Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-14725-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14725-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice-nucleating particle concentration measurements from Ny-Ålesund during the Arctic spring–summer in 2018
Institute of Atmospheric Sciences and Climate (ISAC), National
Research Council (CNR), 40129 Bologna, Italy
Naruki Hiranuma
Department of Life, Earth and Environmental Sciences, West Texas
A&M University, Canyon, TX, USA
Gianni Santachiara
Institute of Atmospheric Sciences and Climate (ISAC), National
Research Council (CNR), 40129 Bologna, Italy
Mauro Mazzola
Institute of Polar Sciences (ISP), National Research Council (CNR),
40129 Bologna, Italy
Karam Mansour
Institute of Atmospheric Sciences and Climate (ISAC), National
Research Council (CNR), 40129 Bologna, Italy
Department of Physics and Astronomy, University of Bologna, 40127
Bologna, Italy
Department of Oceanography, Faculty of Science, University of
Alexandria, 21511 Alexandria, Egypt
Marco Paglione
Institute of Atmospheric Sciences and Climate (ISAC), National
Research Council (CNR), 40129 Bologna, Italy
Cheyanne A. Rodriguez
Department of Life, Earth and Environmental Sciences, West Texas
A&M University, Canyon, TX, USA
Rita Traversi
Department of Chemistry “Ugo Schiff”, University of Florence, 50019
Florence, Italy
Silvia Becagli
Department of Chemistry “Ugo Schiff”, University of Florence, 50019
Florence, Italy
David Cappelletti
Dipartimento di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
Institute of Polar Sciences (ISP), National Research Council (CNR),
40129 Bologna, Italy
Franco Belosi
Institute of Atmospheric Sciences and Climate (ISAC), National
Research Council (CNR), 40129 Bologna, Italy
Related authors
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
EGUsphere, https://doi.org/10.5194/egusphere-2024-3629, https://doi.org/10.5194/egusphere-2024-3629, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740, https://doi.org/10.5194/essd-16-2717-2024, https://doi.org/10.5194/essd-16-2717-2024, 2024
Short summary
Short summary
We propose and evaluate machine learning predictive algorithms to model freshly formed biogenic methanesulfonic acid and sulfate concentrations. The long-term constructed dataset covers the North Atlantic at an unprecedented resolution. The improved parameterization of biogenic sulfur aerosols at regional scales is essential for determining their radiative forcing, which could help further understand marine-aerosol–cloud interactions and reduce uncertainties in climate models
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Stefano Decesari, Marco Paglione, Matteo Rinaldi, Manuel Dall'Osto, Rafel Simó, Nicola Zanca, Francesca Volpi, Maria Cristina Facchini, Thorsten Hoffmann, Sven Götz, Christopher Johannes Kampf, Colin O'Dowd, Darius Ceburnis, Jurgita Ovadnevaite, and Emilio Tagliavini
Atmos. Chem. Phys., 20, 4193–4207, https://doi.org/10.5194/acp-20-4193-2020, https://doi.org/10.5194/acp-20-4193-2020, 2020
Short summary
Short summary
Atmospheric aerosols in Antarctica contribute to regulate the delicate budget of cloud formation and precipitations. Besides the well-known biogenic production of sulfur-containing aerosol components such as methanesulfonate (MSA), the assessment of biological sources of organic particles in Antarctica remains an active area of research. Here we present the results of aerosol organic characterization during a research cruise performed in the Weddell Sea and in the Southern Ocean in Jan–Feb 2015.
Marco Paglione, Stefania Gilardoni, Matteo Rinaldi, Stefano Decesari, Nicola Zanca, Silvia Sandrini, Lara Giulianelli, Dimitri Bacco, Silvia Ferrari, Vanes Poluzzi, Fabiana Scotto, Arianna Trentini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Francesco Canonaco, André S. H. Prévôt, Paola Massoli, Claudio Carbone, Maria Cristina Facchini, and Sandro Fuzzi
Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, https://doi.org/10.5194/acp-20-1233-2020, 2020
Short summary
Short summary
Our multi-year observational study regarding organic aerosol (OA) in the Po Valley indicates that more than half of OA is of secondary origin (SOA) through all the year and at both urban and rural sites. Within the SOA, the measurements show the importance of biomass burning (BB) aging products during cold seasons and indicate aqueous-phase processing of BB emissions as a fundamental driver of SOA formation in wintertime, with important consequences for air quality policy at the global level.
Chunshui Lin, Darius Ceburnis, Ru-Jin Huang, Wei Xu, Teresa Spohn, Damien Martin, Paul Buckley, John Wenger, Stig Hellebust, Matteo Rinaldi, Maria Cristina Facchini, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 19, 14091–14106, https://doi.org/10.5194/acp-19-14091-2019, https://doi.org/10.5194/acp-19-14091-2019, 2019
Short summary
Short summary
To gain insight into the spatial and chemical variation in submicron aerosol, a nationwide characterization of wintertime PM1 was performed at four representative sites across Ireland. This nationwide source apportionment study highlights the large contribution of residential solid fuel burning to urban air pollution and has significant implications for aerosol regional-transport models.
Wan Ting Katty Huang, Luisa Ickes, Ina Tegen, Matteo Rinaldi, Darius Ceburnis, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11423–11445, https://doi.org/10.5194/acp-18-11423-2018, https://doi.org/10.5194/acp-18-11423-2018, 2018
Short summary
Short summary
In this study, we investigated the potential impact on clouds and climate by organic particles emitted from the ocean surface, using a global climate model. These particles have previously been found to promote ice crystal formation, which may alter the properties of clouds. Our study, however, found a weak global impact by these particles, which brings into question their relative importance and points to the need for further verification with other models and at more regional scales.
Jesús Vergara-Temprado, Benjamin J. Murray, Theodore W. Wilson, Daniel O'Sullivan, Jo Browse, Kirsty J. Pringle, Karin Ardon-Dryer, Allan K. Bertram, Susannah M. Burrows, Darius Ceburnis, Paul J. DeMott, Ryan H. Mason, Colin D. O'Dowd, Matteo Rinaldi, and Ken S. Carslaw
Atmos. Chem. Phys., 17, 3637–3658, https://doi.org/10.5194/acp-17-3637-2017, https://doi.org/10.5194/acp-17-3637-2017, 2017
Short summary
Short summary
We quantify the importance in the atmosphere of different aerosol components to contribute to global ice-nucleating particles concentrations (INPs). The aim is to improve the way atmospheric cloud-ice processes are represented in climate models so they will be able to make better predictions in the future. We found that a kind of dust (K-feldspar), together with marine organic aerosols, can help to improve the representation of INPs and explain most of their observations.
Francesca Costabile, Stefania Gilardoni, Francesca Barnaba, Antonio Di Ianni, Luca Di Liberto, Davide Dionisi, Maurizio Manigrasso, Marco Paglione, Vanes Poluzzi, Matteo Rinaldi, Maria Cristina Facchini, and Gian Paolo Gobbi
Atmos. Chem. Phys., 17, 313–326, https://doi.org/10.5194/acp-17-313-2017, https://doi.org/10.5194/acp-17-313-2017, 2017
Short summary
Short summary
We investigate the particle size distribution and spectral optical properties of brown carbon (BrC) associated with the formation of secondary aerosol in the ambient atmosphere and relate these properties to major aerosol chemical components. We found that BrC occurs in particles in the droplet mode size range, enriched in ammonium nitrate and poor in black carbon (BC), with a strong dependance on the organic aerosol to BC ratio.
Darius Ceburnis, Matteo Rinaldi, Jurgita Ovadnevaite, Giovanni Martucci, Lara Giulianelli, and Colin D. O'Dowd
Atmos. Chem. Phys., 16, 12425–12439, https://doi.org/10.5194/acp-16-12425-2016, https://doi.org/10.5194/acp-16-12425-2016, 2016
Silvia Sandrini, Dominik van Pinxteren, Lara Giulianelli, Hartmut Herrmann, Laurent Poulain, Maria Cristina Facchini, Stefania Gilardoni, Matteo Rinaldi, Marco Paglione, Barbara J. Turpin, Francesca Pollini, Silvia Bucci, Nicola Zanca, and Stefano Decesari
Atmos. Chem. Phys., 16, 10879–10897, https://doi.org/10.5194/acp-16-10879-2016, https://doi.org/10.5194/acp-16-10879-2016, 2016
Short summary
Short summary
This paper deals with impactor measurements performed in the summer 2012 during the EU project PEGASOS campaign in the Po Valley, at an urban and a rural site. The paper tries to disentangle the effects of weather anomalies (temporal and spatial) from those of diverse emissions (NH3) and chemical processes on the formation of secondary aerosols in the region, with special focus on nocturnal ammonium nitrate formation and its implications (aqueous formation of secondary organic aerosol).
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
M. Rinaldi, S. Gilardoni, M. Paglione, S. Sandrini, S. Fuzzi, P. Massoli, P. Bonasoni, P. Cristofanelli, A. Marinoni, V. Poluzzi, and S. Decesari
Atmos. Chem. Phys., 15, 11327–11340, https://doi.org/10.5194/acp-15-11327-2015, https://doi.org/10.5194/acp-15-11327-2015, 2015
Short summary
Short summary
This work highlights the important contribution of organic aerosols to the composition of submicron particles at remote mountain sites. Moreover, it confirms the importance of regional-scale physical and chemical processes and of transboundary transport in determining the background aerosol composition at rural European sites.
C. O'Dowd, D. Ceburnis, J. Ovadnevaite, A. Vaishya, M. Rinaldi, and M. C. Facchini
Atmos. Chem. Phys., 14, 10687–10704, https://doi.org/10.5194/acp-14-10687-2014, https://doi.org/10.5194/acp-14-10687-2014, 2014
S. Gilardoni, P. Massoli, L. Giulianelli, M. Rinaldi, M. Paglione, F. Pollini, C. Lanconelli, V. Poluzzi, S. Carbone, R. Hillamo, L. M. Russell, M. C. Facchini, and S. Fuzzi
Atmos. Chem. Phys., 14, 6967–6981, https://doi.org/10.5194/acp-14-6967-2014, https://doi.org/10.5194/acp-14-6967-2014, 2014
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
EGUsphere, https://doi.org/10.5194/egusphere-2024-3629, https://doi.org/10.5194/egusphere-2024-3629, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Luca Teruzzi, Andrea Spolaor, David Cappelletti, Claudio Artoni, and Marco A. C. Potenza
EGUsphere, https://doi.org/10.5194/egusphere-2024-2057, https://doi.org/10.5194/egusphere-2024-2057, 2024
Preprint archived
Short summary
Short summary
We present a novel probe to measure visible light penetration into the uppermost snow layers with high spatial resolution. The probe is designed to be lightweight and robust to be exploited in extreme environments, extrapolating to the UV region. Such experimental approach will allow to fill the gap in the current understanding of sunlight propagation through the snowpack, often based on numerical approaches, improving the understanding of those processes occurring in snow even in the UV region.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, and Andrea Spolaor
EGUsphere, https://doi.org/10.5194/egusphere-2024-1393, https://doi.org/10.5194/egusphere-2024-1393, 2024
Short summary
Short summary
Svalbard is a relevant area to evaluate changes in local environmental processes induced by Arctic Amplification (AA). By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we provide an overview of the potential impacts of AA on the Svalbard snowpack, and associated changes in aerosol production process, influenced by a complex interplay between atmospheric patterns, local and oceanic conditions that jointly drive snowpack impurity amounts and composition.
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740, https://doi.org/10.5194/essd-16-2717-2024, https://doi.org/10.5194/essd-16-2717-2024, 2024
Short summary
Short summary
We propose and evaluate machine learning predictive algorithms to model freshly formed biogenic methanesulfonic acid and sulfate concentrations. The long-term constructed dataset covers the North Atlantic at an unprecedented resolution. The improved parameterization of biogenic sulfur aerosols at regional scales is essential for determining their radiative forcing, which could help further understand marine-aerosol–cloud interactions and reduce uncertainties in climate models
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Antonio Donateo, Daniela Famulari, Donato Giovannelli, Arturo Mariani, Mauro Mazzola, Stefano Decesari, and Gianluca Pappaccogli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1440, https://doi.org/10.5194/egusphere-2024-1440, 2024
Short summary
Short summary
This study focuses on direct measurements of CO2 and CH4 turbulent eddy covariance fluxes in tundra ecosystems in the Svalbard Islands over a two-year period. Our results reveal dynamic interactions between climatic conditions and ecosystem activities such as photosynthesis and microbial activity. The observed net summertime methane uptake is correlated with the activation and aeration of soil microorganisms. High temperature anomalies increase CO2 and CH4 emissions.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Barbara Harm-Altstädter, Konrad Bärfuss, Lutz Bretschneider, Martin Schön, Jens Bange, Ralf Käthner, Radovan Krejci, Mauro Mazzola, Kihong Park, Falk Pätzold, Alexander Peuker, Rita Traversi, Birgit Wehner, and Astrid Lampert
Aerosol Research, 1, 39–64, https://doi.org/10.5194/ar-1-39-2023, https://doi.org/10.5194/ar-1-39-2023, 2023
Short summary
Short summary
We present observations of aerosol particles and meteorological parameters in the horizontal and vertical distribution measured with uncrewed aerial systems in the Arctic. The field campaign was carried out during the snow melting season, when ultrafine aerosol particles (UFPs) with a size between 3 and 12 nm occurred frequently. A high variability of the measured UFPs was identified in the spatial scale, which was strongly associated with different atmospheric boundary layer properties.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 7461–7477, https://doi.org/10.5194/acp-23-7461-2023, https://doi.org/10.5194/acp-23-7461-2023, 2023
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15 %–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
Antonio Donateo, Gianluca Pappaccogli, Daniela Famulari, Mauro Mazzola, Federico Scoto, and Stefano Decesari
Atmos. Chem. Phys., 23, 7425–7445, https://doi.org/10.5194/acp-23-7425-2023, https://doi.org/10.5194/acp-23-7425-2023, 2023
Short summary
Short summary
This work aims to measure the turbulent fluxes and the dry deposition velocity for size-segregated particles (from ultrafine to quasi-coarse range) at an Arctic site (Svalbard). Aiming to characterize the effect of surface properties on dry deposition, continuous observations were performed from the coldest months (on snow surface) to the snow melting period and throughout the summer (snow-free surface). A data fit of the deposition velocity as a function of particle diameters will be provided.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Xavier Giraud, Mélanie Baroni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2022-1455, https://doi.org/10.5194/egusphere-2022-1455, 2023
Preprint archived
Short summary
Short summary
The snowpack in High Antarctic Plateau is an interface medium between the atmosphere and the firn, where past climate conditions are recorded. Originating mainly from oceanic sources, chlorine is deposited along with snow. We propose a mechanism implying the diffusion of HCl at the scale of snow grains, longing a few decades for its release to the Antarctic atmosphere. Based on this scenario, the fate of the anthropogenic 36Cl originating from the nuclear tests can be forcasted.
Fabio Giardi, Silvia Nava, Giulia Calzolai, Giulia Pazzi, Massimo Chiari, Andrea Faggi, Bianca Patrizia Andreini, Chiara Collaveri, Elena Franchi, Guido Nincheri, Alessandra Amore, Silvia Becagli, Mirko Severi, Rita Traversi, and Franco Lucarelli
Atmos. Chem. Phys., 22, 9987–10005, https://doi.org/10.5194/acp-22-9987-2022, https://doi.org/10.5194/acp-22-9987-2022, 2022
Short summary
Short summary
The restriction measures adopted to contain the COVID-19 virus offered a unique opportunity to study urban particulate emissions in the near absence of traffic, which is one of the main emission sources in the urban environment. However, the drastic decrease in this source of particulate matter during the months of national lockdown did not lead to an equal decrease in the total particulate load. This is due to the inverse behavior shown by different sources, especially secondary sources.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022, https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
Short summary
Optical properties of surface aerosols at Dome C, Antarctica, in 2007–2013 and their potential source areas are presented. The equivalent black carbon (eBC) mass concentrations were compared with eBC measured at three other Antarctic sites: the South Pole (SPO) and two coastal sites, Neumayer and Syowa. Transport analysis suggests that South American BC emissions are the largest contributor to eBC at Dome C.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Marjan Marbouti, Sehyun Jang, Silvia Becagli, Gabriel Navarro, Rita Traversi, Kitack Lee, Tuomo Nieminen, Lisa J. Beck, Markku Kulmala, Veli-Matti Kerminen, and Mikko Sipilä
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-52, https://doi.org/10.5194/acp-2022-52, 2022
Publication in ACP not foreseen
Short summary
Short summary
This research was done to understand and investigate the roles of Chl-a, PP and sea ice extent in controlling and producing the in-situ measured MSA, SA, HIO3, HOM and aerosol concentrations over the Greenland and Barents Seas. Our results provide strong support to the hypothesis that MSA, SA and small-particle concentrations in the Svalbard area are directly linked to ocean biological activity and sea ice melting during springtime.
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing, and Philip Hopke
Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, https://doi.org/10.5194/acp-22-3067-2022, 2022
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from 10 stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer is smaller than in winter, and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Sehyun Jang, Ki-Tae Park, Kitack Lee, Young Jun Yoon, Kitae Kim, Hyun Young Chung, Eunho Jang, Silvia Becagli, Bang Yong Lee, Rita Traversi, Konstantinos Eleftheriadis, Radovan Krejci, and Ove Hermansen
Atmos. Chem. Phys., 21, 9761–9777, https://doi.org/10.5194/acp-21-9761-2021, https://doi.org/10.5194/acp-21-9761-2021, 2021
Short summary
Short summary
This study provides comprehensive datasets encompassing seasonal and interannual variations in sulfate and MSA concentration in aerosol particles in the Arctic atmosphere. As oxidation products of DMS have important roles in new particle formation and growth, we focused on factors affecting their variability and the branching ratio of DMS oxidation. We found a strong correlation between the ratio and the light condition, chemical properties of particles, and biological activities near Svalbard.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Hemanth S. K. Vepuri, Cheyanne A. Rodriguez, Dimitrios G. Georgakopoulos, Dustin Hume, James Webb, Gregory D. Mayer, and Naruki Hiranuma
Atmos. Chem. Phys., 21, 4503–4520, https://doi.org/10.5194/acp-21-4503-2021, https://doi.org/10.5194/acp-21-4503-2021, 2021
Short summary
Short summary
Due to a high frequency of storm events, West Texas is an ideal location to study ice-nucleating particles (INPs) in severe precipitation. Our results present that cumulative INP concentration in our precipitation samples below −20 °C could be high in the samples collected while observing > 10 mm h−1 precipitation with notably large hydrometeor sizes and an implication of cattle feedyard bacteria inclusion. Marine bacteria were found in a subset of our precipitation and cattle feedyard samples.
Ottmar Möhler, Michael Adams, Larissa Lacher, Franziska Vogel, Jens Nadolny, Romy Ullrich, Cristian Boffo, Tatjana Pfeuffer, Achim Hobl, Maximilian Weiß, Hemanth S. K. Vepuri, Naruki Hiranuma, and Benjamin J. Murray
Atmos. Meas. Tech., 14, 1143–1166, https://doi.org/10.5194/amt-14-1143-2021, https://doi.org/10.5194/amt-14-1143-2021, 2021
Short summary
Short summary
The Earth's climate is influenced by clouds, which are impacted by ice-nucleating particles (INPs), a minor fraction of atmospheric aerosols. INPs induce ice formation in clouds and thus often initiate precipitation formation. The Portable Ice Nucleation Experiment (PINE) is the first fully automated instrument to study cloud ice formation and to obtain long-term records of INPs. This is a timely development, and the capabilities it offers for research and atmospheric monitoring are significant.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Isabelle Steinke, Naruki Hiranuma, Roger Funk, Kristina Höhler, Nadine Tüllmann, Nsikanabasi Silas Umo, Peter G. Weidler, Ottmar Möhler, and Thomas Leisner
Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, https://doi.org/10.5194/acp-20-11387-2020, 2020
Short summary
Short summary
In this study, we highlight the potential impact of particles from certain terrestrial sources on the formation of ice crystals in clouds. In particular, we focus on biogenic particles consisting of various organic compounds, which makes it very difficult to predict the ice nucleation properties of complex ambient particles. We find that these ambient particles are often more ice active than individual components.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-574, https://doi.org/10.5194/acp-2020-574, 2020
Preprint withdrawn
Short summary
Short summary
We present the daily and seasonal variability of Black carbon inferred from two specific experiment based on the hourly and daily time resolution sampling strategy. These unique datasets give us for the first time the opportunity to evaluate the associations between the observed surface snow rBC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters, via a multiple linear regression approach.
Stefano Decesari, Marco Paglione, Matteo Rinaldi, Manuel Dall'Osto, Rafel Simó, Nicola Zanca, Francesca Volpi, Maria Cristina Facchini, Thorsten Hoffmann, Sven Götz, Christopher Johannes Kampf, Colin O'Dowd, Darius Ceburnis, Jurgita Ovadnevaite, and Emilio Tagliavini
Atmos. Chem. Phys., 20, 4193–4207, https://doi.org/10.5194/acp-20-4193-2020, https://doi.org/10.5194/acp-20-4193-2020, 2020
Short summary
Short summary
Atmospheric aerosols in Antarctica contribute to regulate the delicate budget of cloud formation and precipitations. Besides the well-known biogenic production of sulfur-containing aerosol components such as methanesulfonate (MSA), the assessment of biological sources of organic particles in Antarctica remains an active area of research. Here we present the results of aerosol organic characterization during a research cruise performed in the Weddell Sea and in the Southern Ocean in Jan–Feb 2015.
Marco Paglione, Stefania Gilardoni, Matteo Rinaldi, Stefano Decesari, Nicola Zanca, Silvia Sandrini, Lara Giulianelli, Dimitri Bacco, Silvia Ferrari, Vanes Poluzzi, Fabiana Scotto, Arianna Trentini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Francesco Canonaco, André S. H. Prévôt, Paola Massoli, Claudio Carbone, Maria Cristina Facchini, and Sandro Fuzzi
Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, https://doi.org/10.5194/acp-20-1233-2020, 2020
Short summary
Short summary
Our multi-year observational study regarding organic aerosol (OA) in the Po Valley indicates that more than half of OA is of secondary origin (SOA) through all the year and at both urban and rural sites. Within the SOA, the measurements show the importance of biomass burning (BB) aging products during cold seasons and indicate aqueous-phase processing of BB emissions as a fundamental driver of SOA formation in wintertime, with important consequences for air quality policy at the global level.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
Chunshui Lin, Darius Ceburnis, Ru-Jin Huang, Wei Xu, Teresa Spohn, Damien Martin, Paul Buckley, John Wenger, Stig Hellebust, Matteo Rinaldi, Maria Cristina Facchini, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 19, 14091–14106, https://doi.org/10.5194/acp-19-14091-2019, https://doi.org/10.5194/acp-19-14091-2019, 2019
Short summary
Short summary
To gain insight into the spatial and chemical variation in submicron aerosol, a nationwide characterization of wintertime PM1 was performed at four representative sites across Ireland. This nationwide source apportionment study highlights the large contribution of residential solid fuel burning to urban air pollution and has significant implications for aerosol regional-transport models.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Elena Barbaro, Cristiano Varin, Xanthi Pedeli, Jean Marc Christille, Torben Kirchgeorg, Fabio Giardi, David Cappelletti, Clara Turetta, Andrea Gambaro, Andrea Bernagozzi, Jean Charles Gallet, Mats P. Björkman, and Andrea Spolaor
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-124, https://doi.org/10.5194/tc-2019-124, 2019
Preprint withdrawn
Manuel Dall'Osto, David C. S. Beddows, Peter Tunved, Roy M. Harrison, Angelo Lupi, Vito Vitale, Silvia Becagli, Rita Traversi, Ki-Tae Park, Young Jun Yoon, Andreas Massling, Henrik Skov, Robert Lange, Johan Strom, and Radovan Krejci
Atmos. Chem. Phys., 19, 7377–7395, https://doi.org/10.5194/acp-19-7377-2019, https://doi.org/10.5194/acp-19-7377-2019, 2019
Short summary
Short summary
We present a cluster analysis of particle size distributions simultaneously collected from three European high Arctic sites centred in the Fram Strait during a 3-year period. Confined for longer time periods by consolidated pack sea ice regions, the Greenland site shows lower ultrafine-mode aerosol concentrations during summer relative to the Svalbard sites. Our study supports international environmental cooperation concerning the Arctic region.
Heike Wex, Lin Huang, Wendy Zhang, Hayley Hung, Rita Traversi, Silvia Becagli, Rebecca J. Sheesley, Claire E. Moffett, Tate E. Barrett, Rossana Bossi, Henrik Skov, Anja Hünerbein, Jasmin Lubitz, Mareike Löffler, Olivia Linke, Markus Hartmann, Paul Herenz, and Frank Stratmann
Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019, https://doi.org/10.5194/acp-19-5293-2019, 2019
Short summary
Short summary
We found an annual cycle for ice-nucleating particles in the Arctic. These particles are important for Arctic clouds, as they can change the lifetime of clouds. We suggest that higher concentrations of these particles in summertime originate from the Arctic biosphere (both marine and terrestrial). With a warming Arctic, these concentrations may increase further, influencing aerosol–cloud interactions and therewith the observed strong warming of the Arctic.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Kaitlyn J. Suski, David M. Bell, Naruki Hiranuma, Ottmar Möhler, Dan Imre, and Alla Zelenyuk
Atmos. Chem. Phys., 18, 17497–17513, https://doi.org/10.5194/acp-18-17497-2018, https://doi.org/10.5194/acp-18-17497-2018, 2018
Short summary
Short summary
This work investigates the cloud condensation nuclei and ice nucleation activity of bacteria using cloud chamber data and a single particle mass spectrometer. The size and chemical composition of the cloud residuals show that bacterial fragments mixed with agar growth media activate preferentially over intact bacteria cells as cloud condensation nuclei. Intact bacteria cells do not make it into cloud droplets; they thus cannot serve as immersion-mode ice nucleating particles.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Matthew Brege, Marco Paglione, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, and Lynn R. Mazzoleni
Atmos. Chem. Phys., 18, 13197–13214, https://doi.org/10.5194/acp-18-13197-2018, https://doi.org/10.5194/acp-18-13197-2018, 2018
Short summary
Short summary
The detailed molecular composition of ambient fog and aerosol influenced by regional biomass burning and secondary processes was studied. Aerosol and aqueous-phase functionalization and oxidation were observed, leading to fog compositions that are more "SOA-like" than aerosols. The significance of the aqueous phase in transforming the molecular chemistry and contributing to secondary organic aerosol is demonstrated here.
Alessandra D'Angelo, Federico Giglio, Stefano Miserocchi, Anna Sanchez-Vidal, Stefano Aliani, Tommaso Tesi, Angelo Viola, Mauro Mazzola, and Leonardo Langone
Biogeosciences, 15, 5343–5363, https://doi.org/10.5194/bg-15-5343-2018, https://doi.org/10.5194/bg-15-5343-2018, 2018
Short summary
Short summary
A 6-year time series of physical parameters and particle fluxes collected by a mooring in Kongsfjorden (Svalbard) suggests that the subglacial and watershed run-off driven by air temperature are the main processes affecting the lithogenic supply. As the Arctic temperature rises, glacier material will increase accordingly. The winter inflow of warm Atlantic waters is progressively increasing, hampering the nutrient supply from the bottom waters and severely reducing the biological production.
Wan Ting Katty Huang, Luisa Ickes, Ina Tegen, Matteo Rinaldi, Darius Ceburnis, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11423–11445, https://doi.org/10.5194/acp-18-11423-2018, https://doi.org/10.5194/acp-18-11423-2018, 2018
Short summary
Short summary
In this study, we investigated the potential impact on clouds and climate by organic particles emitted from the ocean surface, using a global climate model. These particles have previously been found to promote ice crystal formation, which may alter the properties of clouds. Our study, however, found a weak global impact by these particles, which brings into question their relative importance and points to the need for further verification with other models and at more regional scales.
Justyna Lisok, Anna Rozwadowska, Jesper G. Pedersen, Krzysztof M. Markowicz, Christoph Ritter, Jacek W. Kaminski, Joanna Struzewska, Mauro Mazzola, Roberto Udisti, Silvia Becagli, and Izabela Gorecka
Atmos. Chem. Phys., 18, 8829–8848, https://doi.org/10.5194/acp-18-8829-2018, https://doi.org/10.5194/acp-18-8829-2018, 2018
Short summary
Short summary
The aim of the presented study was to investigate the impact on the radiation budget and atmospheric dynamics of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. We found that the smoke plume may significantly alter radiative properties of the atmosphere. Furthermore, the simulations of atmospheric dynamics indicated a vertical positive displacement and broadening of the plume with time.
Roberto Salzano, Antonello Pasini, Antonietta Ianniello, Mauro Mazzola, Rita Traversi, and Roberto Udisti
Atmos. Chem. Phys., 18, 6959–6969, https://doi.org/10.5194/acp-18-6959-2018, https://doi.org/10.5194/acp-18-6959-2018, 2018
Short summary
Short summary
The radon progeny can describe the circulation of air masses in the Arctic region, evidencing a seasonality and stability dynamics that can influence the persistence of pollutants in the lower layer of the atmosphere. This paper, for the first time, considered high-time resolved radon-progeny measurements in the Arctic region. These data were used for tracing air masses in terms of age, origin, permafrost dynamics, seasonality and local effects.
Nicola Zanca, Andrew T. Lambe, Paola Massoli, Marco Paglione, David R. Croasdale, Yatish Parmar, Emilio Tagliavini, Stefania Gilardoni, and Stefano Decesari
Atmos. Chem. Phys., 17, 10405–10421, https://doi.org/10.5194/acp-17-10405-2017, https://doi.org/10.5194/acp-17-10405-2017, 2017
Short summary
Short summary
Simulating the composition of organic aerosol particles formed by chemical reactions in the atmosphere (secondary organic aerosol, SOA) is challenged by the enormous complexity of molecular species and chemical processes involved. We report spectroscopic (NMR) and chromatographic data for SOA samples obtained using a flow reactor designed to simulate photochemical ageing. We show that the composition of aged biogenic (monoterpene) SOA particles closely resembles that of ambient aerosols.
Jesús Vergara-Temprado, Benjamin J. Murray, Theodore W. Wilson, Daniel O'Sullivan, Jo Browse, Kirsty J. Pringle, Karin Ardon-Dryer, Allan K. Bertram, Susannah M. Burrows, Darius Ceburnis, Paul J. DeMott, Ryan H. Mason, Colin D. O'Dowd, Matteo Rinaldi, and Ken S. Carslaw
Atmos. Chem. Phys., 17, 3637–3658, https://doi.org/10.5194/acp-17-3637-2017, https://doi.org/10.5194/acp-17-3637-2017, 2017
Short summary
Short summary
We quantify the importance in the atmosphere of different aerosol components to contribute to global ice-nucleating particles concentrations (INPs). The aim is to improve the way atmospheric cloud-ice processes are represented in climate models so they will be able to make better predictions in the future. We found that a kind of dust (K-feldspar), together with marine organic aerosols, can help to improve the representation of INPs and explain most of their observations.
Silvia Becagli, Fabrizio Anello, Carlo Bommarito, Federico Cassola, Giulia Calzolai, Tatiana Di Iorio, Alcide di Sarra, José-Luis Gómez-Amo, Franco Lucarelli, Miriam Marconi, Daniela Meloni, Francesco Monteleone, Silvia Nava, Giandomenico Pace, Mirko Severi, Damiano Massimiliano Sferlazzo, Rita Traversi, and Roberto Udisti
Atmos. Chem. Phys., 17, 2067–2084, https://doi.org/10.5194/acp-17-2067-2017, https://doi.org/10.5194/acp-17-2067-2017, 2017
Short summary
Short summary
The paper aims to implement a specific strategy to target the aerosol due to ship emissions. PM10 is collected south and north of the main shipping route through the Mediterranean. Other than ions and metals the analysis is complemented with measurements of rare earth elements, trajectories from a high resolution regional model and actual observations of ship traffic. The combination of these approaches allows for unambiguous identification of the ship contribution (8–11 % of PM10) in this area.
Francesca Costabile, Stefania Gilardoni, Francesca Barnaba, Antonio Di Ianni, Luca Di Liberto, Davide Dionisi, Maurizio Manigrasso, Marco Paglione, Vanes Poluzzi, Matteo Rinaldi, Maria Cristina Facchini, and Gian Paolo Gobbi
Atmos. Chem. Phys., 17, 313–326, https://doi.org/10.5194/acp-17-313-2017, https://doi.org/10.5194/acp-17-313-2017, 2017
Short summary
Short summary
We investigate the particle size distribution and spectral optical properties of brown carbon (BrC) associated with the formation of secondary aerosol in the ambient atmosphere and relate these properties to major aerosol chemical components. We found that BrC occurs in particles in the droplet mode size range, enriched in ammonium nitrate and poor in black carbon (BC), with a strong dependance on the organic aerosol to BC ratio.
Luca Ferrero, David Cappelletti, Maurizio Busetto, Mauro Mazzola, Angelo Lupi, Christian Lanconelli, Silvia Becagli, Rita Traversi, Laura Caiazzo, Fabio Giardi, Beatrice Moroni, Stefano Crocchianti, Martin Fierz, Griša Močnik, Giorgia Sangiorgi, Maria G. Perrone, Marion Maturilli, Vito Vitale, Roberto Udisti, and Ezio Bolzacchini
Atmos. Chem. Phys., 16, 12601–12629, https://doi.org/10.5194/acp-16-12601-2016, https://doi.org/10.5194/acp-16-12601-2016, 2016
Short summary
Short summary
This study reports results from systematic vertical aerosol profiles measured in the Arctic using a tethered balloon platform. The collected data allowed for finding common rules of aerosol behavior along height and seasons. Transport events, secondary aerosol formation and ship impact are examples of the issues investigated along height. The importance of these issues is related to their climatic implications in reference to the aerosol direct and indirect effects in the Arctic atmosphere.
Darius Ceburnis, Matteo Rinaldi, Jurgita Ovadnevaite, Giovanni Martucci, Lara Giulianelli, and Colin D. O'Dowd
Atmos. Chem. Phys., 16, 12425–12439, https://doi.org/10.5194/acp-16-12425-2016, https://doi.org/10.5194/acp-16-12425-2016, 2016
Silvia Sandrini, Dominik van Pinxteren, Lara Giulianelli, Hartmut Herrmann, Laurent Poulain, Maria Cristina Facchini, Stefania Gilardoni, Matteo Rinaldi, Marco Paglione, Barbara J. Turpin, Francesca Pollini, Silvia Bucci, Nicola Zanca, and Stefano Decesari
Atmos. Chem. Phys., 16, 10879–10897, https://doi.org/10.5194/acp-16-10879-2016, https://doi.org/10.5194/acp-16-10879-2016, 2016
Short summary
Short summary
This paper deals with impactor measurements performed in the summer 2012 during the EU project PEGASOS campaign in the Po Valley, at an urban and a rural site. The paper tries to disentangle the effects of weather anomalies (temporal and spatial) from those of diverse emissions (NH3) and chemical processes on the formation of secondary aerosols in the region, with special focus on nocturnal ammonium nitrate formation and its implications (aqueous formation of secondary organic aerosol).
Naruki Hiranuma, Ottmar Möhler, Gourihar Kulkarni, Martin Schnaiter, Steffen Vogt, Paul Vochezer, Emma Järvinen, Robert Wagner, David M. Bell, Jacqueline Wilson, Alla Zelenyuk, and Daniel J. Cziczo
Atmos. Meas. Tech., 9, 3817–3836, https://doi.org/10.5194/amt-9-3817-2016, https://doi.org/10.5194/amt-9-3817-2016, 2016
Short summary
Short summary
A new pumped counterflow virtual impactor (PCVI) called the ice-selecting PCVI (IS-PCVI) has been developed to collect ice crystal residuals for investigating physico-chemical properties of ice-nucleating particles. The results show that the ice crystals of volume-equivalent diameter ~ 10 to 30 µm can be efficiently separated from the supercooled droplets and interstitial particles. The IS-PCVI is efficient when the counterflow-to-input flow ratio is within 0.09 to 0.18.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Fulvio Amato, Andrés Alastuey, Angeliki Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Mirko Severi, Silvia Becagli, Vorne L. Gianelle, Cristina Colombi, Celia Alves, Danilo Custódio, Teresa Nunes, Mario Cerqueira, Casimiro Pio, Konstantinos Eleftheriadis, Evangelia Diapouli, Cristina Reche, María Cruz Minguillón, Manousos-Ioannis Manousakas, Thomas Maggos, Stergios Vratolis, Roy M. Harrison, and Xavier Querol
Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, https://doi.org/10.5194/acp-16-3289-2016, 2016
Short summary
Short summary
Harmonized source apportionment of atmospheric particulate matter (PM10 and PM2.5) at 5 EU cities (Barcelona, Florence, Milan, Athens and Porto) reveals that vehicle exhaust (excluding nitrate) plus non-exhaust contributes 16–32 % to PM10 and 15–36 % to PM2.5. Secondary PM represents 37–82 % of PM2.5. Biomass burning varies from < 2 to 24 % of PM10, depending on the residential heating fuel. Other sources are local dust (7–19 % of PM10), industries (4–11 % of PM10), shipping, sea salt and Saharan dust.
S. Mailler, L. Menut, A. G. di Sarra, S. Becagli, T. Di Iorio, B. Bessagnet, R. Briant, P. Formenti, J.-F. Doussin, J. L. Gómez-Amo, M. Mallet, G. Rea, G. Siour, D. M. Sferlazzo, R. Traversi, R. Udisti, and S. Turquety
Atmos. Chem. Phys., 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, https://doi.org/10.5194/acp-16-1219-2016, 2016
Short summary
Short summary
We studied the impact of aerosols on tropospheric photolysis rates at Lampedusa during the CharMEx/ADRIMED campaign in June 2013. It is shown by using the CHIMERE chemistry-transport model (CTM) as well as in situ and remote-sensing measurements that taking into account the radiative effect of the tropospheric aerosols improves the ability of the model to reproduce the observed photolysis rates. It is hence important for CTMs to include the radiative effect of aerosols on photochemistry.
G. Calzolai, S. Nava, F. Lucarelli, M. Chiari, M. Giannoni, S. Becagli, R. Traversi, M. Marconi, D. Frosini, M. Severi, R. Udisti, A. di Sarra, G. Pace, D. Meloni, C. Bommarito, F. Monteleone, F. Anello, and D. M. Sferlazzo
Atmos. Chem. Phys., 15, 13939–13955, https://doi.org/10.5194/acp-15-13939-2015, https://doi.org/10.5194/acp-15-13939-2015, 2015
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
M. Rinaldi, S. Gilardoni, M. Paglione, S. Sandrini, S. Fuzzi, P. Massoli, P. Bonasoni, P. Cristofanelli, A. Marinoni, V. Poluzzi, and S. Decesari
Atmos. Chem. Phys., 15, 11327–11340, https://doi.org/10.5194/acp-15-11327-2015, https://doi.org/10.5194/acp-15-11327-2015, 2015
Short summary
Short summary
This work highlights the important contribution of organic aerosols to the composition of submicron particles at remote mountain sites. Moreover, it confirms the importance of regional-scale physical and chemical processes and of transboundary transport in determining the background aerosol composition at rural European sites.
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, and F. Stratmann
Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, https://doi.org/10.5194/acp-15-1463-2015, 2015
Short summary
Short summary
Immersion freezing measurements from seven different measurement techniques were intercompared using a biological ice nucleating material from bacteria. Although different techniques examined differently concentrated droplets, it was possible to find a uniform description, which showed that results from all experiments were generally in good agreement and were also in agreement with parameterizations published earlier in literature.
N. Hiranuma, M. Paukert, I. Steinke, K. Zhang, G. Kulkarni, C. Hoose, M. Schnaiter, H. Saathoff, and O. Möhler
Atmos. Chem. Phys., 14, 13145–13158, https://doi.org/10.5194/acp-14-13145-2014, https://doi.org/10.5194/acp-14-13145-2014, 2014
Short summary
Short summary
A new heterogeneous ice nucleation parameterization is developed and implemented in cloud models. The results of our simulations suggest stronger influence of dust particles lifted to the upper troposphere on heterogeneous nucleation and more ice nucleation at temperature and humidity conditions relevant to both mixed-phase and cirrus clouds when compared to the existing parametrical frameworks.
S. Decesari, J. Allan, C. Plass-Duelmer, B. J. Williams, M. Paglione, M. C. Facchini, C. O'Dowd, R. M. Harrison, J. K. Gietl, H. Coe, L. Giulianelli, G. P. Gobbi, C. Lanconelli, C. Carbone, D. Worsnop, A. T. Lambe, A. T. Ahern, F. Moretti, E. Tagliavini, T. Elste, S. Gilge, Y. Zhang, and M. Dall'Osto
Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014, https://doi.org/10.5194/acp-14-12109-2014, 2014
Short summary
Short summary
We made use of multiple spectrometric techniques for characterizing the aerosol chemical composition and mixing in the Po Valley in the summer.
The oxygenated organic aerosol (OOA) concentrations were correlated with simple tracers for recirculated planetary boundary layer air.
A full internal mixing between black carbon (BC) and the non-refractory aerosol components was never observed. Local sources in the Po Valley were responsible for the production of organic particles unmixed with BC.
C. O'Dowd, D. Ceburnis, J. Ovadnevaite, A. Vaishya, M. Rinaldi, and M. C. Facchini
Atmos. Chem. Phys., 14, 10687–10704, https://doi.org/10.5194/acp-14-10687-2014, https://doi.org/10.5194/acp-14-10687-2014, 2014
L. Ferrero, M. Castelli, B. S. Ferrini, M. Moscatelli, M. G. Perrone, G. Sangiorgi, L. D'Angelo, G. Rovelli, B. Moroni, F. Scardazza, G. Močnik, E. Bolzacchini, M. Petitta, and D. Cappelletti
Atmos. Chem. Phys., 14, 9641–9664, https://doi.org/10.5194/acp-14-9641-2014, https://doi.org/10.5194/acp-14-9641-2014, 2014
S. Gilardoni, P. Massoli, L. Giulianelli, M. Rinaldi, M. Paglione, F. Pollini, C. Lanconelli, V. Poluzzi, S. Carbone, R. Hillamo, L. M. Russell, M. C. Facchini, and S. Fuzzi
Atmos. Chem. Phys., 14, 6967–6981, https://doi.org/10.5194/acp-14-6967-2014, https://doi.org/10.5194/acp-14-6967-2014, 2014
M. Paglione, S. Saarikoski, S. Carbone, R. Hillamo, M. C. Facchini, E. Finessi, L. Giulianelli, C. Carbone, S. Fuzzi, F. Moretti, E. Tagliavini, E. Swietlicki, K. Eriksson Stenström, A. S. H. Prévôt, P. Massoli, M. Canaragatna, D. Worsnop, and S. Decesari
Atmos. Chem. Phys., 14, 5089–5110, https://doi.org/10.5194/acp-14-5089-2014, https://doi.org/10.5194/acp-14-5089-2014, 2014
N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler
Atmos. Chem. Phys., 14, 2315–2324, https://doi.org/10.5194/acp-14-2315-2014, https://doi.org/10.5194/acp-14-2315-2014, 2014
M. Marconi, D. M. Sferlazzo, S. Becagli, C. Bommarito, G. Calzolai, M. Chiari, A. di Sarra, C. Ghedini, J. L. Gómez-Amo, F. Lucarelli, D. Meloni, F. Monteleone, S. Nava, G. Pace, S. Piacentino, F. Rugi, M. Severi, R. Traversi, and R. Udisti
Atmos. Chem. Phys., 14, 2039–2054, https://doi.org/10.5194/acp-14-2039-2014, https://doi.org/10.5194/acp-14-2039-2014, 2014
M. Paglione, A. Kiendler-Scharr, A. A. Mensah, E. Finessi, L. Giulianelli, S. Sandrini, M. C. Facchini, S. Fuzzi, P. Schlag, A. Piazzalunga, E. Tagliavini, J. S. Henzing, and S. Decesari
Atmos. Chem. Phys., 14, 25–45, https://doi.org/10.5194/acp-14-25-2014, https://doi.org/10.5194/acp-14-25-2014, 2014
E. Järvinen, A. Virkkula, T. Nieminen, P. P. Aalto, E. Asmi, C. Lanconelli, M. Busetto, A. Lupi, R. Schioppo, V. Vitale, M. Mazzola, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 13, 7473–7487, https://doi.org/10.5194/acp-13-7473-2013, https://doi.org/10.5194/acp-13-7473-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Measurement Report: Comparative Analysis of Fluorescing African Dust Particles in Spain and Puerto Rico
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Characterization of aerosol over the Eastern Mediterranean by polarization sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-1502, https://doi.org/10.5194/egusphere-2024-1502, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than -35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic and it is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1059, https://doi.org/10.5194/egusphere-2024-1059, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol-cloud interactions in a global scale. This is crucial for improving climate models since aerosol-cloud interactions are the most important source of uncertainty in climate projections.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol Bracero
EGUsphere, https://doi.org/10.5194/egusphere-2024-446, https://doi.org/10.5194/egusphere-2024-446, 2024
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain The measurements were with two Wideband Integrated Bioaerosol Spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Cited articles
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian,
K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The
importance of feldspar for ice nucleation by mineral dust in mixed-phase
clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013.
Beall, C. M., Lucero, D., Hill, T. C., DeMott, P. J., Stokes, M. D., and Prather, K. A.: Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments, Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, 2020.
Becagli, S., Ghedini, C., Peeters, S., Rottiers, A., Traversi, R., Udisti,
R., Chiari, M., Jalba, A., Despiau, S., Dayan, U., and Temara, A.: MBAS
(Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates)
in Mediterranean coastal aerosols: Sources and transport processes,
Atmos. Environ., 45, 6788–6801, https://doi.org/10.1016/j.atmosenv.2011.04.041,
2011.
Beck, L. J., Sarnela, N., Junninen, H., Hoppe, C. J. M., Garmash, O.,
Bianchi, F., Riva, M., Rose, C., Perakyla, O., Wimmer, D., Kausiala, O.,
Jokinen, T., Ahonen, L., Mikkila, J., Hakala, J., He, X. C., Kontkanen, J.,
Wolf, K. K. E., Cappelletti, D., Mazzola, M., Traversi, R., Petroselli, C.,
Viola, A. P., Vitale, V., Lange, R., Massling, A., Nojgaard, J. K., Krejci,
R., Karlsson, L., Zieger, P., Jang, S., Lee, K., Vakkari, V., Lampilahti,
J., Thakur, R. C., Leino, K., Kangasluoma, J., Duplissy, E. M., Siivola, E.,
Marbouti, M., Tham, Y. J., Saiz-Lopez, A., Petaja, T., Ehn, M., Worsnop, D.
R., Skov, H., Kulmala, M., Kerminen, V. M., and Sipila, M.: Differing
Mechanisms of New Particle Formation at Two Arctic Sites, Geophys.
Res. Lett., 48, e2020GL091334, https://doi.org/10.1029/2020gl091334, 2021.
Belosi, F., Piazza, M., Nicosia, A., and Santachiara, G.: Influence of
supersaturation on the concentration of ice nucleating particles, Tellus
B, 70, 1–10,
https://doi.org/10.1080/16000889.2018.1454809, 2018.
Bergeron, T.: On the Physics of clouds and precipitation, in: Proces Verbaux
de l'Association de Meteorologie, Imprimerie Paul Dupont, Paris, France, 156–178, 1935.
Bigg, E. K.: Ice forming nuclei in the high Arctic, Tellus B, 48, 223–233,
https://doi.org/10.1034/j.1600-0889.1996.t01-1-00007.x, 1996.
Bigg, E. K. and Leck, C.: Cloud-active particles over the central Arctic
Ocean, J. Geophys. Res.-Atmos., 106, 32155–32166,
https://doi.org/10.1029/1999jd901152, 2001.
Boose, Y., Sierau, B., García, M. I., Rodríguez, S., Alastuey, A., Linke, C., Schnaiter, M., Kupiszewski, P., Kanji, Z. A., and Lohmann, U.: Ice nucleating particles in the Saharan Air Layer, Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016, 2016.
Borys, R. D.: The effects of long-range transport of air pollutants on
Arctic cloud-active aerosol, Atmospheric Science, Colorado State University,
Fort Collins, Colorado, USA, 367 pp., 1983.
Buck, A. L.: New Equations for Computing Vapor Pressure and Enhancement Factor, J. Appl. Meteorol., 20, 1527–1532,
https://doi.org/10.1175/1520-0450(1981)020<1527:nefcvp>2.0.co;2, 1981.
Conen, F., Stopelli, E., and Zimmermann, L.: Clues that decaying leaves
enrich Arctic air with ice nucleating particles, Atmos. Environ.,
129, 91–94, https://doi.org/10.1016/j.atmosenv.2016.01.027, 2016.
Creamean, J. M., Kirpes, R. M., Pratt, K. A., Spada, N. J., Maahn, M., de Boer, G., Schnell, R. C., and China, S.: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location, Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018, 2018.
Crocker, D. R., Hernandez, R. E., Huang, H. D., Pendergraft, M. A., Cao, R.
C., Dai, J. Y., Morris, C. K., Deane, G. B., Prather, K. A., and Thiemens,
M. H.: Biological Influence on delta C-13 and Organic Composition of Nascent
Sea Spray Aerosol, Earth Space Chem., 4, 1686–1699,
https://doi.org/10.1021/acsearthspacechem.0c00072, 2020.
Dai, C. Y., Gao, Z. Q., Wang, Q., and Cheng, G.: Analysis of Atmospheric
Boundary Layer Height Characteristics over the Arctic Ocean Using the
Aircraft and GPS Soundings, Atmos. Ocean. Sci. Lett., 4,
124–130, https://doi.org/10.1080/16742834.2011.11446916, 2011.
Dall'Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Strom, J.,
Hansson, H. C., Yoon, Y. J., Park, K. T., Becagli, S., Udisti, R., Onasch,
T., O'Dowd, C. D., Simo, R., and Harrison, R. M.: Arctic sea ice melt leads
to atmospheric new particle formation, Sci. Rep.-UK, 7, 3318,
https://doi.org/10.1038/s41598-017-03328-1, 2017.
Dall'Osto, M., Geels, C., Beddows, D. C. S., Boertmann, D., Lange, R.,
Nojgaard, J. K., Harrison, R. M., Simo, R., Skov, H., and Massling, A.:
Regions of open water and melting sea ice drive new particle formation in
North East Greenland, Sci. Rep.-UK, 8, 6109, https://doi.org/10.1038/s41598-018-24426-8,
2018.
Dall'Osto, M., Beddows, D. C. S., Tunved, P., Harrison, R. M., Lupi, A., Vitale, V., Becagli, S., Traversi, R., Park, K.-T., Yoon, Y. J., Massling, A., Skov, H., Lange, R., Strom, J., and Krejci, R.: Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic, Atmos. Chem. Phys., 19, 7377–7395, https://doi.org/10.5194/acp-19-7377-2019, 2019.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y. Q., Sirkin, Y. A. P.,
Molinero, V., Mahrt, F., Bruhwiler, D., Lohmann, U., and Kanji, Z. A.: Pore
condensation and freezing is responsible for ice formation below water
saturation for porous particles, P. Natl. Acad.
Sci. USA, 116, 8184–8189,
https://doi.org/10.1073/pnas.1813647116, 2019.
de Boer, G., Shupe, M. D., Caldwell, P. M., Bauer, S. E., Persson, O., Boyle, J. S., Kelley, M., Klein, S. A., and Tjernström, M.: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models, Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, 2014.
deMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:
Predicting global atmospheric ice nuclei distributions and their impacts on
climate, P. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107, 2010.
DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
DeMott, P. J., Hill, T. C. J., Petters, M. D., Bertram, A. K., Tobo, Y., Mason, R. H., Suski, K. J., McCluskey, C. S., Levin, E. J. T., Schill, G. P., Boose, Y., Rauker, A. M., Miller, A. J., Zaragoza, J., Rocci, K., Rothfuss, N. E., Taylor, H. P., Hader, J. D., Chou, C., Huffman, J. A., Pöschl, U., Prenni, A. J., and Kreidenweis, S. M.: Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber, Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, 2017.
DeMott, P. J., Möhler, O., Cziczo, D. J., Hiranuma, N., Petters, M. D., Petters, S. S., Belosi, F., Bingemer, H. G., Brooks, S. D., Budke, C., Burkert-Kohn, M., Collier, K. N., Danielczok, A., Eppers, O., Felgitsch, L., Garimella, S., Grothe, H., Herenz, P., Hill, T. C. J., Höhler, K., Kanji, Z. A., Kiselev, A., Koop, T., Kristensen, T. B., Krüger, K., Kulkarni, G., Levin, E. J. T., Murray, B. J., Nicosia, A., O'Sullivan, D., Peckhaus, A., Polen, M. J., Price, H. C., Reicher, N., Rothenberg, D. A., Rudich, Y., Santachiara, G., Schiebel, T., Schrod, J., Seifried, T. M., Stratmann, F., Sullivan, R. C., Suski, K. J., Szakáll, M., Taylor, H. P., Ullrich, R., Vergara-Temprado, J., Wagner, R., Whale, T. F., Weber, D., Welti, A., Wilson, T. W., Wolf, M. J., and Zenker, J.: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements, Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, 2018.
Dymarska, M., Murray, B. J., Sun, L. M., Eastwood, M. L., Knopf, D. A., and
Bertram, A. K.: Deposition ice nucleation on soot at temperatures relevant
for the lower troposphere, J. Geophys. Res.-Atmos., 111, D04204,
https://doi.org/10.1029/2005jd006627, 2006.
Findeisen, W.: Kolloid-Meteorologische, 2nd edn., American Meteorological
Society, Boston, Massachusetts, USA, 1938.
Giardi, F., Becagli, S., Traversi, R., Frosini, D., Severi, M., Caiazzo, L.,
Ancillotti, C., Cappelletti, D., Moroni, B., Grotti, M., Bazzano, A., Lupi,
A., Mazzola, M., Vitale, V., Abollino, O., Ferrero, L., Bolzacchini, E.,
Viola, A., and Udisti, R.: Size distribution and ion composition of aerosol
collected at Ny-lesund in the spring-summer field campaign 2013, Rendiconti
Lincei-Scienze Fisiche E Naturali, 27, 47–58, https://doi.org/10.1007/s12210-016-0529-3,
2016.
Harrington, J. Y. and Olsson, P. Q.: On the potential influence of ice
nuclei on surface-forced marine stratocumulus cloud dynamics, J.
Geophys. Res.-Atmos., 106, 27473–27484, https://doi.org/10.1029/2000jd000236,
2001.
Harrington, J. Y., Reisin, T., Cotton, W. R., and Kreidenweis, S. M.: Cloud
resolving simulations of Arctic stratus – Part II: Transition-season clouds,
Atmos. Res., 51, 45–75, https://doi.org/10.1016/s0169-8095(98)00098-2, 1999.
Harrison, A. D., Lever, K., Sanchez-Marroquin, A., Holden, M. A., Whale, T. F., Tarn, M. D., McQuaid, J. B., and Murray, B. J.: The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar, Atmos. Chem. Phys., 19, 11343–11361, https://doi.org/10.5194/acp-19-11343-2019, 2019.
Hartmann, M., Blunier, T., Brugger, S. O., Schmale, J., Schwikowski, M.,
Vogel, A., Wex, H., and Stratmann, F.: Variation of Ice Nucleating Particles
in the European Arctic Over the Last Centuries, Geophys. Res.
Lett., 46, 4007–4016, https://doi.org/10.1029/2019gl082311, 2019.
Heidam, N. Z., Wahlin, P., and Christensen, J. H.: Tropospheric gases and
aerosols in northeast Greenland, J. Atmos. Sci., 56,
261–278, https://doi.org/10.1175/1520-0469(1999)056<0261:tgaain>2.0.co;2, 1999.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007.
Hiranuma, N., Mohler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev, A.,
Hoffmann, N., Hoose, C., Jantsch, E., Koop, T., and Murakami, M.: Ice
nucleation by cellulose and its potential contribution to ice formation in
clouds, Nat. Geosci., 8, 273–277, https://doi.org/10.1038/ngeo2374, 2015.
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Hsu, Y. K., Holsen, T. M., and Hopke, P. K.: Comparison of hybrid receptor
models to locate PCB sources in Chicago, Atmos. Environ., 37,
545–562, https://doi.org/10.1016/s1352-2310(02)00886-5, 2003.
Irish, V. E., Hanna, S. J., Willis, M. D., China, S., Thomas, J. L., Wentzell, J. J. B., Cirisan, A., Si, M., Leaitch, W. R., Murphy, J. G., Abbatt, J. P. D., Laskin, A., Girard, E., and Bertram, A. K.: Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014, Atmos. Chem. Phys., 19, 1027–1039, https://doi.org/10.5194/acp-19-1027-2019, 2019.
Jeong, U., Kim, J., Lee, H., Jung, J., Kim, Y. J., Song, C. H., and Koo, J.
H.: Estimation of the contributions of long range transported aerosol in
East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea
using highly time resolved measurements: a PSCF model approach, J.
Environ. Monitor., 13, 1905–1918, https://doi.org/10.1039/c0em00659a, 2011.
Jiang, H. L., Cotton, W. R., Pinto, J. O., Curry, J. A., and Weissbluth, M.
J.: Cloud resolving simulations of mixed-phase Arctic stratus observed
during BASE: Sensitivity to concentration of ice crystals and large-scale
heat and moisture advection, J. Atmos. Sci., 57,
2105–2117, https://doi.org/10.1175/1520-0469(2000)057<2105:crsomp>2.0.co;2, 2000.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Kramer, M.: Overview of Ice Nucleating Particles, Ice Formation
and Evolution in Clouds and Precipitation: Measurement and Modeling
Challenges, Meteorol. Monogr., 58, 1.1–1.33, https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017.
Knopf, D. A., Alpert, P. A., Wang, B., and Aller, J. Y.: Stimulation of ice
nucleation by marine diatoms, Nat. Geosci., 4, 88–90, https://doi.org/10.1038/ngeo1037,
2011.
Kumar, A., Marcolli, C., Luo, B., and Peter, T.: Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline, Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, 2018.
Langer, G. and Rodgers, J.: An Experimental Study of the Detection of Ice
Nuclei on Membrane Filters and Other Substrata, J. Appl.
Meteorol. Climatol., 14, 560–570, 1975.
Lisok, J., Markowicz, K. M., Ritter, C., Makuch, P., Petelski, T.,
Chilinski, M., Kaminski, J. W., Becagli, S., Traversi, R., Udisti, R.,
Rozwadowska, A., Jefimow, M., Markuszewski, P., Neuber, R., Pakszys, P.,
Stachlewska, I. S., Struzewska, J., and Zielinski, T.: 2014 iAREA campaign
on aerosol in Spitsbergen – Part 1: Study of physical and chemical
properties, Atmos. Environ., 140, 150–166,
https://doi.org/10.1016/j.atmosenv.2016.05.051, 2016.
Lupi, A., Busetto, M., Becagli, S., Giardi, F., Lanconelli, C., Mazzola, M.,
Udisti, R., Hansson, H. C., Henning, T., Petkov, B., Strom, J., Krejci, R.,
Tunved, P., Viola, A. P., and Vitale, V.: Multi-seasonal ultrafine aerosol
particle number concentration measurements at the Gruvebadet observatory,
Ny-lesund, Svalbard Islands, Rendiconti Lincei-Scienze Fisiche E Naturali,
27, 59–71, https://doi.org/10.1007/s12210-016-0532-8, 2016.
Mansour, K., Decesari, S., Bellacicco, M., Marullo, S., Santoleri, R.,
Bonasoni, P., Facchini, M. C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C.,
and Rinaldi, M.: Particulate methanesulfonic acid over the central
Mediterranean Sea: Source region identification and relationship with
phytoplankton activity, Atmos. Res., 237, 104837,
https://doi.org/10.1016/j.atmosres.2019.104837, 2020a.
Mansour, K., Decesari, S., Facchini, M. C., Belosi, F., Paglione, M.,
Sandrini, S., Bellacicco, M., Marullo, S., Santoleri, R., Ovadnevaite, J.,
Ceburnis, D., O'Dowd, C., Roberts, G., Sanchez, K., and Rinaldi, M.: Linking
Marine Biological Activity to Aerosol Chemical Composition and
Cloud-Relevant Properties Over the North Atlantic Ocean, J.
Geophys. Res.-Atmos., 125, e2019JD032246, https://doi.org/10.1029/2019jd032246, 2020b.
Mason, R. H., Si, M., Li, J., Chou, C., Dickie, R., Toom-Sauntry, D., Pöhlker, C., Yakobi-Hancock, J. D., Ladino, L. A., Jones, K., Leaitch, W. R., Schiller, C. L., Abbatt, J. P. D., Huffman, J. A., and Bertram, A. K.: Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions, Atmos. Chem. Phys., 15, 12547–12566, https://doi.org/10.5194/acp-15-12547-2015, 2015.
Mason, R. H., Si, M., Chou, C., Irish, V. E., Dickie, R., Elizondo, P., Wong, R., Brintnell, M., Elsasser, M., Lassar, W. M., Pierce, K. M., Leaitch, W. R., MacDonald, A. M., Platt, A., Toom-Sauntry, D., Sarda-Estève, R., Schiller, C. L., Suski, K. J., Hill, T. C. J., Abbatt, J. P. D., Huffman, J. A., DeMott, P. J., and Bertram, A. K.: Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe, Atmos. Chem. Phys., 16, 1637–1651, https://doi.org/10.5194/acp-16-1637-2016, 2016.
Mazzola, M., Viola, A. P., Lanconelli, C., and Vitale, V.: Atmospheric
observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund,
Svalbard, Rendiconti Lincei-Scienze Fisiche E Naturali, 27, 7–18,
https://doi.org/10.1007/s12210-016-0540-8, 2016.
McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C.,
Santander, M. V., Beall, C. M., Moore, K. A., Cornwell, G. C., Collins, D.
B., Prather, K. A., Jayarathne, T., Stone, E. A., Azam, F., Kreidenweis, S.
M., and deMott, P. J.: A Dynamic Link between Ice Nucleating Particles
Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during
Two Mesocosm Experiments, J. Atmos. Sci., 74, 151–166,
https://doi.org/10.1175/jas-d-16-0087.1, 2017.
McCluskey, C. S., Hill, T. C. J., Sultana, C. M., Laskina, O., Trueblood,
J., Santander, M. V., Beall, C. M., Michaud, J. M., Kreidenweis, S. M.,
Prather, K. A., Grassian, V., and deMott, P. J.: A Mesocosm Double Feature:
Insights into the Chemical Makeup of Marine Ice Nucleating Particles,
J. Atmos. Sci., 75, 2405–2423, https://doi.org/10.1175/jas-d-17-0155.1,
2018a.
McCluskey, C. S., Ovadnevaite, J., Rinaldi, M., Atkinson, J., Belosi, F.,
Ceburnis, D., Marullo, S., Hill, T. C. J., Lohmann, U., Kanji, Z. A.,
O'Dowd, C., Kreidenweis, S. M., and deMott, P. J.: Marine and Terrestrial
Organic Ice-Nucleating Particles in Pristine Marine to Continentally
Influenced Northeast Atlantic Air Masses, J. Geophys.
Res.-Atmos., 123, 6196–6212, https://doi.org/10.1029/2017jd028033, 2018b.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chem.
Soc. Rev., 41, 6519–6554, https://doi.org/10.1039/c2cs35200a, 2012.
Murray, B. J., Carslaw, K. S., and Field, P. R.: Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles, Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, 2021.
Möhler, O., Adams, M., Lacher, L., Vogel, F., Nadolny, J., Ullrich, R., Boffo, C., Pfeuffer, T., Hobl, A., Weiß, M., Vepuri, H. S. K., Hiranuma, N., and Murray, B. J.: The Portable Ice Nucleation Experiment (PINE): a new online instrument for laboratory studies and automated long-term field observations of ice-nucleating particles, Atmos. Meas. Tech., 14, 1143–1166, https://doi.org/10.5194/amt-14-1143-2021, 2021.
National Ice-Center, U. S.: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/N52R3PMC, 2008.
O'Dowd, C., Ceburnis, D., Ovadnevaite, J., Bialek, J., Stengel, D. B.,
Zacharias, M., Nitschke, U., Connan, S., Rinaldi, M., Fuzzi, S., Decesari,
S., Facchini, M. C., Marullo, S., Santoleri, R., Dell'Anno, A., Corinaldesi,
C., Tangherlini, M., and Danovaro, R.: Connecting marine productivity to
sea-spray via nanoscale biological processes: Phytoplankton Dance or Death
Disco?, Sci. Rep.-UK, 5, 14883, https://doi.org/10.1038/srep14883, 2015.
Paramonov, M., David, R. O., Kretzschmar, R., and Kanji, Z. A.: A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust, Atmos. Chem. Phys., 18, 16515–16536, https://doi.org/10.5194/acp-18-16515-2018, 2018.
Pinto, J. O.: Autumnal mixed-phase cloudy boundary layers in the Arctic,
J. Atmos. Sci., 55, 2016–2038,
https://doi.org/10.1175/1520-0469(1998)055<2016:ampcbl>2.0.co;2, 1998.
Rangno, A. L. and Hobbs, P. V.: Ice particles in stratiform clouds in the
Arctic and possible mechanisms for the production of high ice
concentrations, J. Geophys. Res.-Atmos., 106,
15065–15075, https://doi.org/10.1029/2000jd900286, 2001.
Reischel, M. T. and Vali, G.: Freezing nucleation in aqueous electrolytes,
Tellus, 27, 414–427, 1975.
Richardson, M. S., deMott, P. J., Kreidenweis, S. M., Cziczo, D. J., Dunlea,
E. J., Jimenez, J. L., Thomson, D. S., Ashbaugh, L. L., Borys, R. D.,
Westphal, D. L., Casuccio, G. S., and Lersch, T. L.: Measurements of
heterogeneous ice nuclei in the western United States in springtime and
their relation to aerosol characteristics, J. Geophys.
Res.-Atmos., 112, D02209, https://doi.org/10.1029/2006jd007500, 2007.
Rinaldi, M., Fuzzi, S., Decesari, S., Marullo, S., Santoleri, R.,
Provenzale, A., von Hardenberg, J., Ceburnis, D., Vaishya, A., O'Dowd, C.
D., and Facchini, M. C.: Is chlorophyll-a the best surrogate for organic
matter enrichment in submicron primary marine aerosol?, J.
Geophys. Res.-Atmos., 118, 4964–4973, https://doi.org/10.1002/jgrd.50417, 2013.
Rinaldi, M., Santachiara, G., Nicosia, A., Piazza, M., Decesari, S.,
Gilardoni, S., Paglione, M., Cristofanelli, P., Marinoni, A., Bonasoni, P.,
and Belosi, F.: Atmospheric Ice Nucleating Particle measurements at the high
mountain observatory Mt. Cimone (2165 m a.s.l., Italy), Atmos.
Environ., 171, 173–180, https://doi.org/10.1016/j.atmosenv.2017.10.027, 2017.
Rinaldi, M., Hiranuma, N., Santachiara, G., Mazzola, M., and Belosi, F.: Offline INP measurements at Ny-Ålesund (Svalbard) in 2018, Mendeley Data, V1 [data set], https://doi.org/10.17632/zf4wdcc3bw.1, 2020.
Rogers, D. C., deMott, P. J., Kreidenweis, S. M., and Chen, Y. L.:
Measurements of ice nucleating aerosols during SUCCESS, Geophys. Res.
Lett., 25, 1383–1386, https://doi.org/10.1029/97gl03478, 1998.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Model. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Santachiara, G., Di Matteo, L., Prodi, F., and Belosi, F.: Atmospheric
particles acting as Ice Forming Nuclei in different size ranges, Atmos.
Res., 96, 266–272, https://doi.org/10.1016/j.atmosres.2009.08.004, 2010.
Santl-Temkiv, T., Lange, R., Beddows, D., Rauter, U., Pilgaard, S.,
Dall'Osto, M., Gunde-Cimerman, N., Massling, A., and Wex, H.: Biogenic
Sources of Ice Nucleating Particles at the High Arctic Site Villum Research
Station, Environ. Sci. Technol., 53, 10580–10590,
https://doi.org/10.1021/acs.est.9b00991, 2019.
Schiebel, T.: Ice nucleation activity of soil dust aerosols, Karlsruhe
Institute of Technology, https://doi.org/10.5445/IR/1000076327, 2017.
Schmale, J., Zieger, P., and Ekman, A. M. L.: Aerosols in current and future
Arctic climate, Nat. Clim. Change, 11, 95–105,
https://doi.org/10.1038/s41558-020-00969-5, 2021.
Schrod, J., Thomson, E. S., Weber, D., Kossmann, J., Pöhlker, C., Saturno, J., Ditas, F., Artaxo, P., Clouard, V., Saurel, J.-M., Ebert, M., Curtius, J., and Bingemer, H. G.: Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe, Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, 2020.
Schwikowski, M., Seibert, P., Baltensperger, U., and Gaggeler, H. W.: A study of an outstanding Saharan dust event at the high-alpine site Jungfraujoch, Switzerland, Atmos. Environ., 29, 1829–1842,
https://doi.org/10.1016/1352-2310(95)00060-c, 1995.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shaw, G. E.: The arctic haze phenomenon, B. Am.
Meteorol. Soc., 76, 2403–2413, https://doi.org/10.1175/1520-0477(1995)076<2403:tahp>2.0.co;2, 1995.
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic mixed-phase cloud
properties derived from surface-based sensors at SHEBA, J.
Atmos. Sci., 63, 697–711, https://doi.org/10.1175/jas3659.1, 2006.
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R.,
Starkweather, S. M., and Shiobara, M.: Clouds at Arctic Atmospheric
Observatories. Part I: Occurrence and Macrophysical Properties, J.
Appl. Meteorol. Climatol., 50, 626–644, https://doi.org/10.1175/2010jamc2467.1,
2011.
Si, M., Irish, V. E., Mason, R. H., Vergara-Temprado, J., Hanna, S. J., Ladino, L. A., Yakobi-Hancock, J. D., Schiller, C. L., Wentzell, J. J. B., Abbatt, J. P. D., Carslaw, K. S., Murray, B. J., and Bertram, A. K.: Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites, Atmos. Chem. Phys., 18, 15669–15685, https://doi.org/10.5194/acp-18-15669-2018, 2018.
Si, M., Evoy, E., Yun, J., Xi, Y., Hanna, S. J., Chivulescu, A., Rawlings, K., Veber, D., Platt, A., Kunkel, D., Hoor, P., Sharma, S., Leaitch, W. R., and Bertram, A. K.: Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016, Atmos. Chem. Phys., 19, 3007–3024, https://doi.org/10.5194/acp-19-3007-2019, 2019.
Solomon, A., de Boer, G., Creamean, J. M., McComiskey, A., Shupe, M. D., Maahn, M., and Cox, C.: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds, Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018, 2018.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/bams-d-14-00110.1, 2015.
Stohl, A.: Characteristics of atmospheric transport into the Arctic
troposphere, J. Geophys. Res.-Atmos., 111, D11306,
https://doi.org/10.1029/2005jd006888, 2006.
Tobo, Y.: An improved approach for measuring immersion freezing in large
droplets over a wide temperature range, Sci. Rep.-UK, 6, 32930,
https://doi.org/10.1038/srep32930, 2016.
Tobo, Y., Adachi, K., deMott, P. J., Hill, T. C. J., Hamilton, D. S.,
Mahowald, N. M., Nagatsuka, N., Ohata, S., Uetake, J., Kondo, Y., and Koike,
M.: Glacially sourced dust as a potentially significant source of ice
nucleating particles, Nat. Geosci., 12, 253,
https://doi.org/10.1038/s41561-019-0314-x, 2019.
Udisti, R., Bazzano, A., Becagli, S., Bolzacchini, E., Caiazzo, L.,
Cappelletti, D., Ferrero, L., Frosini, D., Giardi, F., Grotti, M., Lupi, A.,
Malandrino, M., Mazzola, M., Moroni, B., Severi, M., Traversi, R., Viola,
A., and Vitale, V.: Sulfate source apportionment in the Ny-Alesund (Svalbard
Islands) Arctic aerosol, Rendiconti Lincei-Scienze Fisiche E Naturali, 27,
85–94, https://doi.org/10.1007/s12210-016-0517-7, 2016.
Vali, G.: Quantitative evaluation of experimental results on the
heterogeneous freezing nucleation of supercooled liquids, J.
Atmos. Sci., 28, 402–409, 1971.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vepuri, H. S. K., Rodriguez, C. A., Georgakopoulos, D. G., Hume, D., Webb, J., Mayer, G. D., and Hiranuma, N.: Ice-nucleating particles in precipitation samples from the Texas Panhandle, Atmos. Chem. Phys., 21, 4503–4520, https://doi.org/10.5194/acp-21-4503-2021, 2021.
Wagner, R., Kiselev, A., Möhler, O., Saathoff, H., and Steinke, I.: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism, Atmos. Chem. Phys., 16, 2025–2042, https://doi.org/10.5194/acp-16-2025-2016, 2016.
Wang, X. F., Sultana, C. M., Trueblood, J., Hill, T. C. J., Malfatti, F.,
Lee, C., Laskina, O., Moore, K. A., Beall, C. M., McCluskey, C. S.,
Cornwell, G. C., Zhou, Y. Y., Cox, J. L., Pendergraft, M. A., Santander, M.
V., Bertram, T. H., Cappa, C. D., Azam, F., deMott, P. J., Grassian, V. H.,
and Prather, K. A.: Microbial Control of Sea Spray Aerosol Composition: A
Tale of Two Blooms, Acs Central Science, 1, 124–131,
https://doi.org/10.1021/acscentsci.5b00148, 2015.
Wegener, A.: Thermodynamik der Atmosphäre, J. A. Barth, Leipzig,
Germany, 1911.
Welti, A., Bigg, E. K., DeMott, P. J., Gong, X., Hartmann, M., Harvey, M., Henning, S., Herenz, P., Hill, T. C. J., Hornblow, B., Leck, C., Löffler, M., McCluskey, C. S., Rauker, A. M., Schmale, J., Tatzelt, C., van Pinxteren, M., and Stratmann, F.: Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans, Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, 2020.
Wex, H., DeMott, P. J., Tobo, Y., Hartmann, S., Rösch, M., Clauss, T., Tomsche, L., Niedermeier, D., and Stratmann, F.: Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings, Atmos. Chem. Phys., 14, 5529–5546, https://doi.org/10.5194/acp-14-5529-2014, 2014.
Wex, H., Huang, L., Sheesley, R., Bossi, R., and Traversi, R.: Annual concentrations of ice nucleating particles at Arctic station Ny-Ålesund, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.899696, 2019a.
Wex, H., Huang, L., Zhang, W., Hung, H., Traversi, R., Becagli, S., Sheesley, R. J., Moffett, C. E., Barrett, T. E., Bossi, R., Skov, H., Hünerbein, A., Lubitz, J., Löffler, M., Linke, O., Hartmann, M., Herenz, P., and Stratmann, F.: Annual variability of ice-nucleating particle concentrations at different Arctic locations, Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019, 2019b.
Whale, T. F., Holden, M. A., Wilson, T. W., O'Sullivan, D., and Murray, B.
J.: The enhancement and suppression of immersion mode heterogeneous
ice-nucleation by solutes, Chem. Sci., 9, 4142–4151,
https://doi.org/10.1039/c7sc05421a, 2018.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Najera, J. J.,
Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale, T.
F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P. D.,
Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234, https://doi.org/10.1038/nature14986, 2015.
Wolf, M. J., Goodell, M., Dong, E., Dove, L. A., Zhang, C., Franco, L. J., Shen, C., Rutkowski, E. G., Narducci, D. N., Mullen, S., Babbin, A. R., and Cziczo, D. J.: A link between the ice nucleation activity and the biogeochemistry of seawater, Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, 2020.
Short summary
This study aims to add to the still scant ice-nucleating particle (INP) observations in the Arctic environment, investigating INP concentrations and potential sources, during spring and summertime, at the ground-level site of GVB. The lack of a clear concentration seasonal trend, in contrast with previous works, shows an important interannual variability of Arctic INP sources, which may be both terrestrial and marine, outside the Arctic haze period.
This study aims to add to the still scant ice-nucleating particle (INP) observations in the...
Altmetrics
Final-revised paper
Preprint