Articles | Volume 19, issue 4
Atmos. Chem. Phys., 19, 2601–2627, 2019
https://doi.org/10.5194/acp-19-2601-2019

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 19, 2601–2627, 2019
https://doi.org/10.5194/acp-19-2601-2019
Research article
28 Feb 2019
Research article | 28 Feb 2019

Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics

Max Heikenfeld et al.

Related authors

tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019,https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016,https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015,https://doi.org/10.5194/tc-9-1505-2015, 2015
Short summary
An improved representation of physical permafrost dynamics in the JULES land-surface model
S. Chadburn, E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox, and P. Friedlingstein
Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015,https://doi.org/10.5194/gmd-8-1493-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023,https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023,https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022,https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022,https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary

Cited articles

Allan, D., Caswell, T., Keim, N., and van der Wel, C.: Trackpy: Trackpy v0.3.2, Zenodo, https://doi.org/10.5281/zenodo.60550, 2016. a, b
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud Invigoration by Aerosols – Coupling between Microphysics and Dynamics, Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. a, b
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the Convection-Resolving Regional Climate Modeling Approach in Decade-Long Simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a
Berry, E. X. and Reinhardt, R. L.: An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions, J. Atmos. Sci., 31, 1825–1831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2, 1974. a
Download
Short summary
Aerosols can affect the evolution of deep convective clouds by controlling the cloud droplet number concentration. We perform a detailed analysis of the pathways of such aerosol perturbations through the cloud microphysics in numerical model simulations. By focussing on individually tracked convective cells, we can reveal consistent changes to individual process rates, such as a lifting of freezing and riming, but also major differences between the three different microphysics schemes used.
Altmetrics
Final-revised paper
Preprint