Articles | Volume 21, issue 14
Research article
23 Jul 2021
Research article |  | 23 Jul 2021

Lightning occurrences and intensity over the Indian region: long-term trends and future projections

Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam

Related authors

Growth in mid-monsoon dry phases over the Indian region: prevailing influence of anthropogenic aerosols
Rohit Chakraborty, Bijay Kumar Guha, Shamitaksha Talukdar, Madineni Venkat Ratnam, and Animesh Maitra
Atmos. Chem. Phys., 19, 12325–12341,,, 2019
Short summary
Long-term trends of instability and associated parameters over the Indian region obtained using a radiosonde network
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705,,, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574,,, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383,,, 2024
Short summary
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634,,, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952,,, 2024
Short summary
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987,,, 2024
Short summary

Cited articles

Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881,, 2014. 
Barros, A. P. and Lang, T. J.: Exploring spatial modes of variability of terrain-atmosphere interactions in the Himalayas during monsoon onset, Hydrosci. Rep. Ser. 03–001, 51, Div. of Eng. and Appl. Sci., Harvard Univ., Cambridge, Mass., 2003. 
Basha, G., Kishore, P., Ratnam, M. V., Jayaraman, A., Kouchak, A. A., Ouarda, T. B. M. J., and Velicogna, I.: Historical and Projected Surface Temperature over India during 20th and 21st century, Sci. Rep.-UK, 7, 2987,, 2017. 
Boccippio, D. J., Koshak, W. K., and Blakeslee, R. J.: Performance assessment of optical transient detector and lightning imaging sensor, part I: diurnal variability, J. Atmos. Ocean. Tech., 19, 1318–1332, 2002. 
Boeck, W. L., Mach, D., Goodman, S. J., and Christian Jr., H. J.: Optical observations of lightning in Northern India, Himalayan mountain countries and Tibet, in 11th International Conference on Atmospheric Electricity, NASA Conf. Publ., NASA/CP-1999-209261, 420–423, 1999. 
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Final-revised paper