Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-8441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations
Weather and Climate Change Impact Research, Finnish Meteorological
Institute, Helsinki, Finland
Otto Hyvärinen
Weather and Climate Change Impact Research, Finnish Meteorological
Institute, Helsinki, Finland
Matti Kämäräinen
Weather and Climate Change Impact Research, Finnish Meteorological
Institute, Helsinki, Finland
David S. Richardson
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Heikki Järvinen
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
Hilppa Gregow
Weather and Climate Change Impact Research, Finnish Meteorological
Institute, Helsinki, Finland
Related authors
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
Geosci. Model Dev., 18, 7735–7761, https://doi.org/10.5194/gmd-18-7735-2025, https://doi.org/10.5194/gmd-18-7735-2025, 2025
Short summary
Short summary
The Next Generation of Earth Modeling Systems project (nextGEMS) developed two Earth system models that use horizontal grid spacing of 10 km and finer, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS simulated the Earth System climate over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Maksym Vasiuta, Angel Navarro Trastoy, Sanam Motlaghzadeh, Lauri Tuppi, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 18, 5015–5030, https://doi.org/10.5194/gmd-18-5015-2025, https://doi.org/10.5194/gmd-18-5015-2025, 2025
Short summary
Short summary
Propagation of electromagnetic signals in Earth's neutral atmosphere inflicts errors in space geodetic observations. To model these errors accurately, it is necessary to use a signal tracing algorithm which is informed of the state of the atmosphere. We developed such an algorithm and tested it by processing Global Navigation Satellite System network observations. Our algorithm's main advantage is lossless utilization of atmospheric information provided by numerical weather prediction models.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Angel Navarro Trastoy, Sebastian Strasser, Lauri Tuppi, Maksym Vasiuta, Markku Poutanen, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 15, 2763–2771, https://doi.org/10.5194/gmd-15-2763-2022, https://doi.org/10.5194/gmd-15-2763-2022, 2022
Short summary
Short summary
Production of satellite products relies on information from different centers. By coupling a weather model and an orbit determination solver we eliminate the dependence on one of the centers. The coupling has proven to be possible in the first stage, where no formatting has been applied to any of the models involved. This opens a window for further development and improvement to a coupling that has proven to be as good as the predecessor model.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Pirkka Ollinaho, Glenn D. Carver, Simon T. K. Lang, Lauri Tuppi, Madeleine Ekblom, and Heikki Järvinen
Geosci. Model Dev., 14, 2143–2160, https://doi.org/10.5194/gmd-14-2143-2021, https://doi.org/10.5194/gmd-14-2143-2021, 2021
Short summary
Short summary
OpenEnsemble 1.0 is a novel dataset that aims to open ensemble or probabilistic weather forecasting research up to the academic community. The dataset contains atmospheric states that are required for running model forecasts of atmospheric evolution. Our capacity to observe the atmosphere is limited; thus, a single reconstruction of the atmospheric state contains some errors. Our dataset provides sets of 50 slightly different atmospheric states so that these errors can be taken into account.
Cited articles
ACDL: Atmospheric Chemistry and Dynamics Laboratory of the National Aeronautics and Space Administration, Annual Meteorological Statistics, available at:
https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html, last access: 11 July 2020.
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation
from the stratosphere to the troposphere, J. Geophys. Res, 104,
30937–30946, https://doi.org/10.1029/1999JD900445, 1999.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Buizza, R. and Leutbecher, M.: The forecast skill horizon, Q. J. Roy.
Meteor. Soc., 141, 3366–3382, https://doi.org/10.1002/qj.2619, 2015.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol.
Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Cassou, C.: Intraseasonal interaction between the Madden–Julian Oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527, 2008.
Chambers, J. M., Cleveland, W. S., Kleiner, B, and Tukey, P.A.: Graphical
Methods for Data Analysis, The Wadsworth statistics/probability series,
Wadsworth and Brooks/Cole, Pacific Grove, CA, 1983.
CPC: Climate Prediction Center of the National Centers for Environmental Prediction, National Oceanic and Atmospheric Administration, Climate and Weather linkage, available at: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml, last access: 11 July 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, 2011.
Ervasti, T., Gregow, H., Vajda, A., Laurila, T. K., and Mäkelä, A.: Mapping users' expectations regarding extended-range forecasts, Adv. Sci. Res., 15, 99–106, https://doi.org/10.5194/asr-15-99-2018, 2018.
Ferro, C. A. T., Richardson, D. S., and Weigel, A. P.: On the effect of
ensemble size on the discrete and continuous ranked probability scores,
Meteorol. Appl., 15, 19–24, https://doi.org/10.1002/met.45, 2008.
Garfinkel, C. I., Schwartz, C., Domeisen, D. I. P., Son, S-W., Butler, A.
H., and White, I. P.: Extratropical stratospheric predictability from the
Quasi-Biennial Oscillation in Subseasonal forecast models, J. Geophys. Res.-Atmos., 123, 7855–7866, https://doi.org/10.1029/2018JD028724, 2018.
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, 2018.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Jiang, Z., Feldstein, S. B., and Lee S.: The relationship between the
Madden–Julian Oscillation and the North Atlantic Oscillation, Q. J. Roy.
Meteor. Soc., 143, 240–250, https://doi.org/10.1002/qj.2917, 2017.
Jordan, A., Krueger, F., and Lerch, S.: Evaluating Probabilistic Forecasts with scoringRules, J. Stat. Softw., 90, 1–37, https://doi.org/10.18637/jss.v090.i12, 2019.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8,
433–440, 2015.
Korhonen, N.: Files containing data in Figures 1–5 in the manuscript Korhonen N. et al. “Adding value to Extended-range Forecasts in Northern Europe by Statistical Post-processing Using Stratospheric Observations”, available at: https://etsin.fairdata.fi/dataset/34d0f8b3-a593-46aa-8fcf-358d72f6cac1,
last access: 11 July 2020.
Langland, R. H. and Maue, R. N.: Recent Northern Hemisphere
mid-latitude medium-range deterministic forecast skill, Tellus A, 64, 17531, https://doi.org/10.3402/tellusa.v64i0.17531, 2012.
Limpasuvan, V., Hartmann, D. L., Thompson, D. W.
J., Jeev, K., and Yung, Y. L.: Stratosphere-troposphere evolution during
polar vortex intensification, J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302, 2005.
Madden, R. A. and Julian, P. R.: Observations of the 40–50-day tropical
oscillation–A review, Mon. Weather Rev., 122, 814–837, 1994.
MARS: ERA-Interim reanalysis data, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last access: 11 July 2020a).
MARS: ERF data of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System cycle 43r1, available at: https://apps.ecmwf.int/mars-catalogue/, last access: 11 July 2020b.
Minami, A. and Takaya, Y.: Enhanced Northern Hemisphere Correlation
Skill of Subseasonal Predictions in the Strong Negative Phase of the Arctic
Oscillation, J. Geophys. Res.-Atmos., 125, e2019JD031268, https://doi.org/10.1029/2019JD031268, 2020.
Monhart, S., Spirig, C., Bhend, J., Bogner, K., Schär, C., and Liniger,
M. A.: Skill of subseasonal forecasts in Europe: Effect of bias correction
and downscaling using surface observations, J. Geophys. Res.-Atmos.,
123, 7999–8016, 2018.
Polichtchouk, I., Shepherd, T. G., and Byrne, N. J.: Impact of Parametrized
Nonorographic Gravity Wave Drag on Stratosphere-Troposphere Coupling in the
Northern and Southern Hemispheres, Geophys. Res. Lett., 45, 8612–8618, https://doi.org/10.1029/2018gl078981, 2018.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Emily Liu, J. B.,
Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen,
J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.
D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.
R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen,
J.: MERRA: NASA's modern-era retrospective analysis for research and
applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Robertson, A. W., Camargo, S. J., Sobel, A., Vitart, F., and Wang, S.:
Summary of workshop on sub-seasonal to seasonal predictability of extreme
weather and climate, npj Climate and Atmospheric Science, 1, 20178, https://doi.org/10.1038/s41612-017-0009-1, 2018.
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M.,
Dunstone, N., Knight, J., MacLachlan, C., Manzini, E., Müller, W. A.,
Holger Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability
of the quasi-biennial oscillation and its northern winter teleconnection on
seasonal to decadal timescales, Geophys. Res. Lett., 41, 1752–1758,
https://doi.org/10.1002/2013GL059160, 2014.
Schoeberl, M. R.: Stratospheric warmings: Observations and theory, Rev.
Geophys., 16, 521–538, 1978.
Shepherd T. G., Polichtchouk, I., Hogan, R., and Simmons, A. J.: Report on
Stratosphere Task Force, ECMWF Technical Memorandum, no. 824, https://doi.org/10.21957/0vkp0t1xx, 2018.
Thompson, D. W. J. and Wallace, J. M.: The Arctic Oscillation signature in
the wintertime geopotential height and temperature fields, Geophys. Res.
Lett., 25, 1297–1301, 1998.
Thompson, D. W. J. and Wallace, J. M.: Regional Climate Impacts of the
Northern Hemisphere Annular Mode, Science, 293, 85–89, 2001.
Thompson, D. W. J., Baldwin, M. P., and Wallace J. M.: Stratospheric
connection to Northern Hemisphere wintertime weather: implications for
prediction, J. Climate, 15, 1421–1428, 2002.
Tomassini, L., Gerber, E. P., Baldwin, M. P., Bunzel, F., and Giorgetta, M.:
The role of stratosphere troposphere coupling in the occurrence of extreme
winter cold spells over northern Europe, J. Adv. Model. Earth Sy., 4,
M00A03, https://doi.org/10.1029/2012MS000177, 2012.
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. Roy.
Meteor. Soc., 140, 1889–1899, https://doi.org/10.1002/qj.2256, 2014.
Vitart, F.: Madden-Julian Oscillation prediction and teleconnections in the
S2S database: MJO prediction and teleconnections in the S2S database, Q. J.
Roy. Meteor. Soc., 143, 2210–2220, 2017.
Vitart, F. and Molteni, F.: Simulation of the MJO and its teleconnections in
the ECMWF forecast system, Q. J. Roy. Meteor. Soc., 136, 842–855, 2010.
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H.,
Hodgson, J., Kang, H., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P.,
Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P.,
Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M.,
Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F.,
Waliser, D., Woolnough, S., Wu, T., Won, D., Xiao, H., Zaripov, R., and
Zhang L.: The Subseasonal to Seasonal (S2S) Prediction Project Database,
B. Am. Meteorol. Soc., 98, 163–173,
https://doi.org/10.1175/BAMS-D-16-0017.1, 2017.
Watson, P. A. and L. J. Gray: How Does the Quasi-Biennial Oscillation
Affect the Stratospheric Polar Vortex?, J. Atmos. Sci., 71, 391–409, https://doi.org/10.1175/JAS-D-13-096.1, 2014.
Zhang, C.: Madden-Julian Oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005.
Short summary
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the European Centre for Medium-Range Weather Forecasts (ECMWF) winter surface temperature forecasts for weeks 3–4 and 5–6 over northern Europe. In this way, the skill scores of these forecasts are slightly improved. It is also found that, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of these forecasts were higher than average.
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the...
Altmetrics
Final-revised paper
Preprint