Articles | Volume 19, issue 4
Atmos. Chem. Phys., 19, 2601–2627, 2019
https://doi.org/10.5194/acp-19-2601-2019

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 19, 2601–2627, 2019
https://doi.org/10.5194/acp-19-2601-2019

Research article 28 Feb 2019

Research article | 28 Feb 2019

Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics

Max Heikenfeld et al.

Related authors

tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019,https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016,https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015,https://doi.org/10.5194/tc-9-1505-2015, 2015
Short summary
An improved representation of physical permafrost dynamics in the JULES land-surface model
S. Chadburn, E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox, and P. Friedlingstein
Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015,https://doi.org/10.5194/gmd-8-1493-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290, https://doi.org/10.5194/acp-21-12273-2021,https://doi.org/10.5194/acp-21-12273-2021, 2021
Short summary
Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021,https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021,https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Aitken mode particles as CCN in aerosol- and updraft-sensitive regimes of cloud droplet formation
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021,https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary

Cited articles

Allan, D., Caswell, T., Keim, N., and van der Wel, C.: Trackpy: Trackpy v0.3.2, Zenodo, https://doi.org/10.5281/zenodo.60550, 2016. a, b
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud Invigoration by Aerosols – Coupling between Microphysics and Dynamics, Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. a, b
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the Convection-Resolving Regional Climate Modeling Approach in Decade-Long Simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a
Berry, E. X. and Reinhardt, R. L.: An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions, J. Atmos. Sci., 31, 1825–1831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2, 1974. a
Download
Short summary
Aerosols can affect the evolution of deep convective clouds by controlling the cloud droplet number concentration. We perform a detailed analysis of the pathways of such aerosol perturbations through the cloud microphysics in numerical model simulations. By focussing on individually tracked convective cells, we can reveal consistent changes to individual process rates, such as a lifting of freezing and riming, but also major differences between the three different microphysics schemes used.
Altmetrics
Final-revised paper
Preprint