Articles | Volume 21, issue 14
https://doi.org/10.5194/acp-21-11161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Rohit Chakraborty
CORRESPONDING AUTHOR
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
Arindam Chakraborty
Centre for Atmospheric and Oceanic Studies, Indian Institute of
Science, Bangalore, India
DST-Centre of Excellence in Climate Change, Divecha Centre for
Climate Change, IISc, Bangalore, India
Ghouse Basha
Atmospheric Structure and Dynamics Group, National Atmospheric Research Laboratory, Tirupati, India
Madineni Venkat Ratnam
Aerosol Radiation and Trace Gases Group, National Atmospheric Research Laboratory, Tirupati, India
Related authors
No articles found.
Vadassery Neelamana Santhosh, Bomidi Lakshmi Madhavan, Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Jean-Paul Vernier, and Frank Gunther Wienhold
Atmos. Chem. Phys., 25, 8255–8270, https://doi.org/10.5194/acp-25-8255-2025, https://doi.org/10.5194/acp-25-8255-2025, 2025
Short summary
Short summary
Our study examines a lesser-known atmospheric feature, the Asian Tropopause Aerosol Layer, located high above the Earth. We investigated how different aerosols, such as sulfates, nitrates, and pollutants, influence the exchange of heat between the atmosphere and its surroundings. The results show that these particles can alter temperature patterns, especially during the Asian summer monsoon. This research improves our understanding of how human activities may affect regional climate.
Sougat Kumar Sarangi, Chandan Sarangi, Niravkumar Patel, Bomidi Lakshmi Madhavan, Shantikumar Singh Ningombam, Belur Ravindra, and Madineni Venkat Ratnam
EGUsphere, https://doi.org/10.5194/egusphere-2024-3364, https://doi.org/10.5194/egusphere-2024-3364, 2025
Short summary
Short summary
This study introduces a new approach to measure cloud cover from image data taken by ground based sky observations. Our method used diverse sky images taken from various locations across the globe to train our machine learning model. We achieved a very high accuracy in detecting cloud cover, even in polluted areas. Our model surpasses traditional methods by running efficiently with minimal computational needs.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Kizhathur Narasimhan Uma, Siddarth Shankar Das, Madineni Venkat Ratnam, and Kuniyil Viswanathan Suneeth
Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021, https://doi.org/10.5194/acp-21-2083-2021, 2021
Short summary
Short summary
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine various calculations of atmospheric circulations, diabatic heating, convection, etc. There are no studies that assess the available reanalysis data with respect to observations. The present study assesses for the first time all the reanalysis w by comparing it with 20 years of radar data from Gadanki and Kototabang and shows that downdrafts and peaks in the updrafts are not produced in the reanalyses.
Cited articles
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, 2014.
Barros, A. P. and Lang, T. J.: Exploring spatial modes of variability of
terrain-atmosphere interactions in the Himalayas during monsoon onset,
Hydrosci. Rep. Ser. 03–001, 51, Div. of Eng. and Appl. Sci., Harvard Univ.,
Cambridge, Mass., 2003.
Basha, G., Kishore, P., Ratnam, M. V., Jayaraman, A., Kouchak, A. A.,
Ouarda, T. B. M. J., and Velicogna, I.: Historical and Projected Surface
Temperature over India during 20th and 21st century, Sci. Rep.-UK, 7,
2987, https://doi.org/10.1038/s41598-017-02130-3, 2017.
Boccippio, D. J., Koshak, W. K., and Blakeslee, R. J.: Performance assessment
of optical transient detector and lightning imaging sensor, part I: diurnal
variability, J. Atmos. Ocean. Tech., 19, 1318–1332, 2002.
Boeck, W. L., Mach, D., Goodman, S. J., and Christian Jr., H. J.: Optical
observations of lightning in Northern India, Himalayan mountain countries
and Tibet, in 11th International Conference on Atmospheric Electricity, NASA
Conf. Publ., NASA/CP-1999-209261, 420–423, 1999.
Boose, Y., Baloh, P., Plötze, M., Ofner, J., Grothe, H., Sierau, B., Lohmann, U., and Kanji, Z. A.: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing, Atmos. Chem. Phys., 19, 1059–1076, https://doi.org/10.5194/acp-19-1059-2019, 2019.
Chakraborty, R., Basha, G., and Ratnam, M. V.: Diurnal and long-term
variation of instability indices over tropical region in India, Atmos. Res.,
207, 145–154, https://doi.org/10.1016/j.atmosres.2018.03.012, 2018.
Chakraborty, R., Venkat Ratnam, M., and Basha, S. G.: Long-term trends of instability and associated parameters over the Indian region obtained using a radiosonde network, Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, 2019.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. J.,
Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W.
J., Mach, D. M., and Stewart, M. F.: Global frequency and distribution of
lightning observed from space optical transient detector, J. Geophys. Res.,
108, 4005, https://doi.org/10.1029/2002JD002347, 2003.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011-1073,
26 pp., 2011.
de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E.
R., O'Dowd, C., Schulz, M., and Schwartz, S. E: Production flux of sea spray
aerosol, Rev. Geophys., 49, RG2001,
https://doi.org/10.1029/2010RG000349, 2011.
Department of Energy, Lawrence Livermore National Laboratory: Coupled Model Intercomparison Project Version5, available at: https://esgf-node.llnl.gov/search/cmip5/, last access: 16 July 2021.
Dewan, A., Ongee, E. T., Rafiuddin, M., Rahman, M. M., and Mahmood, R.:
Lightning activity associated precipitation and CAPE over Bangladesh, Int.
J. Climatol., 38, 1649–1660, https://doi.org/10.1002/joc.5286, 2018.
Dhaka, S. K., Sapra, R., Panwar, V., Goel, A., Bhatnagar, R., and Kaur, M.:
Influence of large-scale variations in convective available potential energy
(CAPE) and solar cycle over temperature in tropopause region at Delhi
(28.3_N, 77.1_E), Kolkata (22.3_N, 88.2_E), Cochin (10_N, 77_E), and Trivandrum (8.5_N, 77.0_E) using
radiosonde during 1980–2005, Earth Planets Space, 62, 319–331, 2010.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in
severe thunderstorm environments due to greenhouse forcing, P. Natl. Acad.
Sci. USA, 110, 16361–16366, 2013.
Forster, P. M., Bodeker, G., Schofield, R., Solomon, S., and Thompson, D.:
Effects of ozone cooling in the tropical lower stratosphere and upper
troposphere, Geophys. Res. Lett., 34, L23813, https://doi.org/10.1029/2007GL031994, 2007.
Fu, Q., Lin, P., Solomon, S., and Hartmann, D. L.: Observational evidence of
strengthening of the Brewer-Dobson circulation since 1980, J. Geophys.
Res.-Atmos., 120, 10214–10228, 2015.
Gadgil, S., Joseph, P. V., and Joshi, P. V.: Ocean–atmosphere coupling over
monsoon regions, Nature, 312, 141–143, 1984.
Galanaki, E., Kotroni, V., Lagouvardos, K., and Argiriou, A.: A ten-year analysis of
cloud-to-ground lightning activity over Eastern Mediterranean region, Atmos.
Res., 166, 213–222, 2015.
GHRC DAAC: TRMM Lightning Image Sensor observation dataset, available at: https://ghrc.nsstc.nasa.gov/lightning/data/data_lis_trmm.html, last access: 16 December 2020.
Guha, B. K., Chakraborty, R., Saha, U., and Maitra, A.: Tropopause height
characteristics with ozone over stratospheric moistening during intense
convection over Indian sub-continent, Global Planet. Change, 158, 1–12,
2017.
Holle, R. L., Dewan, A., Said, R., Brooks, W. A., Hossain, M. F., and
Rafiuddin, M.: Fatalities related to lightning occurrence and agriculture in
Bangladesh, Int. J. Disast. Risk Re., 41, 101264, https://doi.org/10.1016/j.ijdrr.2019.101264, 2019.
IPCC TAR-07: Climate Change 2001: The Scientific Basis, https://www.ipcc.ch/site/assets/uploads/2018/03/TAR-07.pdf (last access: 16 July 2021), Cambridge University Press, 2018.
Jin, Q., Grandey, B. S., Rothenberg, D., Avramov, A., and Wang, C.: Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions, Atmos. Chem. Phys., 18, 16793–16808, https://doi.org/10.5194/acp-18-16793-2018, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Roy, J., and Dennis, J.: The NCEP/NCAR 40-Year Reanalysis Project,
B. Am. Meteorol. Soc., 77, 437–472, 1996.
Kandalgaonkar, S. S., Tinmaker, M. I. R., Kulkarni, J. R., Nath, A. S., and
Kulkarni, M. K.: Spatio-temporal variability of lightning activity over the
Indian region, J. Geophys. Res., 110, https://doi.org/10.1029/2004JD005631, D11108, 2005.
Kar, S. K., Liou, Y. A., and Ha, K. J,: Aerosol effects on the enhancement of
cloud-to-ground lightning over major urban areas of South Korea, Atmos. Res.,
92, 80–87, 2009.
Kumar, P. R. and Kamra, A. K.: Land–sea contrast in lightning activity over
the sea and peninsular regions of South/Southeast Asia, Atmos. Res., 118,
52–67, 2012.
Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center: Level-3 MODIS Atmosphere Monthly Global Product, available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD08_M3/ last access: 16 July 2021.
Liu, J., Song, M., Hu, Y., and Ren, X.: Changes in the strength and width of the Hadley Circulation since 1871, Clim. Past, 8, 1169–1175, https://doi.org/10.5194/cp-8-1169-2012, 2012.
Livemint: Lightning's a bigger killer in India than you think, available at: https://www.livemint.com/Politics/ZhfsGYczjwDo22DtvdDKfN/Lightnings-a-bigger-killer-than-you-think.html,
last access: 19 September 2020.
Mansell, E. R. and Ziegler, C. L.: Aerosol effects on simulated storm
electrification and precipitation in moment microphysics model, J. Atmos.
Sci., 70, 2032–2050, 2013.
Massie, S. T., Torres, O., and Smith, S. J.: Total Ozone Mapping Spectrometer
(TOMS) observations of increases in Asian aerosol in winter from 1979 to
2000, J. Geophys. Res., 109, D18211, https://doi.org/10.1029/2004JD004620, 2004.
Michalon, N., Nassif, A., Saouri, T., Royer, J. F., and Pontikis,
C. A.: Contribution to the climatological study of lightning, Geophys. Res.
Lett., 26, 3097–3100, 1999.
Mohanakumar, K.: Stratosphere-troposphere interactions: introduction,
Springer Science Business Media, the Netherlands, 416 pp., https://doi.org/10.1007/978-1-4020-8217-7, 2008.
Murugavel, P., Pawar, S. D., and Gopalakrishnan, V.: Trends of convective
available potential energy over the Indian region and its effect on
rainfall, Int. J. Climatol., 32, 1362–1372, 2012.
Narendra Reddy, N., Venkat Ratnam, M., Basha, G., and Ravikiran, V.: Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements, Atmos. Chem. Phys., 18, 11709–11727, https://doi.org/10.5194/acp-18-11709-2018, 2018.
NOAA, ESRL: National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) Reanalysis Product, hosted by NOAA, ESRL, USA since 1994, available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 16 July 2021.
Pereira, F. B., Priyadarsini, G., and Girish, T. E.: A possible
relationship between global warming and lightning activity India during
period 1998–2009, [preprint] arXiv, arXiv:1012.3338 (last access: 17 July 2021), 2010.
Pielke, R. A.: A three-dimensional numerical model of the sea breezes over
south Florida, Mon. Weather Rev., 102, 115–139, 1974.
Platnick, S., King, M., Meyer, K. G., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Ridgway, B., and Riedi, J.: MODIS Atmosphere L3 Monthly Product, NASA MODIS
Adaptive Processing System, Goddard Space Flight Center, USA, Vol. 20, 2015.
Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., and Holland,
G. J.: Future intensification of hourly precipitation extremes, Nat. Clim.
Change, 7, 48–52, 2017.
Price, C.: Will drier climate result in lightning?, Atmos. Res., 91,
479–484, 2009.
Price, C. and Federmesser, B.: Lightning-rainfall relationships in
Mediterranean winter thunderstorms, Geophys. Res. Lett., 33, L07813, https://doi.org/10.1029/2005GL024794, 2006.
Riemann-Campe, K., Fraedrich, K., and Lunkeit, F.: A global climatology of
convective available potential energy (CAPE) and convective inhibition (CIN)
in ERA-40 reanalysis, Atmos. Res., 93, 534–545, 2009.
Romps, D. M.: Evaluating the future of lightning in cloud-resolving models,
Geophys. Res. Lett., 46, 14863–14871, https://doi.org/10.1029/2019GL085748, 2019.
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected increase
in lightning strikes in the United States due to global warming, Science,
346, 6211, https://doi.org/10.1126/science.1259100, 2014.
Saha, U., Siingh, D., Kamra, A. K., Galanaki, E., Maitra, A., Singh, R. P.,
Singh, A. K., Chakraborty, S., and Singh, R.: On the association of lightning
activity and projected change in climate over the Indian sub-continent,
Atmos. Res., 183, 173–190, 2017.
Shi, Z., Tana, Y. B., Tang, H. Q., Sunc, J., Yanga, Y., Penga, L., and Guo, X. F.:
Aerosol effect on land-ocean contrast in thunderstorm electrification and
lightning frequency, Atmos. Res., 164–165, 131–141, 2015.
Shi, Z., Tan, Y. B., Liu, Y., Liu, J., Lin, X., Wang, M., and Luan, J.:
Effects of relative humidity on electrification and lightning discharges in
thunderstorms, Terr. Atmos. Ocean. Sci., 29, 695–708, https://doi.org/10.3319/TAO.2018.09.06.01, 2018.
Shi, Z., Wang, H. C., Tan, Y. B., Li, L. Y., and Li, C. S.: Influence of aerosols
on lightning activities in central eastern China, Atmos. Sci. Lett., 21, e957, https://doi.org/10.1002/asl.957, 2020.
Shindell, D. T., Faluvegi, G., Unger, N., Aguilar, E., Schmidt, G. A., Koch, D. M., Bauer, S. E., and Miller, R. L.: Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI, Atmos. Chem. Phys., 6, 4427–4459, https://doi.org/10.5194/acp-6-4427-2006, 2006.
Siingh, D., Singh, R. P., Singh, A. K., Kulkarni, M. N., Gautam, A. S., and
Singh, A. K.:. Solar activity, lightning and climate, Surv. Geophys., 32,
659–703, 2011.
Takahashi, T.: Riming electrification as a charge separation mechanism in
thunderstorms, J. Atmos. Sci., 35, 1536–1548, 1978.
Talukdar, S., Venkat Ratnam, M., Ravikiran, V., and Chakraborty, R.: Influence of
black carbon on atmospheric instability, J. Geophys. Res.-Atmos., 124,
5539–5554, 2019.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Twomey, S. A., Piepgrass, M., and Wolfe, T. L.: An assessment of the impact
of pollution on global cloud albedo, Tellus, 36, 356–366, 1984.
Uman, M.: All About Lightning chap. 8, Dover Publication Inc, p. 68, 1986.
van den Heever, S. C. and Cotton, W. R.: Urban aerosol impacts on downwind
convective storms, J. Appl. Meteorol. Clim., 46, 828–850, 2007.
Washington Post: Lightning strikes kill nearly 120 in India, available at: https://www.washingtonpost.com/world/lightning-strikes-kill-more-than-100-in-india/2020/06/26/4c010886-b71c-11ea-9a1d-d3db1cbe07ce_story.html, last access: 19 September 2020.
Williams, E. and Stanfill, S.: The physical origin of the land–ocean
contrast in lightning activity, C. R. Phys., 3, 1277–1292, 2002.
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
In this study, urbanization-induced surface warming has been found to trigger prominent changes...
Altmetrics
Final-revised paper
Preprint