Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12477-2019
https://doi.org/10.5194/acp-19-12477-2019
Research article
 | 
08 Oct 2019
Research article |  | 08 Oct 2019

Multivariate statistical air mass classification for the high-alpine observatory at the Zugspitze Mountain, Germany

Armin Sigmund, Korbinian Freier, Till Rehm, Ludwig Ries, Christian Schunk, Anette Menzel, and Christoph K. Thomas

Related authors

Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024,https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure
Armin Sigmund, Lena Pfister, Chadi Sayde, and Christoph K. Thomas
Atmos. Meas. Tech., 10, 2149–2162, https://doi.org/10.5194/amt-10-2149-2017,https://doi.org/10.5194/amt-10-2149-2017, 2017

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Mixing-layer-height-referenced ozone vertical distribution in the lower troposphere of Chinese megacities: stratification, classification, and meteorological and photochemical mechanisms
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024,https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Six years of continuous carbon isotope composition measurements of methane in Heidelberg (Germany) – a study of source contributions and comparison to emission inventories
Antje Hoheisel and Martina Schmidt
Atmos. Chem. Phys., 24, 2951–2969, https://doi.org/10.5194/acp-24-2951-2024,https://doi.org/10.5194/acp-24-2951-2024, 2024
Short summary
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024,https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Joseph Seitz, Shiyuan Zhong, Joseph J. Charney, Warren E. Heilman, Kenneth L. Clark, Xindi Bian, Nicholas S. Skowronski, Michael R. Gallagher, Matthew Patterson, Jason Cole, Michael T. Kiefer, Rory Hadden, and Eric Mueller
Atmos. Chem. Phys., 24, 1119–1142, https://doi.org/10.5194/acp-24-1119-2024,https://doi.org/10.5194/acp-24-1119-2024, 2024
Short summary
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023,https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary

Cited articles

Ambrose, J., Reidmiller, D., and Jaffe, D.: Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory, Atmos. Environ., 45, 5302–5315, https://doi.org/10.1016/j.atmosenv.2011.06.056, 2011. a, b
Balzani Lööv, J. M., Henne, S., Legreid, G., Staehelin, J., Reimann, S., Prévôt, A. S. H., Steinbacher, M., and Vollmer, M. K.: Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl), J. Geophys. Res.-Atmos., 113, D22305, https://doi.org/10.1029/2007JD009751, 2008. a, b
Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian, S., Schladitz, A., Löschau, G., Cyrys, J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U., Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O., Ries, L., Gerwig, H., Wirtz, K., and Fiebig, M.: Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN), Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, 2016. a, b
Calvert, J. G.: Glossary of atmospheric chemistry terms (Recommendations 1990), Pure Appl. Chem., 62, 2167–2219, 1990. a
Flentje, H., Heese, B., Reichardt, J., and Thomas, W.: Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss., 3, 3643–3673, https://doi.org/10.5194/amtd-3-3643-2010, 2010. a
Download
Short summary
Air masses at the Schneefernerhaus mountain site at Zugspitze Mountain, Germany, were classified with respect to the atmospheric layer from which they originated and their degree of pollution. Measurements of several gases, particulate matter, and standard meteorological quantities indicated that polluted air was lifted to the site in 31 % of cases and clean air descended to the site in approximately 14 % cases while most of the remaining cases were ambiguous.
Altmetrics
Final-revised paper
Preprint