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Abstract. China has made great efforts to monitor and
control air pollution in the past decade. Comprehensive
characterization and understanding of pollutants in three-
dimensions are, however, still lacking. Here, we used data
from an observation network consisting of 13 aerosol li-
dars and more than 1000 ground observation stations
combined with a data assimilation technique to conduct
a comprehensive analysis of extreme heavy aerosol pol-
lution (HAP) over the North China Plain (NCP) from
November–December 2017. During the studied period, the
maximum hourly mass concentration of surface PM2.5
reached∼ 390 µg m−3. After assimilation, the correlation be-
tween model results and the independent observation sub-
dataset was ∼ 50 % higher than that without the assimila-
tion, and the root mean square error was reduced by ∼ 40 %.
From pollution development to dissipation, we divided the
HAP in the NCP (especially in Beijing) into four phases: an
early phase (EP), a transport phase (TP), an accumulation
phase (AP), and a removal phase (RP). We then analyzed the
evolutionary characteristics of PM2.5 concentration during
different phases on the surface and in 3-D space. We found
that the particles were mainly transported from south to north
at a height of 1–2 km (during EP and RP) and near the sur-
face (during TP and AP). The amounts of PM2.5 advected
into Beijing with the maximum transport flux intensity (TFI)
were through the pathways in the relative order of the south-
west> southeast> east pathways. The dissipation of PM2.5
in the RP stage (with negative TFI) was mainly from north to
south with an average transport height of ∼ 1 km above the

surface. Our results quantified the multi-dimensional distri-
bution and evolution of PM2.5 concentration over the NCP,
which may help policymakers develop efficient air pollution
control strategies.

1 Introduction

Frequent heavy air pollution has exerted significant impacts
on air visibility, climate, human health, and other environ-
mental concerns (J. Li et al., 2017; Gao et al., 2017; Pokharel
et al., 2019; Su et al., 2020). As a developing country with
the largest population in the world, China’s air quality has
exhibited an obvious improvement trend in recent years (Sun
et al., 2015; Cao et al., 2017). Regional air pollution in China
is still serious, however, especially the heavy aerosol pollu-
tion (HAP) caused by fine particulate matter (PM2.5) in win-
ter, which has attracted attention worldwide (Zheng et al.,
2015, 2019; X. Li et al., 2017; Cheng et al., 2016). There-
fore, providing a reliable distribution of the PM2.5 concen-
tration of HAP, especially at any time and at any height in a
given region, is particularly important in the quest for avoid-
ing public health problems and providing government poli-
cymakers with help in designing effective controls (Hu et al.,
2015).

Compared with other air pollutants (e.g., ozone and nitro-
gen dioxide), PM2.5 has a longer atmospheric lifetime (3–
5 d), during which it can be transported vertically to great

Published by Copernicus Publications on behalf of the European Geosciences Union.



7024 Y. Xiang et al.: Lidar vertical observation network and data assimilation reveal key processes

heights and horizontally hundreds of kilometers (Wang et
al., 2017; Zhang et al., 2014) depending on the meteo-
rological conditions (e.g., relative humidity and precipita-
tion) and chemical composition (Yang et al., 2017). Previ-
ous studies demonstrated that regional transport plays an im-
portant role for pollution formation in the major cities of
China, e.g., transport contributes over 50 % of the PM2.5
mass concentration in Beijing city, Shanghai city, Hangzhou
city, Guangzhou city, Hong Kong, and Chengdu city dur-
ing the relatively polluted period (Sun et al., 2017). An-
nually from 2005–2010, about 35.5 % (32.8 µg m−3) of the
PM2.5 in Beijing was attributed to regional transport from
the North China Plain (NCP), within which up to 60.4 %
(64.3 µg m−3) was from southerly and westerly air flows
(Wang et al., 2015). Since the 2013 implementation of the
most stringent clean air policy in China, the control of local
pollution sources has led to the rapid reduction of total PM2.5
concentration (J. Wang et al., 2019). It should be noted, how-
ever, that the local contributions, intra-regional transport, and
inter-regional transport accounted for 47 % (12.7 µg m−3),
25 % (6.6 µg m−3), and 28 % (7.6 µg m−3), respectively, of
the total PM2.5 for the Beijing-Tianjin-Hebei (BTH) re-
gion from 2014–2017, with the 2017 contribution of re-
gional transport to the BTH concentration rate ranging from
32.5 %–68.4 % (Dong et al., 2020).

Previous studies have shown that it is difficult to use sur-
face observations to characterize the impact of upper-level
pollutants in the atmosphere (X. Huang et al., 2018), which is
affected by local emissions, regional transport, meteorolog-
ical conditions, geographical factors, etc. (Tao et al., 2020;
Che et al., 2019a). Therefore, understanding the key pro-
cesses that drive the dynamic temporal and spatial evolu-
tionary characteristics of pollutants on the NCP is essential
for revealing the source and transport of aerosols, which has
different radiative forcing at different heights (Kumar et al.,
2017; Che et al., 2019b). Actually, stereo-monitoring devices
and technologies, such as lidar (Sheng et al., 2019; Fan et al.,
2019; Z. Chen et al., 2019), MAX-DOAS (Hong et al., 2018;
Zhang et al., 2020), and satellite remote sensing (Pang et al.,
2018; Schwartz et al., 2012; C. X. Zhang et al., 2019) can re-
veal the vertical distribution of pollutants at different heights
(Tian et al., 2017; Heese et al., 2017). Due to the limited spa-
tial and temporal observations, however, it is impossible to
provide physical and chemical properties in the atmosphere
at any time period and on any path, which makes it difficult
to directly reveal the formation and source of pollution.

On the other hand, although the distribution of pollu-
tants can be simulated by air quality models (M. Huang et
al., 2018; Zhang et al., 2008), large uncertainties remain,
mainly from the influence of emission inventory, meteoro-
logical fields, and some hypothetical conditions (Xu et al.,
2016; Zhang et al., 2017; Huang et al., 2016). Fortunately,
the above observed data and the results of the model can be
fused using data assimilation techniques, which can correct
the model simulation results via the observed data (Wang

et al., 2013; Ma et al., 2019). Research has shown that
mainstream data assimilation (DA) technologies, including
3DVAR (Jiang et al., 2013; Ma et al., 2018), 4DVAR (Yumi-
moto et al., 2008), and EnKF (D. Chen et al., 2019), can be
used to assimilate observation data from the surface, remote
sensing data (such as aerosol optical depth – AOD) from
satellites, and vertical profile data from lidar, all of which can
be used to improve the performance of the model, including
the simulation of PM2.5 and PM10.

In this study, we analyzed the observation data from a
vertical observation network consisting of 13 lidars and sur-
face observation stations during an extreme pollution event
in eastern China, especially in the NCP. Next, all of the data
were utilized by the Gridpoint Statistical Interpolation (GSI)
three-dimensional (3-D) variational (3DVAR) data assimi-
lation system to revise the PM2.5 results from the WRF-
Chem simulation (Pagowski et al., 2014). Finally, the multi-
dimensional evolutionary characteristics of PM2.5 at the sur-
face and in the vertical layer, as well as the 3-D distribu-
tion, were analyzed in detail. Although data assimilation has
been applied in China using surface observation network data
(Gao et al., 2017), AOD (Saide et al., 2013, 2014; Schwartz
et al., 2012; Liu et al., 2011), and lidar data (Cheng et al.,
2019), to our knowledge, this is the first attempt in China
to apply lidar network data to assimilation technology, from
which the high-precision 3-D distribution of pollutants can
be provided, thus supplying effective data support for clari-
fying the formation mechanism of pollutants (Zheng et al.,
2017).

2 Measurements and methods

2.1 Lidar observation network

The vertical aerosol observation network of the NCP was
composed of 13 aerosol lidar monitoring stations (Fig. 1)
covering four main transport channels of Beijing pollu-
tants, including the southwestern transport path of Baod-
ing City (BD), Shijiazhuang City (SJZ), Xingtai City (XT),
Handan City (HD), Xinxiang City (XX), and Yangquan
City (YQ); the southern transport path of Dezhou City (DZ)
and Jining City (JN); the southeastern transport path of Lang-
fang City (LF), Cangzhou City (CZ), and Zibo City (ZB); the
eastern transport path of Tianjin City (TJ); and a lidar in the
urban area of Beijing (BJ).

The lidar system was developed by the Anhui Institute of
Optics and Fine Mechanics (AIOFM), Chinese Academy of
Sciences (CAS), and was used for the long-term continuous
observation of aerosol vertical distribution. The lidar system
adopted the Nd:YAG laser, which emits a 532 nm wavelength
with 30 mJ single-pulse energy and 10–30 Hz pulse repeti-
tion frequency. The vertical resolution is 7.5 m with the orig-
inal time resolution of 3–10 min. The detection blind area
is 0.1 km, and more specific technical details can be found
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Figure 1. © Google Earth map of (a) China with the studied cities and (b) the North China Plain with all the lidar stations. The data in
brackets are the maximum PM2.5 concentrations (µg m−3) at the surface during the observation period. The black arrows in (b) from left to
right show that the main pollution pathways of Beijing come from the four directions of southwest, south, southeast, and east.

in Xiang et al. (2019). The vertical distribution of the aerosol
extinction coefficient was retrieved using the Fernald method
(Fernald, 1984), which is more suitable for vertical detection
and more accurate than the Collis (Collis et al., 1964) and
Klett (Klett, 1981) methods (Schafer et al., 2015). Further-
more, combining the extinction coefficient with the PM2.5
in situ surface observations, the vertical distribution of the
PM2.5 mass concentration in the boundary layer was ob-
tained using the empirical formula fitting method, which has
proven to be reliable and highly accurate; the specific techni-
cal details can be found in the literature (L. Lv et al., 2017;
Tao et al., 2016; L. H. Lv et al., 2017). In addition, an image
recognition algorithm was used to evaluate the height of the
atmospheric boundary layer (Xiang et al., 2019; Barrera et
al., 2019).

2.2 WRF-Chem model configurations

The WRF-Chem chemical transport model (version 3.8.1)
was used to investigate the particulate concentrations and
meteorological parameters in the study area and was con-
figured with nested domains consisting of 100×100 (36 km)
and 103×103 (12 km) grids (Fig. S1 in the Supplement). The
domain had 41 vertical layers from the surface to 50 hPa. To
better simulate the conditions within the boundary layer, the
resolution of the boundary layer was increased and 20 lay-
ers were set in the range of 0–2 km. The initial and bound-
ary meteorological conditions were derived from the 6 h Na-
tional Centers for Environmental Prediction Final Analy-
sis data with 1◦× 1◦ spatial resolution. The inventory of
anthropogenic emissions for 2016 was obtained from the
Multi-resolution Emission Inventory for China (MEIC) data
with 0.25◦× 0.25◦ resolution (Zhou et al., 2017). Terres-
trial biogenic emissions were estimated using the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
model (Chatani et al., 2011). The gas-phase chemistry mod-
ule CBM-Z and the Model for Simulating Aerosol Interac-

tions and Chemistry (MOSAIC) aerosol module were used in
this simulation. Detailed information concerning the model
configuration is provided in Table S1 in the Supplement. The
model runs from 20 November–9 December 2017, and the
results from 25 November–9 December 2017 were used for
the analysis in Sect. 3.

2.3 GSI 3DVAR DA system

The GSI DA (Gridpoint Statistical Interpolation Data Assim-
ilation) system provides 3DVAR analysis by minimizing the
cost function as shown below (Gao et al., 2017):

J (x)= (x− xb)
T B−1 (x− xb)+ (y−H(x))

T R−1(y−H(x)). (1)

In this equation, x is the analysis vector, xb denotes the
background vector, y is an observation vector, B represents
the background error covariance matrix, R represents the
observation error covariance matrix, and H is the obser-
vation operator used to transform model grid point values
to observed variables, which was performed via interpola-
tion in our research. The background error covariance ma-
trix was calculated using the National Meteorological Cen-
ter (NMC) method (Parrish and Derber, 1992; Saide et al.,
2013), which simulated the difference of results at the same
time (25 November 2017) with two different starting times
(20 and 21 November 2017, respectively). The 1 h assimi-
lated window data included 13 groups (see Fig. 1 for site
distribution) of PM2.5 vertical profiles retrieved from lidar
and the surface PM2.5 data from hundreds of surface mon-
itoring stations (see Fig. 5 for site distribution) from the
China Environmental Monitoring Center. The observation er-
rors of ground PM2.5 and its vertical distribution (through
the ground PM2.5 fitting method in Sect. 2.1) originated
from measurement errors and representative errors. The mea-
surement error was computed using ε0 = 1.5+ 0.0075 · obs
(Pagowski et al., 2014), where “obs” indicates observed
values. The representative error was computed using εr =
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Figure 2. PM2.5 mass concentration comparison results from lidar at different heights (b–d, f–h) and surface observations (a, e) with non-
assimilation simulations (a–d) and assimilation simulations (e–h).

γ ε0
√
1x/L (Elbern et al., 2007), where γ is the adjustable

scale factor (we used the value of 0.5 recommended by the
GSI system), 1x is the model grid resolution (we selected
12 km of domain 2), and L is the influencing radius (we used
60 km).

3 Results and discussion

3.1 Evaluation of assimilation performance using
vertical PM2.5 data

In order to evaluate the improvement of model simulation
performance from data assimilation using lidar vertical pro-
file data and surface station data, considering the sharp de-
cline of PM2.5 value at 1 km height (Fig. 6), only the non-
assimilation and assimilation results at the surface, 0.2, 0.5,
and 1 km were compared, as shown in Fig. 2. These data
were selected from five of the most polluted stations, in-
cluding the cities of TJ, LF, BD, SJZ, and XT. It should be
noted that these observation data were not assimilated, which
means that the following comparisons are independent (Boc-
quet et al., 2015). Obviously, the data assimilation used can
greatly improve the simulation accuracy. Compared with the
observation data at different heights (ground, 0.2, 0.5, and
1 km), the simulation results of PM2.5 levels under the con-
dition of non-assimilation were higher (Fig. 2a–d), the root
mean square error (RMSE) was 52.14± 20.27 µg m−3, and

the correlation coefficient was only 0.56±0.15. Correspond-
ingly, the results of PM2.5 simulated with assimilation were
closer to the observed values (Fig. 2e–h) and the RMSE was
33.07±14.69 µg m−3, which represents a reduction of about
40 % in simulation error after assimilation. The correlation
coefficient was 0.81±0.10, demonstrating that the simulation
accuracy was improved by about 50 % after assimilation.

In addition, compared with the simulation with assimila-
tion (Fig. 5 in Sect. 3.3), the results without assimilation were
significantly higher than the observed values (Fig. S2 in the
Supplement), especially during the pollution period (Fig. S2d
and e), which may be due to the simulation error caused by
the model (Zhang et al., 2016). Meanwhile, the comparison
of the 3-D results (Fig. 7 in Sect. 3.5 and Fig. S3 in the
Supplement) further reveals that the simulation results of up-
per air PM2.5 may also overestimate the actual values, which
demonstrates the importance of data assimilation in captur-
ing the 3-D structure of pollution.

3.2 The four phases from aerosol pollution
development to dissipation

Joint observations and analyses have been widely performed
in an effort to reveal the heavy aerosol pollution (HAP) in
the NCP region (Li et al., 2016; Zhang et al., 2018). The key
processes of a HAP event, from aerosol pollution develop-
ment to dissipation, usually include an early phase (EP), a
transport phase (TP), an accumulation phase (AP), and a re-
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Figure 3. Surface PM2.5 observations from different cities: (a) Bei-
jing (including Tianjin) and its (b) southwest cities, (c) southeast
cities, and (d) east cities for the period 25 November–9 Decem-
ber 2017. Superimposed colors represent the time-varying profiles
of the simulated wind fields in Beijing, Baoding, Dezhou, and Lang-
fang, respectively.

moval phase (RP) (Yuan et al., 2019; Zhong et al., 2017),
classifications that are based on the increase and decrease of
PM2.5 mass concentration in Beijing (BJ) caused by changes
in meteorological conditions. Here, the curves in Fig. 3 show
the temporal evolution of PM2.5 mass concentration mon-
itored at the surface in different cities on the NCP from
25 November–9 December 2017, while the superimposed
colors represent the time-varying profiles of the simulated
wind fields in BJ, Baoding (BD), Dezhou (DZ), and Lang-
fang (LF), respectively. Overall, PM2.5 with high concen-
trations was usually associated with pronounced southerly
winds (S in Fig. 3) or southwesterly winds (SW in Fig. 3),
while the PM2.5 concentrations decreased significantly under
the prevailing northerly winds (including the wind directions
of N, NW, and NE in Fig. 3).

Furthermore, in order to characterize the evolution of
PM2.5 during different pollution phases, the period from
29 November–5 December was selected as a typical ex-
treme HAP event covering the four pollution phases. This
extreme pollution event lasted more than 4 d and featured
a regional transport process. During the EP (29 November–
noon 30 November; episode 1 in Fig. 3), the air quality in BJ
and its surrounding areas such as Tianjin (TJ) was relatively
good, with an average PM2.5 value of ∼ 15 µg m−3, while
slight pollution occurred to the southwest of BJ, including
BD, Shijiazhuang (SJZ), Xingtai (XT), and Handan (HD),
with an average value of ∼ 50 µg m−3.

During the TP (approximately the morning of 2 Decem-
ber; episode 2 in Fig. 3), the variation of PM2.5 concentration
was more sensitive and responded rapidly to the wind shift
from northerly to southerly, causing the PM2.5 concentration
in Beijing to increase quickly from ∼ 30 to ∼ 50 µg m−3,
while southwest of Beijing (e.g., BD, SJZ, XT, and HD) the
PM2.5 concentration increased rapidly to ∼ 200 µg m−3. Re-
search has revealed that the pollutant transport south of Bei-
jing, especially in the southwest areas (the Taihang Moun-
tains), is the most important contribution source to Beijing
pollutants (Zhao et al., 2020). During the AP (approximately
3 December; episode 3 in Fig. 3), diffusion of the pollutants
was difficult due to the occurrence of a surface temperature
inversion in Beijing (Fig. 4) (L. L. Wang et al., 2019), which
caused the maximum concentration of PM2.5 in Beijing to
reach ∼ 250 µg m−3. Meanwhile, the PM2.5 concentrations
in TJ, LF, BD, and SJZ reached maximum values of ∼ 270,
250, 320, and 390 µg m−3, respectively. Conversely, the pol-
lution levels in Shanghai (SH), Hefei (HF), and Wuhan (WH)
in the southernmost section of the NCP were relatively low
with average values<∼ 60 µg m−3.

During the RP (approximately 5 December; episode 4 in
Fig. 3), the wind direction shifted from southwest to north,
transporting the relatively clean air in the north to the south
and thereby causing the pollutant concentrations in Beijing
to decrease rapidly. In just 9 h, the air quality improved from
heavy pollution to excellent, and the PM2.5 concentrations
in the NCP also decreased significantly. Finally, by noon on
4 December, the pollutant concentrations in the NCP had
reached a low level, with an average value of∼ 40 µg m−3. In
contrast, due to the continuous southward advection of pollu-
tants, serious pollution occurred in SH, HF, and WH, where
the PM2.5 concentrations reached maximum values of∼ 210,
310, and 280 µg m−3, respectively. These findings are also
consistent with the results of previous studies on the regional
transport of regional pollutants to the Yangtze River Delta
(Hua et al., 2015), which showed them to be due to the con-
tinuous southward flow of northwest and northeast winds.

3.3 Spatial distribution of PM2.5 concentration in the
surface layer

Additionally, in order to analyze the pollution characteris-
tics of the NCP, the spatial distribution results of PM2.5 after
data assimilation were plotted in Fig. 5 for all phases. The
high concentrations of PM2.5 in BJ were recorded during the
TP, AP, and beginning of the RP, while the PM2.5 concen-
trations at other times were lower. Moreover, during the EP,
only the eastern cities of Shanxi (SX) Province experienced
moderate pollution levels (Fig. 5a). During the TP, the pollu-
tants in the south-central NCP were transported to the north
of the NCP (Fig. 5b and c) as a result of the southwesterly
wind field, and under the superposition of the local pollu-
tant emissions from each city (J. Li et al., 2017), the cities
on the windward side of the Taihang Mountains (e.g., HD,
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Figure 4. Time series of vertical temperatures (a, c, e, g) and temperature gradients (b, d, f, h) from Beijing (a, b), Baoding (c, d),
Dezhou (e, f), and Langfang (g, h) simulated by the WRF-Chem model.

Figure 5. Spatial distribution of PM2.5 in the surface layer during different phases after assimilation. The black arrows indicate the wind
direction. The circles represent the in situ surface observations.
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Figure 6. Time series of vertical distributions of the aerosol extinction coefficient observed on the North China Plain from 29 November–
5 December 2017. The white dashed lines represent the approximate atmospheric boundary layer height. Missing datasets are plotted in
white.

SJZ, and BD) quickly developed varying levels of heavy pol-
lution. In addition, during the AP, due to the large-scale in-
version (Fig. 4b, d, f, h) caused by the rapid temperature rise
(Fig. 4a, c, e, g) of the NCP region at upper levels, the at-
mospheric stratification was stable, causing pollutant loading
on the NCP (including BJ, BD, SJZ, HD, LF, CZ, and else-
where) to increase (Fig. 5d), nearly reaching their pollution
maxima (Fig. 3). Meanwhile, during the RP, affected by the
cold air at upper levels (Fig. 4a, c, e, g) from the northwest
and the shift in wind direction over the NCP from southwest
to north, the pollution severity gradually eased from north to
south (Fig. 5e), with the air quality in the northern part of the
region improving significantly (Fig. 5f).

3.4 Vertical distribution of aerosols observed by the
lidar network

In order to quantify the characteristic vertical distribution of
aerosols, the observed aerosol extinction coefficients from
the 13 lidar stations in the NCP were plotted, as shown
in Fig. 6. These results revealed that on 29 November the

aerosol concentration at the surface was relatively low, al-
though pollutant transport at heights of 1–2 km (see Fig. 8a
and e) occurred at six stations (BD, SJZ, YQ, XT, HD, and
XX) on the windward side of the Taihang Mountains. Fig-
ure S4 in the Supplement demonstrates that these pollutants
in the upper air come from the local emissions on the ground,
which is due to the updraft lifting to 1–2 km above the ground
on the night of 28 November. The upper air transport of pol-
lutants continued until 1 December, at which point it merged
with the surface flow. Contrary to this, the pollutant trans-
port from north to south occurred at a height of 1 km during
the RP (e.g., Fig. 6b and d–g). In addition, the atmospheric
boundary layer height (ABLH) reached its highest value of
the observation period from 29 to 30 November, averaging
more than 1.5 km. The ABLH began to decrease on 1 De-
cember, averaging approximately 1 km on that day. The low-
est value of the ABLH occurred on 2–3 December, when its
average dropped to less than 0.5 km, making it difficult for
pollutants to diffuse and causing heavy pollution in the NCP
(Z. Q. Li et al., 2017). Fortunately, on 4 December, the at-
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Figure 7. 3-D distribution of PM2.5 during different phases after assimilation. Colors within the boxes depict the PM2.5 concentrations. The
color-coded arrows represent the wind direction and speed at 1 km. On the tops of the boxes, the spatial distributions of wind speed at 10 m
are plotted.

mospheric boundary layer gradually lifted, which was con-
ducive to the diffusion of pollutants.

3.5 Dynamic 3-D evolution of the PM2.5 concentrations

Figure 7 presents the 3-D distribution of PM2.5 after as-
similation, which clearly shows the generation, dissipation,
transport, and diffusion characteristics of pollutants in the
atmosphere. The tops of the boxes in the figure depict the
wind speeds 10 m above the surface. During the EP, the high-
concentration pollutants only occurred in the upper air within
∼ 1 km of the surface in SX Province (e.g., YQ). During
the TP, the high-concentration pollutants were mainly found
on the windward side of the Taihang Mountains (southwest
pathway) and the loading height of PM2.5 was< 1 km, which
is illustrated in Fig. 8. During the AP, the average concen-
tration of pollutants> 200 µg m−3 mainly occurred near the
surface. Meanwhile, the pollutants with low concentrations

at upper levels could be transported to the Bohai Sea. During
the RP, high-concentration pollutants> 100 µg m−3 simulta-
neously occurred over the Bohai Sea and the Yellow Sea.

3.6 Quantification of regional transport of PM2.5

To evaluate the variation of pollutants along different trans-
port pathways at different stages, we plotted the vertical pro-
file of the PM2.5 cross section along the main pollution path-
ways of Beijing coming from the four directions of south-
west, south, southeast, and east (see Fig. 1b and d). As shown
in Fig. 8, at XX and XT (located at the start of the southwest
transport pathway; Fig. 8a), the PM2.5 concentration is more
than 200 µg m−3 at a height of 1 km (Fig. 8a) and the surface
PM2.5 concentration at JN (located in the south pathway) also
exceeds 200 µg m−3 (Fig. 8b). These high concentrations of
pollutants were transported to SJZ, BD, LF, BJ, and other
cities via southwest winds (Fig. 8e–g). At the same time,
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Figure 8. Vertical profiles of PM2.5 cross sections with wind vectors along the transport pathways, including southwest (a, e, i, m),
south (b, f, j, n), southeast (c, g, k, o), and east (d, h, l, p). The first row (a–d) (00:00 LT 2 December 2017) represents the transport stage,
the second row (e–h) (10:00 LT 2 December 2017) represents the accumulation stage, and the third row (i–l) (00:00 LT, 3 December 2017)
and fourth row (m–p) (14:00 LT, 4 December 2017) represent the removal stage.

vertical downdrafts reduced the height of loading of aerosol
layer to ∼ 0.6 km (Fig. 8e). Different from the southern (in-
cluding southwest, south, and southeast) transport pathways,
the pollutants in TJ were mainly from BJ outflow in all stages
of the eastern transport pathways (Fig. 8d, h, l, p). In addi-
tion, wind direction inconsistencies at the origin (XX, JN,
and ZB) and target location (Beijing) of the transport path-
ways occurred at the beginning of the removal phase (Fig. 8i–
k), which may have been due to the southward delay of the
northerly air flow.

To investigate the vertical variation of PM2.5 inflow
or outflow at different heights and determine the height
at which the main transport occurred (H. Zhang et al.,
2019), we plotted the vertical distribution of PM2.5 trans-
port flux in different directions (Fig. 9). Here the PM2.5
transport flux is defined as the product of PM2.5 mass
concentration (µg m−3), wind speed (m s−1), and wind
direction projection in the current pathway (Xiang et al.,

2020). The southwest, southeast, and east pathways in
Fig. 9 were represented by BD, LF, and TJ, respectively,
which are the three lidar stations closest to BJ (Fig. 1).
TF> 0 indicates that the pollutants were imported to
Beijing, while TF< 0 indicates that the pollutants were
exported from Beijing. The results revealed that below
the height of 3 km, the order of the maximum values of
imported pollutants in the to Beijing direction was south-
west pathway (1122.8 µg m−2 s−1)> southeast pathway
(423.6 µg m−2 s−1)> east pathway (278.3 µg m−2 s−1),
while the exported pollutants in the from Beijing direction
was southwest pathway (−1571.4 µg m−2 s−1)> east
pathway (−877.7 µg m−2 s−1)> southeast pathway
(−772.4 µg m−2 s−1). Compared with the PM2.5 trans-
port flux on the ground surface, the relatively high value
(∼ 200 µg m−2 s−1) in the southwest pathway (Fig. 9a) oc-
curred on 29 November and early morning on 4 December,
while the relatively extreme value (∼−400 µg m−2 s−1)
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Figure 9. Time series of PM2.5 transport flux from different trans-
port pathways. The corresponding directions of the southwest,
southeast, and east pathways are shown in Fig. 1.

on the east pathway (Fig. 9c) was recorded on the night of
2 December.

To further obtain insights into the total transport charac-
teristics in the target area (BJ) and its surrounding area (BD,
LF, and TJ) during different evolutionary stages, the time se-
ries of the PM2.5 transport flux intensity (TFI) was shown
in Fig. 10. The TFI was calculated by integrating the PM2.5
transport flux from the ground to a certain height, and the
height was selected as 1.5 km, which is consistent with the
main transport height of pollutants (Fig. 8) and the height of
the boundary layer (Fig. 7). The TFI of PM2.5 further reveals
that pollutants imported into the Beijing area with a maxi-
mum PM2.5 TFI of ∼ 4.6×105 µg m−1 s−1 were transported
mainly via the southwest pathway during the TP, while the
extreme TFI of pollutants exported from Beijing via the east
pathway was approximately −1.4× 105 µg m−1 s−1. In ad-
dition, during the RP, the pollutants from Beijing were ex-
ported to the southwest and southeast, with extreme values
of approximately −1.03× 106 and −4.3× 105 µg m−1 s−1,
respectively. In contrast, the absolute value of TFI on the
southwest pathway was <∼ 1.0×104 µg m−1 s−1 during the
EP (Fig. 10), which indicates that there was no significant
inflow or outflow of pollutants. However, this reason was
mainly due to the offsetting of the inflow of pollutants in
the upper air and the outflow of pollutants near the ground
(Fig. 9a). This special phenomenon also demonstrates that
the study of vertical distribution of pollutants has great sig-
nificance, which can better explain the transport characteris-
tics (H. Zhang et al., 2019).

Figure 10. Time series of PM2.5 transport flux intensity from differ-
ent transport pathways. The corresponding directions of the south-
west, southeast, and east pathways are shown in Fig. 1.

4 Conclusions

Accurate quantification of the distribution of particulate mat-
ter in the atmosphere is a key requirement for predicting air
quality and estimating atmospheric environmental capacity
from atmospheric observations. We utilized a vertical obser-
vation network composed of 13 aerosol lidars combined with
data assimilation technology to improve the simulation ac-
curacy of PM2.5 and further analyzed the multi-dimensional
evolutionary characteristics of pollutants in the surface layer,
vertical layer, and 3-D space, thereby providing effective data
support for clarifying the spatial transport characteristics of
heavy pollution.

We found that the average height of the atmospheric
boundary layer was< 0.5 km during the HAP period. We fur-
ther demonstrated that the transport of pollutants in the NCP
region was mainly via three pathways: southwest, south-
east, and east. During the TP, the PM2.5 advected into Bei-
jing with a maximum transport flux intensity (TFI) of ∼
4.6×105 µg m−1 s−1 and was mainly via the southwest path-
way, while the polluted air mass in the RP dissipated from
Beijing via the southwest and southeast pathways, with ex-
treme PM2.5 TFI values of approximately −1.03× 106 and
−4.3× 105 µg m−1 s−1, respectively. In addition, the trans-
port of regional pollutants to the Yangtze River Delta was
due to the continuous southward flow of northwest and north-
east winds. Our results directly revealed that pollutants in the
North China Plain can be transported to the Yellow Sea and
the Bohai Sea, providing a dataset for a further in-depth study
of the mechanism of air pollution in the coastal areas of east-
ern China. This study also captured the regional transport of
air pollutants stretching over 1000 km, proving the necessity
and importance of the joint prevention and control of regional
air pollution.
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