Articles | Volume 19, issue 24
Atmos. Chem. Phys., 19, 15583–15586, 2019
https://doi.org/10.5194/acp-19-15583-2019
Atmos. Chem. Phys., 19, 15583–15586, 2019
https://doi.org/10.5194/acp-19-15583-2019
Technical note
19 Dec 2019
Technical note | 19 Dec 2019

Technical note: A simple method for retrieval of dust aerosol optical depth with polarized reflectance over oceans

Wenbo Sun et al.

Related authors

A method to retrieve super-thin cloud optical depth over ocean background with polarized sunlight
W. Sun, R. R. Baize, G. Videen, Y. Hu, and Q. Fu
Atmos. Chem. Phys., 15, 11909–11918, https://doi.org/10.5194/acp-15-11909-2015,https://doi.org/10.5194/acp-15-11909-2015, 2015
Short summary
Deriving polarization properties of desert-reflected solar spectra with PARASOL data
W. Sun, R. R. Baize, C. Lukashin, and Y. Hu
Atmos. Chem. Phys., 15, 7725–7734, https://doi.org/10.5194/acp-15-7725-2015,https://doi.org/10.5194/acp-15-7725-2015, 2015
Modeling polarized solar radiation from the ocean–atmosphere system for CLARREO inter-calibration applications
W. Sun and C. Lukashin
Atmos. Chem. Phys., 13, 10303–10324, https://doi.org/10.5194/acp-13-10303-2013,https://doi.org/10.5194/acp-13-10303-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022,https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022,https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022,https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Sudip Chakraborty, Bin Guan, Duane E. Waliser, and Arlindo M. da Silva
Atmos. Chem. Phys., 22, 8175–8195, https://doi.org/10.5194/acp-22-8175-2022,https://doi.org/10.5194/acp-22-8175-2022, 2022
Short summary
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022,https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary

Cited articles

Buriez, J. C., Vanbauce, C., Parol, F., Goloub, P., Herman, M., Bonnel, B., Fouquart, Y., Couvert, P., and Sèze, G.: Cloud detection and derivation of cloud properties from POLDER, Int. J. Remote Sens., 18, 2785–2813, 1997. 
Deschamps, P. Y., Breon, F.-M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.-C., and Sèze, G.: The POLDER mission: Instrument characteristics and scientific objectives, IEEE T. Geosci. Remote, 32, 598–615, 1994. 
Herman, M., Deuze, J. L., Devaux, C., Goluob, P., Breon, F. M., and Tanre, D.: Remote sensing of aerosols over land surfaces including polarization measurements and application to polder measurements, J. Geophys. Res., 102, 17039–17050, 1997. 
Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., and Flynn, L.: The modis 2.1 µm channel correlation with visible reflectances for use in remote sensing of aerosol, IEEE T. Geosci. Remote, 350, 1286–1298, 1997. 
Download
Short summary
Dusts have a significant impact on climate and environment. Detecting dust using satellite instruments is generally conducted by measuring at multiple observation angles due to the uncertainty of the surface reflection. This report shows that the degree of polarization of reflected light can be used for retrieving the optical depth of dust at backscatter angles only, regardless of surface conditions. This simple method is suitable for surveying dust aerosols over oceans with low-cost satellites.
Altmetrics
Final-revised paper
Preprint