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Figure S1. (a) Two-nested WRF-Chem modeling domains and (b) topographic elevation data in d02. 2 
The black arrows in (d) from left to right show that the main pollution pathways of Beijing come from 3 
the four directions of southwest, south, southeast, and east. 4 
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Figure S2. Spatial distribution of PM2.5 in the surface layer during different phases without assimilation. 6 
The black arrows indicate the wind direction. The circles represent the in-situ surface observations. 7 
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Figure S3. Three-dimensional distribution of PM2.5 during different phases without assimilation. Colors 3 
within the boxes depict the PM2.5 concentrations. The color-coded arrows represent the wind direction 4 
and speed at 1 km. On the tops of the boxes, the spatial distributions of wind speed at 10 m are plotted. 5 
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Figure S4. Time series of vertical distributions of the aerosol extinction coefficient (first column) 2 
observed and vertical wind velocity (second column) simulated on the North China Plain from 3 
November 28–November 30, 2017. Missing datasets are plotted in white.  4 
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Table S1. Configurations of WRF-Chem 1 

Physics WRF options 

Microphysics Lin scheme (Lin et al., 1983) 

Longwave radiation 
RRTMG scheme (Mlawer et al., 1997) 

Shortwave radiation 

Land surface Noah land surface scheme (Ek, 2003) 

Boundary layer scheme Yonsei University scheme (Hong, 2010) 

Cumulus parameterization Grell-Freitas ensemble scheme (Grell and Dévényi, 2002) 

Chemistry and aerosol Chem options 

Aerosol module MOSAIC (Zaveri et al., 2008) 

Gas-phase mechanism CBM-Z (Zaveri and Peters, 1999) 
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