6311–6320,
https://doi.org/10.1021/acs.jpca.8b05130, 2018b.
Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., and He, H.: The effect of water
on the heterogeneous reactions of SO2 and NH3 on the surfaces of
α-Fe2O3 and γ-Al2O3, Environ. Sci.
Nano, 6, 2749–2758, https://doi.org/10.1039/C9EN00574A, 2019.
Ye, C., Liu, P., Ma, Z., Xue, C., Zhang, C., Zhang, Y., Liu, J., Liu, C.,
Sun, X., and Mu, Y.: High H2O2 Concentrations Observed during Haze
Periods during the Winter in Beijing: Importance of H2O2 Oxidation
in Sulfate Formation, Environ. Sci. Technol. Lett., 5, 757–763,
https://doi.org/10.1021/acs.estlett.8b00579, 2018.
Ye, C., Lu, K., Song, H., Mu, Y., Chen, J., and Zhang, Y.: A critical review
of sulfate aerosol formation mechanisms during winter polluted periods, J.
Environ. Sci., in press, https://doi.org/10.1016/j.jes.2022.07.011, 2022.
Yin, Z., Wan, Y., Zhang, Y., and Wang, H.: Why super sandstorm 2021 in North
China, Natl. Sci. Rev., 9, nwab165, https://doi.org/10.1093/nsr/nwab165, 2021.
Yu, J.: An interfacial role for NO2, Nat. Chem., 13, 1158–1160,
https://doi.org/10.1038/s41557-021-00845-5, 2021.
Yu, T., Zhao, D., Song, X., and Zhu, T.: NO2-initiated multiphase
oxidation of SO2 by O2 on CaCO3 particles, Atmos. Chem.
Phys., 18, 6679–6689, https://doi.org/10.5194/acp-18-6679-2018, 2018.
Yu, Z., Jang, M., and Park, J.: Modeling atmospheric mineral aerosol
chemistry to predict heterogeneous photooxidation of SO2, Atmos. Chem.
Phys., 17, 10001–10017, https://doi.org/10.5194/acp-17-10001-2017, 2017.
Yue, F., Xie, Z., Zhang, P., Song, S., He, P., Liu, C., Wang, L., Yu, X.,
and Kang, H.: The role of sulfate and its corresponding S(IV) + NO2
formation pathway during the evolution of haze in Beijing, Sci. Total
Environ., 687, 741–751, https://doi.org/10.1016/j.scitotenv.2019.06.096,
2019.
Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y.,
Zhao, J., Liu, C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang, A. L.,
Ji, Y., Wang, G., Hu, M., Molina, M. J., and Zhang, R.: An unexpected
catalyst dominates formation and radiative forcing of regional haze, P.
Natl. Acad. Sci. USA, 117, 3960–3966,
https://doi.org/10.1073/pnas.1919343117, 2020.
Zhang, H., Xu, Y., and Jia, L.: A chamber study of catalytic oxidation of
SO2 by Mn2+ Fe3+ in aerosol water, Atmos. Environ., 245,
118019, https://doi.org/10.1016/j.atmosenv.2020.118019, 2021.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, S., Xing, J., Sarwar, G., Ge, Y., He, H., Duan, F., Zhao, Y., He, K.,
Zhu, L., and Chu, B.: Parameterization of heterogeneous reaction of SO2
to sulfate on dust with coexistence of NH3 and NO2 under different
humidity conditions, Atmos. Environ., 208, 133–140,
https://doi.org/10.1016/j.atmosenv.2019.04.004, 2019.
Zhang, X., Zhuang, G., Chen, J., Wang, Y., Wang, X., An, Z., and Zhang, P.:
Heterogeneous reaction of sulfur dioxide on typical mineral particles, J.
Phys. Chem. B, 110, 12588–12596, https://doi.org/10.1021/jp0617773, 2006.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M.,
and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal
variability, chemical signature, regional haze distribution and comparisons
with global aerosols, Atmos. Chem. Phys., 12, 779–799,
https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhang, Y., Tong, S. R., and Ge, M. F.: A study about the influence of the
size of CaCO3 on the heterogeneous oxidation of sulfur dioxide by
ozone, Spectrosc. Spect. Anal., 36, 126–127, 2016.
Zhang, Y., Tong, S., Ge, M., Jing, B., Hou, S., Tan, F., Chen, Y., Guo, Y.,
and Wu, L.: The influence of relative humidity on the heterogeneous
oxidation of sulfur dioxide by ozone on calcium carbonate particles, Sci.
Total Environ., 633, 1253–1262,
https://doi.org/10.1016/j.scitotenv.2018.03.288, 2018.
Zhang, Y., Bao, F., Li, M., Chen, C., and Zhao, J.: Nitrate-Enhanced
Oxidation of SO2 on Mineral Dust: A Vital Role of a Proton, Environ.
Sci. Technol., 53, 10139–10145, https://doi.org/10.1021/acs.est.9b01921,
2019.
Zhanzakova, A., Tong, S., Yang, K., Chen, L., Li, K., Fu, H., Wang, L., and
Kong, L.: The effects of surfactants on the heterogeneous uptake of sulfur
dioxide on hematite, Atmos. Environ., 213, 548–557,
https://doi.org/10.1016/j.atmosenv.2019.06.050, 2019.
Zhao, D., Song, X., Zhu, T., Zhang, Z., Liu, Y., and Shang, J.: Multiphase oxidation of SO2 by NO2 on CaCO3 particles, Atmos. Chem. Phys., 18, 2481–2493, https://doi.org/10.5194/acp-18-2481-2018, 2018.
Zhao, X., Kong, L., Sun, Z., Ding, X., Cheng, T., Yang, X., and Chen, J.:
Interactions between heterogeneous uptake and adsorption of sulfur dioxide
and acetaldehyde on hematite, J. Phys. Chem. A, 119, 4001–4008,
https://doi.org/10.1021/acs.jpca.5b01359, 2015.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F.
K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing
in current models to explain secondary inorganic aerosol formation during
the January 2013 haze episode in North China, Atmos. Chem. Phys., 15,
2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X.,
Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C. K., Gao, J., and McElroy, M.
B.: Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate
Formation for Winter Haze in China, Environ. Sci. Technol. Lett., 7, 632–638,
https://doi.org/10.1021/acs.estlett.0c00368, 2020.
Zheng, S., Huang, Q., Zhou, J., and Wang, B.: A study on dye photoremoval in
TiO2 suspension solution, J. Photochem. Photobiol., A, 108, 235–238,
https://doi.org/10.1016/S1010-6030(97)00014-2, 1997.
Zhou, L., Wang, W., Gai, Y., and Ge, M.: Knudsen cell and smog chamber study
of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust, J.
Environ. Sci., 26, 2423–2433, https://doi.org/10.1016/j.jes.2014.04.005,
2014.
Zhu, Y., Toon, O. B., Jensen, E. J., Bardeen, C. G., Mills, M. J., Tolbert,
M. A., Yu, P., and Woods, S.: Persisting volcanic ash particles impact
stratospheric SO2 lifetime and aerosol optical properties, Nat.
Commun., 11, 4526, https://doi.org/10.1038/s41467-020-18352-5, 2020.
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by...
Altmetrics
Final-revised paper
Preprint