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Abstract. Meteorological normalisation is a technique which
accounts for changes in meteorology over time in an air qual-
ity time series. Controlling for such changes helps support
robust trend analysis because there is more certainty that the
observed trends are due to changes in emissions or chemistry,
not changes in meteorology. Predictive random forest models
(RF; a decision tree machine learning technique) were grown
for 31 air quality monitoring sites in Switzerland using sur-
face meteorological, synoptic scale, boundary layer height,
and time variables to explain daily PM10 concentrations.
The RF models were used to calculate meteorologically nor-
malised trends which were formally tested and evaluated us-
ing the Theil–Sen estimator. Between 1997 and 2016, signif-
icantly decreasing normalised PM10 trends ranged between
−0.09 and −1.16 µg m−3 yr−1 with urban traffic sites ex-
periencing the greatest mean decrease in PM10 concentra-
tions at −0.77 µg m−3 yr−1. Similar magnitudes have been
reported for normalised PM10 trends for earlier time periods
in Switzerland which indicates PM10 concentrations are con-
tinuing to decrease at similar rates as in the past. The ability
for RF models to be interpreted was leveraged using partial
dependence plots to explain the observed trends and relevant
physical and chemical processes influencing PM10 concen-
trations. Notably, two regimes were suggested by the models
which cause elevated PM10 concentrations in Switzerland:
one related to poor dispersion conditions and a second re-
sulting from high rates of secondary PM generation in deep,
photochemically active boundary layers. The RF meteoro-
logical normalisation process was found to be robust, user

friendly and simple to implement, and readily interpretable
which suggests the technique could be useful in many air
quality exploratory data analysis situations.

1 Introduction

1.1 Air quality trend analysis

Trend analysis of ambient air quality data is a common and
important procedure. The goal of such trend analysis usually
involves the confirmation, or lack of confirmation of a sta-
tistically significant change in pollutant concentrations over
time. If pollutant concentrations are significantly increasing
or decreasing, there is evidence that air quality is better or
worse than in the past and conclusions such as these are use-
ful for scientists, policy makers, and the public (Porter et al.,
2001). However, air quality trend analysis is complicated be-
cause it is usually unknown if the behaviour of the trend is
driven by changes in meteorology or changes in emissions
or atmospheric chemistry (Rao and Zurbenko, 1994; Pryor
et al., 1995; Libiseller and Grimvall, 2003; Libiseller et al.,
2005; Wise and Comrie, 2005). The former is usually of
greatest importance for policy makers because investigation
in changes in emissions, and in turn, the perturbations on am-
bient pollutant concentrations is how efficacy of intervention
activities are judged (Zeldin and Meisel, 1978; Carslaw et al.,
2006). Despite the uncertainty surrounding the drivers of air
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pollutant trends, this issue is often acknowledged but rarely
robustly compensated for.

The issue surrounding meteorology and air quality trend
analysis arises because air quality and pollutant concen-
trations are highly dependent on meteorological conditions
across all spatial scales (Stull, 1988). Wind speed, wind di-
rection, and atmospheric temperature and stability can be ex-
pected to have large influences on pollutant concentrations
at most locations. The influence of such meteorological vari-
ables can be much greater than an intervention activity which
results in meteorological conditions often obscuring or exac-
erbating trends (Anh et al., 1997). In situations where these
processes are not accounted for, a calculated trend is less
likely to represent changes in pollutant emissions due to air
quality management efforts and therefore erroneous conclu-
sions can be made on what is causing the observed trend.

The methods used for trend analysis are diverse and range
from simple least squares linear regression analysis to nu-
merically complex methods often requiring multiple pre-
processing or work-up steps before the final trend test is
conducted (Lou Thompson et al., 2001; Porter et al., 2001;
Marchetto et al., 2013). When trends are found to be mono-
tonic, i.e. constantly changing with time, the robust non-
parametric linear regression Mann–Kendall test is often used
(Guerreiro et al., 2014). The Mann–Kendall test can be sup-
plemented by using the Theil–Sen estimator and bootstrap-
ping techniques which increase the test’s robustness and can
account for autocorrelation in the time series (Siegel, 1982;
Hamed and Ramachandra Rao, 1998; Salmi et al., 2002).
Although methods for the testing of monotonic trends are
mature and are in common usage in air quality and other
environmental applications (Meals et al., 2011), much of
the effort of trend analysis is put into the pre-processing
steps which generally involves deciding what aggregation
period and function to use as well as handling the removal
of the seasonal component if necessary (an annual cycli-
cal pattern). Common techniques to allow for removal of
the seasonal component of a time series is classical de-
composition using loess (often called seasonal and trend
decomposition using loess; STL) (Cleveland et al., 1990)
and Kolmogorov–Zurbenko filters (Wise and Comrie, 2005;
Yang and Zurbenko, 2010). Although these decomposition
methods help treat the time series for further trend analysis,
they alone do not address changes of meteorology over time.

1.2 Meteorological normalisation

A method to control or take into account meteorology effects
on pollutant concentrations involves the development and use
of predictive statistical models (Lou Thompson et al., 2001;
Carslaw et al., 2006; Beevers et al., 2009; Carslaw and Priest-
man, 2015; Fuller and Carslaw, 2017). Such models attempt
to use a number of explanatory variables such as surface mea-
surements of wind behaviour, atmospheric temperature, and
pressure to explain the variability of pollutant concentrations.

Time variables such as Julian day (day of the year), weekday,
and hour of the day can also be used as predictors. These time
variables act as proxies for emission strength because pollu-
tant emissions or generation processes vary by the time of
day, day of the week, and season (Derwent et al., 1995). If the
predictive models are found to explain an adequate amount
of the variation in pollutant concentration, the model can be
used to account for the influence of meteorological variables
on the pollutant concentration. The explanation of some of
the variation in a time series also has the side effect of al-
lowing significant trends to be detected earlier because of the
reduction of estimate uncertainty. This technique is known
by a few different names but here, we refer to the technique
as “meteorological normalisation”.

The application of meteorological normalisation ap-
proaches are, however, complicated due to how pollutant
concentrations vary based on meteorological variables. For
example, for a traffic sourced pollutant such as nitrogen diox-
ide (NO2), it would be expected that concentrations would
decrease with increasing wind speed due to atmospheric di-
lution and dispersion processes (Hitchins et al., 2000). How-
ever, this process is highly unlikely to be linear and when
a monitoring site is located adjacent to a kerb, the effect
of dilution based on the wind speed would also be highly
dependent on wind direction. There would be further com-
plication if the monitoring site was located within a street
canyon. When variables depend on one another (or among
more than two variables) in such a way, this is termed in-
teraction (Cox, 1984). Interaction effects generally require
special treatment in most statistical models. Additionally
normality, homoscedasticity, multicollinearity, and indepen-
dence should also be addressed before and during statistical
modelling. All of these features are commonly encountered
in air quality time series which can make the use statistical
techniques highly burdensome in this domain.

1.3 Machine learning

In the past three decades, there has been large development
in the field of what is now known as machine learning (ML).
ML is a fusion of statistics, data science, and computing
which experiences use across a very wide range of applica-
tions (Smola and Vishwanathan, 2008; Kuhn, 2013). ML is
a diverse topic but it has seen the development of many pre-
dictive models which offer alternatives to “classical” statisti-
cal models for exploratory data analysis. Some of the more
popular ML predictive models include decision tree methods
such as boosted regression trees and random forest; the ker-
nel methods, which include support vector machines; and fi-
nally artificial neural networks (Friedman, 2006). These ML
methods, when used in regression mode, can be used in sim-
ilar applications as multiple regression models such as gen-
eral additive models (GAMs). These ML techniques are non-
parametric and have the critical advantage of not needing to
address many of the assumptions required for statistical mod-
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els such as sample normality, homoscedasticity, indepen-
dence, adherence to other strict parametric assumptions, and
the careful handling of interaction effects (Immitzer et al.,
2012). ML predictive models have the potential to supple-
ment more classical statistical techniques which may result
in improved air quality trend analysis.

Decision trees and random forest

Random forest (RF) (also known as decision forests) which
is utilised in this study is an ensemble decision tree ML
method (Breiman, 2001; Tong et al., 2003). Decision trees
use a binary recursive classifying algorithm which creates
“pure” nodes by splitting observations into two homologous
groups. The recursive nature of the algorithm means split-
ting is repeated until node purity is achieved. Together the
entire series of splits, individually called nodes or branches,
is referred to as a tree. The recursive algorithm will always
correctly classify input data if the trees are allowed to grow
to their maximum depth. Algorithms of this sort are called
greedy (Biau et al., 2008). This greedy behaviour can re-
sult in very deep trees (especially with continuous numeric
variables) where the final split is only evaluating two obser-
vations, i.e. a singleton node. Models such these will very
rarely generalise to new data which was not used to train
the model. Therefore, decision trees are prone to overfit-
ting (Kotsiantis, 2013). RF controls for this disadvantage by
growing many individual decision trees from a training set
using a process called bagging (bootstrap aggregation). RF
is an ensemble method because the model consists of many
individual trees/models/learners grown from bagged data but
when used for prediction, all the trees’ outputs are used to-
gether (Fig. 1).

Bagging refers to randomly sampling observations with
replacement from the training set along with sampling of
explanatory variables (Breiman, 1996). A set which results
from bagging is called out-of-bag data (OOB) and OOB data
will always be lacking some of the input data. When a sin-
gle tree is grown from OOB data, it is unlikely to contain
the same observations and variables used by other trees if the
process is repeated. RF models usually contain a few hun-
dred trees using OOB data and this creates a forest which
consists of many decorrelated trees which have been trained
on different subsets of the training set (Fig. 1). Every tree can
then be used to predict and the predictions are aggregated
to form a single prediction. In regression applications, the
mean of predictions is used. Somewhat counter intuitively,
the bagging process and ensemble predictions address deci-
sion trees’ tendency to overfit training sets (Friedman et al.,
2001). This allows RF to produce predictive models which
generalise well and predictive performance is generally con-
sidered among the best of any ML technique (Caruana and
Niculescu-Mizil, 2006).

RF also has the advantage of not being a “black-box”
method (Jones and Linder, 2015). Decision trees are one of

...
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Figure 1. Conceptual diagram of a random forest model. Many out-
of-bag samples are taken from the training set and different decision
trees are grown. After many decision trees are grown, termed the
forest, all trees are used to form a single prediction. The predictions
can then be validated using the test set which is withheld from the
training process. Tree icons are from freepik.com (2017).

the few ML techniques where the learning process can be
explained, investigated, and interpreted. In the case of artifi-
cial neural networks or kernel based learning methods, this
is much more difficult to do (Kotsiantis, 2013; Tong et al.,
2003). RF models can be investigated with partial depen-
dence plots which demonstrate the relationships among vari-
ables and a variable’s importance as a predictor can also be
determined. RF can be used in unsupervised, regression, or
classification modes, accepts numeric and categorical vari-
ables, and is known to be simpler to tune when compared to
other decision tree methods which usually require pruning;
a process which removes some of the grown branches from
the forest. The combination of these attributes has made RF a
popular ML technique (Friedman et al., 2001; Immitzer et al.,
2012).

1.4 Objectives

Improvements in the pre-processing steps for air quality
trend analysis need to be made which control, or account
for meteorology and allow for more robust trend and inter-
vention exploration. This overall objective of this paper is
to present a meteorological normalisation technique which
uses RF predictive models to prepare ambient atmospheric
pollutant concentration data for trend analysis. Specifically,
this paper will (i) present a meteorological normalisation
technique utilising RF predictive models using routine data
which will be accessible to most data users, (ii) present a
trend analysis of the meteorologically normalised time se-
ries, and (iii) use RF’s advantage of being able to interpret the
learning processes to explain the trends which are observed.
Daily PM10 observations from across Switzerland will be
used for the analysis. The use of daily Swiss PM10 data was
chosen because the data record and capture rates are excel-
lent, and a previous study (Barmpadimos et al., 2011) con-
ducted a PM10 trend analysis using a different method for
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observations between 1991 and 2008. Therefore, this work
also updates and extends previous work.

2 Methods

2.1 Data

Routine air quality observations from Switzerland were used
in this study and these data were accessed from the Euro-
pean Environment Agency (EEA) AirBase and Air Quality e-
Reporting (AQER) data repositories (European Environment
Agency, 2014, 2017). The AirBase repository includes data
between 1969 and 2012 (inclusive) while the AQER repos-
itory contains data from 2013 onwards. These two repos-
itories contain monitoring sites which are within Switzer-
land’s National Air Pollution Monitoring Network (NABEL)
and sites which are managed by the Swiss Cantons (states)
(Federal Office for the Environment, 2014, 2017). Data from
the two repositories have different data models and file for-
mats which required transformation and processing into a
standardised relational data model called smonitor (Grange,
2016, 2017a). The Härkingen-A1 and Sion-Aéroport sites’
data are not submitted to the EEA, therefore these data were
requested and delivered directly from the Swiss Federal Of-
fice for the Environment (FOEN).

Daily PM10 observations were used as the pollutant of in-
terest and in the models as the dependent variable. Obser-
vations between 1997 and 2016 were used; the observations
were collected with the use of commercially available gravi-
metric instrumentation and are subjected to quality assurance
and control procedures (Federal Office for the Environment,
2017). A total of 186 400 PM10 observations from 31 sites
were used. The sites were classified into six site types: ru-
ral, rural mountain, urban background, suburban, rural mo-
torway, or urban traffic based on classifications in the AQER
reporting system. For site locations and details see Table 1
and Fig. 2.

The 31 PM10 monitoring sites where chosen for their suit-
ably for use in trend analysis. The main condition was that
PM10 observations needed to be unbroken for at least five
years. One exception was made for Zürich-Schimmelstrasse.
Zürich-Schimmelstrasse has a broken PM10 time series due
to PM10 monitoring occurring every second year between
2002 and 2010, however, these data were still considered
valuable enough to include in the analysis. All other sites had
very high data capture rates (median of 99 %) for the dura-
tion they were operational. Five monitoring sites were closed
before, or did not have PM10 data to the end of the analysed
time period (the end of 2016) but until their date of closure
had uninterrupted PM10 time series.

Surface meteorological variables to be included in the
modelling process such as wind speed, wind direction,
and atmospheric temperature were accessed from the Inte-
grated Surface Database (ISD) with the worldmet R pack-

age (NOAA, 2016; Carslaw, 2017). These observations are
generally available as hourly means and were therefore ag-
gregated to daily averages. The wind speed aggregation
used was the scalar averages which represents average at-
mospheric motion well at this aggregation period (Grange,
2014). Generally, the closest ISD site with a complete time
series was matched to an air quality monitoring site, but
there were cases where the data record was poor for the
closest site, or it was unrepresentative (usually due to large
differences in elevation) so another ISD site was used in-
stead. Some air quality monitoring sites monitor meteoro-
logical variables, but often the time series were not complete
in the ISD database and another site was therefore supple-
mented. Fourteen unique ISD sites were used and Table 1
shows which ISD site was used for each of the 31 air quality
monitoring sites.

Synoptic scale weather patterns were included into the
models by using the Swiss weather type classifications
(WTC). The WTC is an objective and automatic classifica-
tion scheme which is used to describe broad synoptic scale
circulation patterns in Switzerland. There are ten different
WTCs types but only the CAP9 classification was used which
defines nine distinct clusters of synoptic weather patterns cal-
culated by principal component analysis (Weusthoff, 2011).
Descriptions of what these nine classes represent can be
found in Appendix A (Table A1).

Modelled daily boundary layer heights between 1997 and
2016 were sourced from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim data por-
tal (Dee et al., 2011). The highest spatial resolution outputs
were used which were at 0.125× 0.125 decimal degrees. The
NetCDF ECMWF model outputs were promoted to a raster
stack and the midday boundary layer heights were extracted
for each of the 31 monitoring sites (Hijmans, 2016; Pierce,
2017). Many of the Swiss urban monitoring sites are within
close proximity and therefore only 23 unique raster cells
were needed to represent the 31 sites. After the raster extrac-
tion, daily time series of boundary layer heights for each site
were generated. The modelled ECMWF outputs were tested
against radio sounding observations at Payerne before 2010
when such data exists. Although the two data sets did not
agree well, a positive correlation was present and inclusion
of a boundary layer variable was undertaken to allow the
models to have a predictor which represented approximate
atmospheric stability and the modelled data was judged to be
suitable for this purpose.

For each of the 23 raster cells, daily back trajectories were
calculated using the HYSPLIT model for the monitored pe-
riod of PM10 (1997–2016) (Stein et al., 2015). The back tra-
jectories were calculated backwards in time for 120 h and
used half the mean monthly boundary layer height as their
starting height. This starting height ensured that the back tra-
jectory receptor was aloft, but remained within the boundary
layer throughout the year. The back trajectories were then
clustered into six clusters using the Euclidian distance and
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Table 1. Information for the PM10 and meteorological monitoring sites used in this study.

ID Site name Latitude Longitude Elevation (m) Site type Site name ISD (met.) Data span

1 Avully-Passeiry 46.163 6.005 427 Rural Geneva Cointrin 2001–2016
2 Magadino-Cadenazzo 46.160 8.934 203 Rural Locarno-Magadino 1997–2016
3 Payerne 46.813 6.944 489 Rural Payerne 1997–2016
4 Saxon 46.139 7.148 460 Rural Sion 1998–2016
5 Tänikon 47.480 8.905 538 Rural Aadorf-Taenikon 2002–2016
6 Härkingen-A1 47.312 7.821 431 Rural motorway Wynau 1997–2016
7 Sion-Aéroport-A9 46.220 7.342 483 Rural motorway Sion 1997–2016
8 Chaumont 47.050 6.979 1136 Rural mountain Chasseral 2002–2016
9 Rigi-Seebodenalp 47.067 8.463 1031 Rural mountain Luzern 2002–2016
10 Basel-Binningen 47.541 7.583 316 Suburban Bale Mulhouse 1997–2016
11 Dübendorf-EMPA 47.403 8.613 432 Suburban Zürich-Fluntern 1997–2016
12 Ebikon-Sedel 47.068 8.301 482 Suburban Luzern 2002–2016
13 Ittigen 46.976 7.479 460 Suburban Bern-Zollikofen 2002–2016
14 Lugano-Pregassona 46.026 8.968 305 Suburban Lugano 2007–2016
15 Meyrin-Vaudagne 46.231 6.074 439 Suburban Geneva Cointrin 2002–2016
16 Opfikon-Balsberg 47.439 8.570 430 Suburban Zürich-Fluntern 2001–2016
17 Thônex-Foron 46.196 6.211 422 Suburban Geneva Cointrin 2002–2016
18 Basel-St-Johann 47.566 7.582 260 Urban background Bale Mulhouse 1997–2016
19 Lugano-Università 46.011 8.957 280 Urban background Lugano 1997–2016
20 Luzern-Museggstrasse 47.056 8.310 460 Urban background Luzern 2002–2010
21 Winterthur-Obertor 47.500 8.732 448 Urban background Zürich-Fluntern 2000–2014
22 Zürich-Kaserne 47.378 8.530 409 Urban background Zürich-Fluntern 1997–2016
23 Basel-Feldbergstrasse 47.567 7.595 255 Urban traffic Bale Mulhouse 2004–2016
24 Bern-Bollwerk 46.951 7.441 536 Urban traffic Bern Belp 1997–2016
25 Bern-Brunngasshalde 46.949 7.450 533 Urban traffic Bern-Zollikofen 2002–2015
26 Genève-Ile 46.206 6.143 375 Urban traffic Geneva Cointrin 2001–2008
27 Genève-Wilson 46.216 6.151 376 Urban traffic Geneva Cointrin 2002–2013
28 Lausanne-César-Roux 46.522 6.640 530 Urban traffic Geneva Cointrin 1997–2016
29 St-Gallen-Rorschacherstrasse 47.429 9.387 660 Urban traffic St. Gallen 2001–2013
30 Zürich-Schimmelstrasse 47.371 8.524 415 Urban traffic Zürich-Fluntern 1997–2016
31 Zürich-Stampfenbachstrasse 47.387 8.540 445 Urban traffic Zürich-Fluntern 1997–2016

these clusters were used to represent the common air masses
the PM10 monitoring sites were exposed to. The use of six
clusters was a heuristic, but the six clusters represented dis-
tinct air masses and they were very stable across the 23 recep-
tor locations. The HYSPLIT clustering function in openair
was used to determine these clusters (Carslaw and Ropkins,
2012).

2.2 Modelling

RF models which used PM10 as the dependent variable for
each of the 31 air quality monitoring sites were grown. All
RF models used the same explanatory variables to predict
daily PM10 concentrations. The explanatory variables were:
wind speed, wind direction, atmospheric temperature, syn-
optic weather pattern, boundary layer height, air mass cluster
based on the HYSPLIT back trajectories, a linear trend term
which was the Unix time of the observation (number of sec-
onds since 1 January 1970), Julian day (day of the year) as
the seasonal term, and day of the week. The air mass cluster,
the synoptic weather pattern, and day of the week variables
were categorical variables while all others were numeric. All

variables were used within their response scale with no trans-
formations being applied. The randomForest R package was
used as the interface to the RF functions reported by Breiman
(2001) (Liaw and Wiener, 2002). A daily PM10 concentration
was only modelled if valid wind speed data was available for
that day. For all other input variables, missing data was im-
puted with the median of numeric variables and the mode for
categorical variables. Training of the models was conducted
on 80 % of the input data and the other 20 % was withheld
from the training and used to validate the models once they
had been grown.

RF only requires a handful of tuning parameters (also
called hyper parameters) to be specified by the user (Liaw
and Wiener, 2002; Immitzer et al., 2012). To determine the
optimal values, many models were run with different combi-
nations of tuning parameters. The model performance statis-
tics using the testing set (data withheld from the training step)
and run times were evaluated to judge what hyper-parameters
grew the best performing models. For this application, the
models were found to be rather insensitive to tuning param-
eters. However, the number of variables used to grow a tree
was set to three, the minimum node-size or depth was five,
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Figure 2. Locations of the air quality and meteorological sites included in the analysis. The map outline is the extent of Switzerland.

and the number of trees within a forest was set at 300 for all
models.

Meteorological normalisation

The meteorological normalisation of the daily PM10 time se-
ries was achieved by repeatedly sampling and predicting us-
ing individual site RF models, rather than attempting to solve
for, and then remove the short term variation in a time se-
ries. The RF predictive model for a site was used to pre-
dict every PM10 concentration 1000 times. For every pre-
diction, the explanatory variables, with the exception of the
trend term, were sampled without replacement and randomly
allocated to a dependent variable observation (a PM10 con-
centration). The 1000 predictions were then aggregated using
the arithmetic mean and this represented “average” meteoro-
logical conditions and hence, this was the meteorologically
normalised trend. If more than a thousand predictions were
made, only a very minor reduction of noise was achieved.
The functions used to grow the RF models and apply the me-
teorological normalisation procedure reported here are avail-
able in the normalweatherr R package (Grange, 2017b).

2.3 Trend tests

After the normalised time series for a site had been calcu-
lated, formal trend tests were preformed. The Theil–Sen es-
timator accounting for autocorrelation was used at the 95 %
confidence level (α= 0.05) to indicate a significant trend.
The autocorrelation consideration process results in more

conservative confidence intervals for the trend estimates.
These functions were also provided by the openair R package
(Carslaw and Ropkins, 2012).

3 Results and discussion

3.1 Random forest model evaluation

The predictive random forest (RF) models performed well
for most PM10 monitoring sites. All mean squared errors
(MSE) and R2 values are displayed in tabular form in Ap-
pendix A (Table A2). R2 values ranged from 54 to 71 %
(Fig. 3). This indicates for some sites in Switzerland PM10
concentrations could be well explained by a combination
of surface meteorological conditions, boundary layer height,
synoptic scale conditions, back trajectory receptor air mass
clusters, and time variables which acted as proxies for emis-
sion strength. There were only two obvious patterns observed
between site type and predictive model performance: the ru-
ral motorway sites performed in a similar way and the rural
mountain sites’ models generally performed worse than other
site types when using the R2 metric. However, there were
only two of each of these site types analysed in this study,
and the other four site types did not demonstrate any conclu-
sive grouping with model performance measures (Fig. 3).

The most important explanatory variable for PM10 con-
centrations depended on which site was being investigated.
However, generally, wind speed was the variable with the
greatest importance for prediction (Fig. 4). Other sites
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Figure 3. The R2 values for the 31 random forest models grown for
the Swiss PM10 monitoring sites.

demonstrated that the seasonal term (Julian day), or trajec-
tory cluster were the most important variables to explain vari-
ability in PM10 concentrations (Fig. 4). This indicates that
both local and regional scale processes were important when
explaining PM10 concentrations in Switzerland. Day of the
week and the synoptic-scale classification (WTC) were gen-
erally the least important variables in the RF models, but both
variables always contributed to the models’ predictive abil-
ity (Fig. 4). Including variables with little predictive power
does not negatively effect the performance of RF models and
therefore there was no attempt to remove such variables from
the models. Interestingly, wind direction was often a rela-
tively unimportant variable (Fig. 4). This may be due to daily
wind direction averages not contributing much information
gain in the model because the aggregation period results in
the metric representing atmospheric motion rather poorly.
For all of the 31 sites, the normalised PM10 was approxi-
mately monotonic and no seasonal component was apparent
which made formal trend tests suitable.

3.2 PM10 trend analysis

In all but two PM10 Swiss monitoring sites, normalised PM10
concentrations were found to be significantly decreasing at
the α = 0.05 level between 1997 and 2016. Significantly de-
creasing normalised PM10 trends at individual sites ranged
from −0.09 to −1.16 µg m−3 yr−1 (Fig. A1, Appendix A).
These values were similar to the normalised trends reported
by Barmpadimos et al. (2011) of −0.15 to −1.2 µg m−3 yr−1

which analysed Swiss PM10 trends between 1991 and 2008
with a different method (general additive models; GAMs).
The similarities between the two studies suggest that PM10
concentrations have continued to reduce at the same rate as
reported in the past, which also validates the performance of
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Figure 4. Variable importance for the 31 Swiss PM10 monitoring
sites’ random forest models. Dots represent the mean increase in
mean square error (MSE) and the lines represent the interquartile
range for each variable.

emission control measures relating to vehicular and heating
PM emissions and confirms the trends that were modelled
based on emission inventories and their projections (Held-
stab et al., 2013). Luzern-Museggstrasse was the only moni-
toring site which demonstrated a significantly increasing nor-
malised PM10 trend of 0.14 µg m−3 yr−1. However, this facil-
ity stopped monitoring PM10 in 2009 and therefore it is un-
known if this trend continued to more recent times. The two
monitoring sites in Geneva also did not have PM10 obser-
vations to the end of the analysis period. PM10 at Genève-
Wilson demonstrated no significant normalised trend and
Genève-Ile had the least significant normalised PM10 trend
across the 31 sites analysed (Fig. A1). This may suggest that
Geneva’s PM10 trends are different from the rest of Switzer-
land, but with the lack of more recent observations, this is
uncertain.

Sites classified as “urban traffic” had a greater decreasing
trends when compared to other site types (Fig. 5). When the
six site type trends were aggregated together, the stronger
decreasing trend for traffic sites was clear with an aver-
age trend of −0.77 µg m−3 yr−1, compared to the other site
types which ranged between −0.39 and −0.63 µg m−3 yr−1

(Fig. 5). Barmpadimos et al. (2011) also reported trends
based on site type but their site type definitions were not the
same as those used in this study so they should not be directly
compared. The higher first four points in the rural panel of
Fig. 5 were caused by the aggregated time series only con-
taining the Magadino-Cadenazzo monitoring site at the very
beginning of the analysis period. Magadino-Cadenazzo is lo-
cated south of the Alps and experiences higher average con-
centrations of PM10 compared to the other rural sites. With-
out the observations from the other rural sites, these higher
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Figure 5. Aggregated meteorologically normalised PM10 trends for the six site types in Switzerland between 1997 and 2016. Points represent
the aggregated meteorologically normalised monthly means, lines represent the trend estimate, and n represents the number of sites in the
group.

concentrations leveraged the mean seen in Fig. 5. These ob-
servations were still included in the analysis and the Theil–
Sen estimator used is hardened against outliers so this will
have minimal influence on the trend estimate.

Difference in annual mean PM10 concentrations between
the rural and urban traffic site types for 2016, the final year
of analysis, was 4.7 µg m−3 compared to 9.8 µg m−3 in 1997.
The deltas between rural and other site types (excluding the
mountainous sites) also decreased during the analysis period.
This suggests the locations which are influenced by immedi-
ate PM10 sources are becoming less polluted by local emis-
sions and are increasingly heading towards rural background
levels. The rural and urban background sites’ trend metrics
are very similar indicating that these two site types are be-
having in a very similar way in respect to changes to PM10
concentrations over time.

The site type classifications used in this study can be sorted
by their increasing anthropogenic PM10 load in the following
order: rural mountain, rural, suburban, urban background,
and urban traffic. Site types which experience more anthro-
pogenic PM10 emissions could be expected to demonstrate
greater reductions in PM10 concentrations when emission in-
ventions or controls are applied. This continuum is only par-
tially shown in the trend magnitudes however with suburban
and rural motorway sites not conforming to this expected
pattern (Fig. 5). In fact, the suburban sites demonstrate the
smallest decrease in PM10 concentrations.

The rural motorway trends can be explained because al-
though PM (tailpipe) emissions for road traffic have de-

creased in Switzerland between 1997 and 2016, the volume
of traffic using the adjacent roads has increased (Bundesamt
für Strassen, 2017). This increase in traffic would have off-
set the lower emissions during the time period and thus PM
concentrations would not have decreased as much as could
be expected based on vehicular emissions alone. The subur-
ban sites’ lack of decrease is more difficult to explain. There
are many processes which could explain this feature, but we
attribute this result to changes in the surrounding environ-
ment of the suburban sites. Many of the monitoring sites
in Switzerland which are classed as suburban have become
increasingly urban during the period of analysis (1997 and
2016). Therefore, some of these suburban monitoring sites
are being influenced by more urban-like processes and emis-
sions due to the development in their vicinity.

Wood burning is a source of PM10 in the alpine, suburban,
and urban areas in Switzerland. The number of wood burning
appliances and heating demand is deceasing over time and
this change will contribute to the trends observed in Fig. 5
(Stettler and Betbèze, 2017). However, a quantification of the
reduction in wood burning activity on PM10 concentrations
among the different site types cannot be conducted with the
current data concerning wood burner usage.

The comparison of the RF meteorological normalisation
models with other techniques was not a primary objective of
this work. However, it is important to consider what effect
meteorological normalisation had on the trend estimates. To
investigate this, the PM10 observations which were subjected
to the meteorological normalisation process were aggregated
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Figure 6. PM10 trend slope estimates of meteorological normalised
and non-meteorological normalised observations for five site types
in Switzerland between 1997 and 2016. The line ranges represent
the 95 % confidence intervals of the slope estimates.

to monthly means and their trends tested with the Theil–Sen
test with identical parameters to those used on the normalised
time series. This could be considered a “standard” and rou-
tine procedure for air quality data analysis. With the excep-
tion of the rural motorway sites, the normalised trend esti-
mate was found to be greater (more negative), than the non-
normalised trend estimates (Fig. 6). This indicates that mete-
orology in Switzerland between 1997 and 2016 has masked
or obscured changes in PM10 emissions during the same pe-
riod in the observational record. Because the meteorological
normalisation technique helps to explain variation in PM10
concentrations, the normalised trend estimates had a much
lower range of uncertainty when compared to the aggregated
observations in all cases (Fig. 6). Therefore, not only did
the meteorological normalisation technique generally esti-
mate more negative trends compared to standard methods,
the trends calculated were more robust and less uncertain
when compared to a routine analysis method which would
lead to quicker identification of significant trends.

Explaining the observed trends

One of the primary advantages of decision tree methods like
RF over other machine learning techniques is the ability to
interpret and explain the models and discussion of this is pre-
sented in Sect. “Decision trees and random forest”. Here, this
advantage will be leveraged to help explain some of the fea-
tures in the PM10 trends in Switzerland between 1997 and
2016.

Partial dependence plots allow RF models to be evalu-
ated and to confirm how the explanatory variables are being
used in the models for prediction (Jones and Linder, 2015).
For the application presented here, there are general phys-
ical and chemical processes which should be confirmed in
the RF models. For example, it can be expected that PM10
concentrations will be inversely related to wind speed due to
increased atmospheric dispersion, and that wintertime con-
centrations will be higher than other seasons resulting from a
combination of greater emissions and atmospheric stability.
These general predictions and processes were confirmed by
the RF models’ partial dependence plots (one site shown as
an example in Fig. 7).

The partial dependence plots of the Zürich-
Stampfenbachstrasse RF model (Fig. 7) showed some
interesting features and were typical for Switzerland’s
traffic influenced sites. The y (vertical) axes for each plot
represents the dependence of PM10 concentration on one
variable if all other variables are fixed at their average level.
The most important variable at this location was wind speed
and the non-linear relationship is present in Fig. 7. When
wind speeds were very low, the PM10 concentrations were
on average over 38 µg m−3 day−1 but the influence on PM10
concentrations was strong and therefore at wind speeds
greater than 3 m s−1, average concentrations decreased
to under 22 µg m−3 day−1 (Fig. 7). There was minimal
evidence of increasing PM10 concentrations at high wind
speeds due to the resuspension of wind blown PM at any
monitoring site in the RF models.

Weekday was the variable of least importance for the
Zürich-Stampfenbachstrasse RF model but the partial depen-
dence plot still demonstrates what would be expected. Week-
days (days 1–5; Monday–Friday) were more polluted than
the weekend due to higher traffic sourced emissions, but the
variability of PM10 concentrations among the weekdays was
less than 2 µg m−3 day−1, i.e. the response scale was small
(Fig. 7). There was evidence of a sequential loading pro-
cess over the weekdays which peaked on Thursdays (day 4)
and also lower concentrations during the early working week
(days 1 and 2; Monday and Tuesday) which resulted from
reduced precursor PM emissions during the weekend, espe-
cially Sunday.

The seasonal component represented by Julian day
showed a similar pattern to air temperature (Fig. 7). De-
spite the similar shapes of dependencies on PM10 for
these variables, they represent rather different processes.
The Julian day dependence represents the changes in lo-
cal and regional emissions which influence PM10 con-
centrations over the course of the year. In the case of
Zürich-Stampfenbachstrasse, this will be dominated by
changes in regional background concentrations with the
addition of local traffic emissions. The seasonal variation
of emissions which effect PM10 concentrations at Zürich-
Stampfenbachstrasse spans 10 µg m−3, and this indicates that
the seasonal effect is important to consider. When Julian day
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Figure 7. Partial dependence plots of the explanatory variables used in the Zürich-Stampfenbachstrasse PM10 random forest model.

was removed from the RF models, the dependence on air
temperature and boundary layer height did not change which
shows that the models were able to differentiate the different
processes correctly despite their collinearity.

The back trajectory cluster variable was important
for many PM10 monitoring sites including Zürich-
Stampfenbachstrasse (Figs. 4 and 7). The decoded clusters’
descriptions displayed in Fig. 7 can be found in Table A3 but
the two most polluted air masses, 5 and 6 represented a local
flow from south-west Switzerland and a strong north-east
flow from Poland and southern Germany respectively
(Fig. 8). This indicates that air masses from surrounding
European states can cause polluted PM10 conditions in
Zürich, as can periods of calm and localised flows.

The partial dependence plots indicate that most monitoring
sites experience their minimum PM10 concentrations when
the boundary layer is ≈ 1000 m high, but concentrations in-
crease again once the boundary layer increases over 2000 m
(Fig. 7). This is an interesting phenomenon and it suggests
that there are two regimes in Switzerland which drive el-
evated PM10 concentrations. The first is the obvious (and
expected) combination of low temperatures, low boundary
heights, and high rates of surface-based emissions during
wintertime. These factors combine to create a poor disper-
sive environment which leads to high pollutant concentra-
tions. The second regime which causes elevated PM10 con-
centrations is active when temperatures are above 20 ◦C and
the boundary layer is above 2000 m (Fig. 7). These condi-
tions occur with every air mass cluster and under all synoptic
weather patterns which are experienced at these higher tem-
peratures. Therefore, this regime is associated with warm,
dry, dusty, and deep convective boundary layer conditions
which favour transportation of PM10 from other locations
and the generation of secondary aerosol and other processes

driven by photochemistry. Daily sulphur (in PM10) observa-
tions are available at the Payerne monitoring site and SO2−

4
concentrations do indeed increase at higher boundary layer
heights while primary pollutants such as NOx do not (Fig. 9).
These results are consistent with enhanced sulphate forma-
tion in summertime when the formation of sulphate through
photochemistry is most important. By contrast, the concen-
tration of primary pollutants such as NOx tend to decrease
with increasing boundary layer height due to increased mix-
ing.

The partial dependence plots of the seasonal and trend
components also demonstrate that while the trend component
decreased between 1997 and 2016, the seasonal component
also decreased at some of the Swiss PM10 monitoring sites.
The best example of this was demonstrated at Magadino-
Cadenazzo, a rural site in Ticino in the south of Switzerland
(Table 1 and Fig. 2). The decrease in the seasonal compo-
nent was especially true after 2006 and during early winter
at Magadino-Cadenazzo (December; Fig. 10a). As discussed
above, this further validates air pollutant emission controls
and interventions because both the background concentration
and the local loading of PM10 during winter is decreasing si-
multaneously. There is evidence however that the wintertime
loading has plateaued since approximately 2014 at this mon-
itoring site (Fig. 10b).

The rural mountain Chaumont and Rigi-Seebodenalp
monitoring sites have low PM10 concentrations when com-
pared to the other Swiss sites and site types (Figs. A1 and
5). Both of these locations are isolated and are located
above 1000 m of elevation (Table 1 and Fig. 2). There-
fore, these two monitoring sites represent pristine loca-
tions. The PM10 concentrations at both locations decreased
at ≈−0.45 µg m−3 yr−1 between 1997 and 2016 indicating
a wider-scale European reduction in PM10 and its precur-
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sors (Guerreiro et al., 2014). Interestingly, the normalised
trend at Rigi-Seebodenalp showed an additional PM10 load-
ing between 8 and 26 April 2010 due to the Eyjafjalla-
jökull Icelandic volcanic eruption (Bukowiecki et al., 2011;
Thorsteinsson et al., 2012) but at Chaumont, this was not dis-
cernible (not shown). This demonstrates that the two sites do
behave differently and are exposed to different processes at
times. The differences between the two sites are not clear in
the concentration data alone and demonstrates a potentially
useful side effect of the technique where it can be used to
investigate abnormal events.

The RF models for these two rural and mountainous lo-
cations also demonstrated different processes compared to
other site types. The most interesting feature was that the
relationship between air temperature and boundary layer
height with PM10 concentrations differed from the other
Swiss monitoring sites. The two mountainous sites experi-
enced their highest PM10 concentrations at high tempera-
tures (Chaumont shown in Fig. 11a). This difference in de-
pendence was due to these monitoring locations being in-
termittently above the boundary layer, which was also con-
firmed with the boundary layer height partial dependence
plots (Fig. 11b). When these elevated sites were within the
boundary layer during warmer periods, the relatively well
mixed PM10 influenced the monitoring locations, but during
cooler times, the sites were located in the free troposphere
decoupled from surface based emissions. This generally re-
sulted in the elevated monitoring sites experiencing lower
concentrations of PM10 during cooler periods which was not
the case for monitoring sites located at lower elevations, for
example, Basel-St-Johann, an urban background site located
at 260 m of elevation (Fig. 11).

4 Conclusions

This paper presented a meteorological normalised PM10
trend analysis using daily data from Switzerland. Random
forest (RF) predictive models which were used to explain
variation of PM10 concentrations using surface meteorology,
synoptic scale weather patterns, boundary layer height, back
trajectory clusters, and time variables. The models were then
used to prepare the PM10 time series to create a meteoro-
logical normalised trend which was suitable for formal trend
analysis.
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Figure 10. (a) PM10 partial dependence on trend and seasonal components (date and Julian day respectively) and (b) annual predicted
seasonal component at Magadino-Cadenazzo where dots represent the mean and lines indicate the amplitude of the seasonal component.
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Figure 11. Partial dependence of PM10 concentrations on (a) air temperature and (b) boundary layer height at two monitoring sites with
different site type classifications.

The RF performed well for the 31 monitoring sites with
R2 values up to 71 %. Wind speed, Julian day (the seasonal
component), and back trajectory cluster were generally the
most important predictors for PM10 concentration. For 29 of
the 31 monitoring sites analysed, PM10 concentrations were
found to be significantly decreasing at rates between −0.09
and −1.16 µg m−3 yr−1 and on average, urban traffic sites
demonstrated the greatest decrease of −0.77 µg m−3 yr−1.
The RF models’ learning process was interpreted with partial
dependence plots to explain the trends observed. There was
evidence of a decrease in the seasonal component at some
sites, i.e. the wintertime loading has decreased, and the moni-
toring sites above 1000 m of elevation showed interesting de-
pendences on air temperature which were not demonstrated
at other sites because they are intermittently located above
the boundary layer. The models also indicated that across
Switzerland, elevated PM10 concentrations occur in poor dis-
persion conditions as well as at high temperatures with a deep

boundary layers due to high rates of secondary PM genera-
tion resulting from photochemical processes.

The meteorological normalisation technique using RF was
found to be helpful in the PM10 trend analysis conducted
and resulted in more negative and less uncertain trend esti-
mates compared to another standard analysis method. The
predictive modelling framework and technique was found to
be easy to implement and user friendly because RF does not
need to conform to strict parametric assumptions. The tech-
nique described could be used in many air quality exploratory
data analysis applications.

Code and data availability. The data sources used in this work are
described and referenced in the text (see Sect. 2.1). The code used to
conduct the meteorological normalisation procedure is available as
an open source R package (normalweatherr) and is also referenced
in text (see Sect. 2).
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Appendix A

Table A1. The nine synoptic scale weather type classifications (WTC) used in this study (from Weusthoff, 2011).

CAP9 class CAP9 description

1 North-east, indifferent
2 West-south-west, cyclonic, flat pressure
3 Westerly flow over northern Europe
4 East, indifferent
5 High pressure over the Alps
6 North, cyclonic
7 West-south-west, cyclonic
8 High pressure over central Europe
9 Westerly flow over southern Europe, cyclonic

Table A2. Random forest model performance statistics for 31 PM10 air quality monitoring sites in Switzerland.

ID Site Site type MSE (scaled) R2 (%)

1 Avully-Passeiry Rural 54.824 59.980
2 Magadino-Cadenazzo Rural 129.356 56.898
3 Payerne Rural 60.854 62.431
4 Saxon Rural 64.023 62.097
5 Tänikon Rural 51.140 67.523
6 Härkingen-A1 Rural motorway 84.145 65.531
7 Sion-Aéroport-A9 Rural motorway 53.355 64.646
8 Chaumont Rural mountain 26.095 61.019
9 Rigi-Seebodenalp Rural mountain 32.276 53.513
10 Basel-Binningen Suburban 65.807 64.247
11 Dübendorf-EMPA Suburban 64.563 63.084
12 Ebikon-Sedel Suburban 68.702 54.373
13 Ittigen Suburban 68.965 64.415
14 Lugano-Pregassona Suburban 84.349 55.492
15 Meyrin-Vaudagne Suburban 52.188 59.037
16 Opfikon-Balsberg Suburban 57.011 62.900
17 Thônex-Foron Suburban 61.899 66.192
18 Basel-St-Johann Urban background 63.320 66.413
19 Lugano-Università Urban background 173.909 55.792
20 Luzern-Museggstrasse Urban background 89.484 62.690
21 Winterthur-Obertor Urban background 68.498 57.971
22 Zürich-Kaserne Urban background 73.583 61.867
23 Basel-Feldbergstrasse Urban traffic 62.058 63.296
24 Bern-Bollwerk Urban traffic 94.146 67.708
25 Bern-Brunngasshalde Urban traffic 66.208 57.540
26 Genève-Ile Urban traffic 66.777 59.299
27 Genève-Wilson Urban traffic 80.017 62.025
28 Lausanne-César-Roux Urban traffic 80.206 61.248
29 St-Gallen-Rorschacherstrasse Urban traffic 55.139 60.131
30 Zürich-Schimmelstrasse Urban traffic 91.317 70.609
31 Zürich-Stampfenbachstrasse Urban traffic 75.976 61.974
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Table A3. The six decoded HYSPLIT back trajectory clusters. The integer cluster key was used in the random forest models and the decoded
cluster was determined after the cluster analysis.

Cluster Decoded cluster

1 Strong northerly flow from North Sea
2 Very strong north-west flow from Atlantic Ocean
3 Westerly flow from Atlantic Ocean
4 South-west flow from France and western Switzerland
5 Local flow from south-west Switzerland
6 Strong north-east flow from Poland and southern Germany

-0.22 [-0.3, -0.16]
Slope [lower, upper] 95 % CI in units year−1

-0.64 [-0.71, -0.6]

-0.46 [-0.5, -0.43]

-0.35 [-0.43, -0.3]

-0.18 [-0.22, -0.16]

-0.47 [-0.54, -0.42]

-0.3 [-0.38, -0.21]

-0.24 [-0.28, -0.21]

-0.84 [-0.95, -0.78]

-0.67 [-0.76, -0.6]

-0.59 [-0.68, -0.55]

-0.38 [-0.48, -0.29]

-0.23 [-0.3, -0.13]

-0.61 [-0.71, -0.55]

-0.09 [-0.19, -0.03]

-1.16 [-1.38, -1]

-0.5 [-0.58, -0.36]

-0.36 [-0.43, -0.31]

-0.55 [-0.6, -0.52]

-0.18 [-0.25, -0.08]

-1.07 [-1.22, -0.96]

-0.58 [-0.66, -0.52]

0.06 [-0.02, 0.17]

-0.62 [-0.71, -0.55]

-0.3 [-0.44, -0.17]

-0.44 [-0.48, -0.39]

-0.26 [-0.4, -0.14]

-0.71 [-0.81, -0.63]

0.14 [0.09, 0.24]

-1.03 [-1.1, -0.95]

-0.57 [-0.7, -0.42]

29. St-Gallen-Rorschacherstrasse 30. Zürich-Schimmelstrasse 31. Zürich-Stampfenbachstrasse

25. Bern-Brunngasshalde 26. Genève-Ile 27. Genève-Wilson 28. Lausanne-César-Roux

21. Winterthur-Obertor 22. Zürich-Kaserne 23. Basel-Feldbergstrasse 24. Bern-Bollwerk

17. Thônex-Foron 18. Basel-St-Johann 19. Lugano-Università 20. Luzern-Museggstrasse

13. Ittigen 14. Lugano-Pregassona 15. Meyrin-Vaudagne 16. Opfikon-Balsberg

09. Rigi-Seebodenalp 10. Basel-Binningen 11. Dübendorf-EMPA 12. Ebikon-Sedel

05. Tänikon 06. Härkingen-A1 07. Sion-Aéroport-A9 08. Chaumont

01. Avully-Passeiry 02. Magadino-Cadenazzo 03. Payerne 04. Saxon
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Figure A1. Meteorologically normalised PM10 trends for the 31 sites analysed in Switzerland between 1997 and 2016.
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