Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-7023-2021
https://doi.org/10.5194/acp-21-7023-2021
Research article
 | 
07 May 2021
Research article |  | 07 May 2021

Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain

Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng

Related authors

Abundance of volatile organic compounds and their role in ozone pollution management: Evidence from multi-platform observations and model representations during the 2021–2022 field campaign in Hong Kong
Xueying Liu, Yeqi Huang, Yao Chen, Xin Feng, Yang Xu, Yi Chen, Dasa Gu, Hao Sun, Zhi Ning, Jianzhen Yu, Wing Sze Chow, Changqing Lin, Yan Xiang, Tianshu Zhang, Claire Granier, Guy Brasseur, Zhe Wang, and Jimmy C. H. Fung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3227,https://doi.org/10.5194/egusphere-2025-3227, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A new method to retrieve relative humidity profiles from a synergy of Raman lidar, microwave radiometer, and satellite
Chengli Ji, Qiankai Jin, Feilong Li, Yuyang Liu, Zhicheng Wang, Jiajia Mao, Xiaoyu Ren, Yan Xiang, Wanlin Jian, Zhenyi Chen, and Peitao Zhao
Atmos. Meas. Tech., 18, 3179–3191, https://doi.org/10.5194/amt-18-3179-2025,https://doi.org/10.5194/amt-18-3179-2025, 2025
Short summary
Tropospheric ozone sensing with a differential absorption lidar based on a single CO2 Raman cell
Guangqiang Fan, Yibin Fu, Juntao Huo, Yan Xiang, Tianshu Zhang, Wenqing Liu, and Zhi Ning
Atmos. Meas. Tech., 18, 443–453, https://doi.org/10.5194/amt-18-443-2025,https://doi.org/10.5194/amt-18-443-2025, 2025
Short summary
Summertime response of ozone and fine particulate matter to mixing layer meteorology over the North China Plain
Jiaqi Wang, Jian Gao, Fei Che, Xin Yang, Yuanqin Yang, Lei Liu, Yan Xiang, and Haisheng Li
Atmos. Chem. Phys., 23, 14715–14733, https://doi.org/10.5194/acp-23-14715-2023,https://doi.org/10.5194/acp-23-14715-2023, 2023
Short summary

Cited articles

Barrera, Y. D., Nehrkorn, T., Hegarty, J., Sargent, M., Benmergui, J., Gottlieb, E., Wofsy, S. C., DeCola, P., Hutyra, L., and Jones, T.: Using Lidar Technology To Assess Urban Air Pollution and Improve Estimates of Greenhouse Gas Emissions in Boston, Environ. Sci. Technol., 53, 8957–8966, https://doi.org/10.1021/acs.est.9b00650, 2019. 
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Zabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Camano, J. L. P., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 
Cao, F., Zhang, Y. L., Ren, L. J., Liu, J. W., Li, J., Zhang, G., Liu, D., Sun, Y. L., Wang, Z. F., Shi, Z. B., and Fu, P. Q.: New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes, Natl. Sci. Rev., 4, 804–806, https://doi.org/10.1093/nsr/nwx097, 2017. 
Chatani, S., Morikawa, T., Nakatsuka, S., Matsunaga, S., and Minoura, H.: Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan, Atmos. Environ., 45, 1383–1393, https://doi.org/10.1016/j.atmosenv.2010.12.036, 2011. 
Che, H., Gui, K., Xia, X., Wang, Y., Holben, B. N., Goloub, P., Cuevas-Agulló, E., Wang, H., Zheng, Y., Zhao, H., and Zhang, X.: Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth, Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, 2019a. 
Download
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Share
Altmetrics
Final-revised paper
Preprint