Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6223–6239, 2018
https://doi.org/10.5194/acp-18-6223-2018
Atmos. Chem. Phys., 18, 6223–6239, 2018
https://doi.org/10.5194/acp-18-6223-2018

Research article 03 May 2018

Research article | 03 May 2018

Random forest meteorological normalisation models for Swiss PM10 trend analysis

Stuart K. Grange et al.

Related authors

COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas
Stuart K. Grange, James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw
Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021,https://doi.org/10.5194/acp-21-4169-2021, 2021
Short summary
Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach
Eirini Boleti, Christoph Hueglin, Stuart K. Grange, André S. H. Prévôt, and Satoshi Takahama
Atmos. Chem. Phys., 20, 9051–9066, https://doi.org/10.5194/acp-20-9051-2020,https://doi.org/10.5194/acp-20-9051-2020, 2020
Short summary
Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018
Stuart K. Grange, Hanspeter Lötscher, Andrea Fischer, Lukas Emmenegger, and Christoph Hueglin
Atmos. Meas. Tech., 13, 1867–1885, https://doi.org/10.5194/amt-13-1867-2020,https://doi.org/10.5194/amt-13-1867-2020, 2020
Short summary
Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM)
Lu Hu, Christoph A. Keller, Michael S. Long, Tomás Sherwen, Benjamin Auer, Arlindo Da Silva, Jon E. Nielsen, Steven Pawson, Matthew A. Thompson, Atanas L. Trayanov, Katherine R. Travis, Stuart K. Grange, Mat J. Evans, and Daniel J. Jacob
Geosci. Model Dev., 11, 4603–4620, https://doi.org/10.5194/gmd-11-4603-2018,https://doi.org/10.5194/gmd-11-4603-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Present-day radiative effect from radiation-absorbing aerosols in snow
Paolo Tuccella, Giovanni Pitari, Valentina Colaiuda, Edoardo Raparelli, and Gabriele Curci
Atmos. Chem. Phys., 21, 6875–6893, https://doi.org/10.5194/acp-21-6875-2021,https://doi.org/10.5194/acp-21-6875-2021, 2021
Short summary
Seasonal variation in atmospheric pollutants transport in central Chile: dynamics and consequences
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021,https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary
Non-equilibrium interplay between gas–particle partitioning and multiphase chemical reactions of semi-volatile compounds: mechanistic insights and practical implications for atmospheric modeling of polycyclic aromatic hydrocarbons
Jake Wilson, Ulrich Pöschl, Manabu Shiraiwa, and Thomas Berkemeier
Atmos. Chem. Phys., 21, 6175–6198, https://doi.org/10.5194/acp-21-6175-2021,https://doi.org/10.5194/acp-21-6175-2021, 2021
Short summary
Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021,https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021,https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary

Cited articles

Anh, V., Duc, H., and Azzi, M.: Modeling anthropogenic trends in air quality data, J. Air Waste Manage., 47, 66–71, https://doi.org/10.1080/10473289.1997.10464406, 1997.
Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., and Prévôt, A. S. H.: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813–1835, https://doi.org/10.5194/acp-11-1813-2011, 2011.
Beevers, S., Carslaw, D., Westmoreland, E., and Mittal, H.: Air pollution and emissions trends in London, Tech. rep., King's College London, Environmental Research Group Leeds University, Institute for Transport studies, available at: http://naei.defra.gov.uk/reports/reports?report_id=589 (last access: 30 April 2018), 2009.
Biau, G., Devroye, L., and Lugosi, G.: Consistency of Random Forests and Other Averaging Classifiers, J. Mach. Learn. Res., 9, 2015–2033, 2008.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/BF00058655, 1996.
Download
Short summary
Weather (meteorology) has a strong effect on air quality; if not accounted for, there is uncertainty surrounding what drives features in air quality time series. We present a machine learning approach to account for meteorology using PM10 data in Switzerland. With the exception of one site, all Swiss normalised PM10 trends were found to significantly decrease, which validates air quality management efforts. The machine learning models were interpreted to investigate interesting processes.
Altmetrics
Final-revised paper
Preprint