Articles | Volume 20, issue 9
Atmos. Chem. Phys., 20, 5527–5546, 2020
https://doi.org/10.5194/acp-20-5527-2020
Atmos. Chem. Phys., 20, 5527–5546, 2020
https://doi.org/10.5194/acp-20-5527-2020

Research article 12 May 2020

Research article | 12 May 2020

Effects of black carbon mitigation on Arctic climate

Thomas Kühn et al.

Related authors

In-cloud scavenging scheme for sectional aerosol modules – implementation in the framework of the Sectional Aerosol module for Large Scale Applications version 2.0 (SALSA2.0) global aerosol module
Eemeli Holopainen, Harri Kokkola, Anton Laakso, and Thomas Kühn
Geosci. Model Dev., 13, 6215–6235, https://doi.org/10.5194/gmd-13-6215-2020,https://doi.org/10.5194/gmd-13-6215-2020, 2020
Short summary
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020,https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019,https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018,https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0
Scarlet Stadtler, Thomas Kühn, Sabine Schröder, Domenico Taraborrelli, Martin G. Schultz, and Harri Kokkola
Geosci. Model Dev., 11, 3235–3260, https://doi.org/10.5194/gmd-11-3235-2018,https://doi.org/10.5194/gmd-11-3235-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021,https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021,https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Atmos. Chem. Phys., 21, 13247–13267, https://doi.org/10.5194/acp-21-13247-2021,https://doi.org/10.5194/acp-21-13247-2021, 2021
Short summary
Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning
Chien Wang
Atmos. Chem. Phys., 21, 13149–13166, https://doi.org/10.5194/acp-21-13149-2021,https://doi.org/10.5194/acp-21-13149-2021, 2021
Short summary
Improving prediction of trans-boundary biomass burning plume dispersion: from northern peninsular Southeast Asia to downwind western North Pacific Ocean
Maggie Chel-Gee Ooi, Ming-Tung Chuang, Joshua S. Fu, Steven S. Kong, Wei-Syun Huang, Sheng-Hsiang Wang, Sittichai Pimonsree, Andy Chan, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 12521–12541, https://doi.org/10.5194/acp-21-12521-2021,https://doi.org/10.5194/acp-21-12521-2021, 2021
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res.-Atmos., 107, AAC 1-1–AAC 1-6, https://doi.org/10.1029/2001JD000483, 2002. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a, b, c, d
AMAP: AMAP assessment 2015: Black carbon and ozone as Arctic climate forcers, AMAP, Oslo, Norway, 2015. a, b, c, d, e, f, g
AMAP: EU-funded Action on Black Carbon in the Arctic, 2019. Review of Reporting Systems for National Black Carbon Emissions Inventories: EU Action on Black Carbon in the Arctic – Technical Report, AMAP, Oslo, Norway, 2019. a
Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., Dingenen, R. V., Vignati, E., Emberson, L., Muller, N. Z., West, J. J., Williams, M., Demkine, V., Hicks, W. K., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls, Environ. Health Persp., 120, 831–839, https://doi.org/10.1289/ehp.1104301, 2012. a, b, c
Download
Short summary
We investigate the effects of black carbon (BC) mitigation on Arctic climate and human health, accounting for the concurrent reduction of other aerosol species. While BC is attributed a net warming effect on climate, most other aerosol species cool the planet. We find that the direct radiative effect of mitigating BC induces cooling, while aerosol–cloud effects offset this cooling and introduce large uncertainties. Furthermore, the reduced aerosol emissions reduce human mortality considerably.
Altmetrics
Final-revised paper
Preprint