Articles | Volume 20, issue 16
Atmos. Chem. Phys., 20, 10015–10027, 2020
Atmos. Chem. Phys., 20, 10015–10027, 2020

Research article 27 Aug 2020

Research article | 27 Aug 2020

A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet

Eamon K. Conway et al.

Related authors

Spectral calibration of the MethaneAIR instrument
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753,,, 2021
Short summary

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Photovoltaic power potential in West Africa using long-term satellite data
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888,,, 2020
Short summary
Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380,,, 2020
Short summary
Biomass-burning-induced surface darkening and its impact on regional meteorology in eastern China
Rong Tang, Xin Huang, Derong Zhou, and Aijun Ding
Atmos. Chem. Phys., 20, 6177–6191,,, 2020
Short summary
Air pollution slows down surface warming over the Tibetan Plateau
Aolin Jia, Shunlin Liang, Dongdong Wang, Bo Jiang, and Xiaotong Zhang
Atmos. Chem. Phys., 20, 881–899,,, 2020
Short summary
Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites
Lei Zhong, Yaoming Ma, Zeyong Hu, Yunfei Fu, Yuanyuan Hu, Xian Wang, Meilin Cheng, and Nan Ge
Atmos. Chem. Phys., 19, 5529–5541,,, 2019
Short summary

Cited articles

Barber, R. J., Tennyson, J., Harris, G. J., and Tolchenov, R. N.: A high accuracy computed water line list, Mon. Not. R. Astron. Soc., 368, 1087–1094,, 2006. a
Borger, C., Beirle, S., Dörner, S., Sihler, H., and Wagner, T.: Total column water vapour retrieval from S-5P/TROPOMI in the visible blue spectral range, Atmos. Meas. Tech., 13, 2751–2783,, 2020. a
Boyarkin, O. V., Koshelev, M. A., Aseev, O., Maksyutenko, P., Rizzo, T. R., Zobov, N. F., Lodi, L., Tennyson, J., and Polyansky, O. L.: Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations, Chem. Phys. Lett., 568-569, 14–20,, 2013. a
Bubukina, I. I., Polyansky, O. L., Zobov, N. F., and Yurchenko, S. N.: Optimized semiempirical potential energy surface for H216O up to 26000 cm−1, Optics Spectrosc., 110, 160–166,, 2011. a, b, c, d, e, f, g, h, i
Bunker, P. R. and Moss, R. E.: Effect of the Breakdown of the Born-Oppenheimer Approximation on the Rotation-Vibration Hamiltonian of a Triatomic Molecule, J. Mol. Spectrosc., 80, 217–228, 1980. a
Short summary
Water vapour has a complex spectrum and absorbs from the microwave to the near-UV where it dissociates. There is limited knowledge of the absorption features in the near-UV, and there is a large disagreement for the available models and experiments. We created a new ab initio model that is in good agreement with observation at 363 nm. At lower wavelengths, our calculations suggest that the latest experiments overestimate absorption. This has implications for trace gas retrievals in the near-UV.
Final-revised paper