Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-4561-2020
https://doi.org/10.5194/acp-20-4561-2020
Research article
 | 
20 Apr 2020
Research article |  | 20 Apr 2020

Seasonal source variability of carbonaceous aerosols at the Rwanda Climate Observatory

August Andersson, Elena N. Kirillova, Stefano Decesari, Langley DeWitt, Jimmy Gasore, Katherine E. Potter, Ronald G. Prinn, Maheswar Rupakheti, Jean de Dieu Ndikubwimana, Julius Nkusi, and Bonfils Safari

Related authors

Sources and long-term variability of carbon monoxide at Mount Kenya and in Nairobi
Leonard Kirago, Örjan Gustafsson, Samuel Mwaniki Gaita, Sophie L. Haslett, Michael J. Gatari, Maria Elena Popa, Thomas Röckmann, Christoph Zellweger, Martin Steinbacher, Jörg Klausen, Christian Félix, David Njiru, and August Andersson
Atmos. Chem. Phys., 23, 14349–14357, https://doi.org/10.5194/acp-23-14349-2023,https://doi.org/10.5194/acp-23-14349-2023, 2023
Short summary
Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017,https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017,https://doi.org/10.5194/tc-11-1879-2017, 2017

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025,https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024,https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024,https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024,https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024,https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary

Cited articles

Abreu, R. C., Hoffmann, W. A., Vasconcelos, H. L., Pilo, N. A., Rossatto, D. R., and Durigan, G.: The biodiversity cost of carbon sequestration in tropical savanna, Sci. Adv., 3, e1701284, https://doi.org/10.1126/sciadv.1701284, 2017. 
Aguilera, J. and Whigham, L. D.: Using the 13C∕12C carbon isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature, Isot. Environ. Healt. S., 54, 573–587, https://doi.org/10.1080/10256016.2018.1531854, 2018. 
Andersson, A.: A systematic examination of a random sampling strategy for source apportionment calculations, Sci. Tot. Environ., 412–413, 232–238, https://doi.org/10.1016/j.scitotenv.2011.10.031, 2011. 
Andersson, A., Deng, J., Du, K., Zheng, M., Yan, C., Sköld, M., and Gustafsson, Ö.: Regionally-varying combustion sources of the January 2013 severe haze events over Eastern China, Environ. Sci. Technol., 49, 2038–2043, https://doi.org/10.1021/es503855e, 2015. 
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. 
Download
Short summary
Large-scale biomass burning events seasonally cover sub-Saharan Africa with air particles. In this study, we find that the concentrations of these particles at a remote mountain site in Rwanda may increase by a factor of 10 during such dry biomass burning periods, with strong implications for the regional climate and human health. These results provide quantitative constraints that could contribute to reducing the large uncertainties regarding the environmental impact of these fires.
Altmetrics
Final-revised paper
Preprint