Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
Downdraft processes in climate models are poorly constrained, largely due to a lack of robust, statistical relationships describing them. Using multi-instrument data from the GoAmazon2014/5 campaign, downdraft properties of mesoscale-organized and unorganized systems are compared and such statistics are presented. Both vertical velocity retrievals and thermodynamic arguments are consistent in suggesting a spectrum of downdraft mass origin levels throughout the lowest few kilometers.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 18, issue 3
Atmos. Chem. Phys., 18, 1997–2010, 2018
https://doi.org/10.5194/acp-18-1997-2018

Special issue: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)...

Atmos. Chem. Phys., 18, 1997–2010, 2018
https://doi.org/10.5194/acp-18-1997-2018

Research article 12 Feb 2018

Research article | 12 Feb 2018

Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection

Kathleen A. Schiro and J. David Neelin

Related authors

On the role of aerosols, humidity, and vertical wind shear in the transition of shallow-to-deep convection at the Green Ocean Amazon 2014/5 site
Sudip Chakraborty, Kathleen A. Schiro, Rong Fu, and J. David Neelin
Atmos. Chem. Phys., 18, 11135–11148, https://doi.org/10.5194/acp-18-11135-2018,https://doi.org/10.5194/acp-18-11135-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Towards parameterising atmospheric concentrations of ice-nucleating particles active at moderate supercooling
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021,https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Meteorological and cloud conditions during the Arctic Ocean 2018 expedition
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021,https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020,https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020,https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020,https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary

Cited articles

Atmospheric Radiation Measurement (ARM) Climate Research Facility: updated hourly, Meteorological Measurements associated with the Aerosol Observing System (AOSMET), 2014-01-10 to 2015-10-20, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; MAOS (S1), compiled by: Koontz, A., Kyrouac, J., and Springston, S., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1025153, 2013a.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: updated hourly, Balloon-Borne Sounding System (SONDEWNPN), 2014-01-10 to 2015-10-20, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Holdridge, D., Kyrouac, J., and Coulter, R., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1021460, 2013b.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: updated hourly, Eddy Correlation Flux Measurement System (30ECOR), 2014-04-03 to 2015-10-20, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Cook, D., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1025039, 2014.
Atmospheric Radiation Measurement (ARM) Climate Research Campaign Data: Observations and Modeling of the Green Ocean Amazon (GOAMAZON), SIPAM Manaus S-Band Radar, 10 January 2014–20 October 2015, 36° 3.1489° S, 59.9914° W, Manaus, Amazonas, Brazil (T1), processed by: Schumacher, C., www.arm.gov (last access: 8 February 2018), 2015.
Atmospheric Radiation Measurement (ARM) Climate Research Facility Observations and Modeling of the Green Ocean Amazon (GOAMAZON): Radar Wind Profiler (1290RWPPRECIPMOM), Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tenn. https://doi.org/10.5439/1256461, 2015.
Publications Copernicus
Download
Short summary
Downdraft processes in climate models are poorly constrained, largely due to a lack of robust, statistical relationships describing them. Using multi-instrument data from the GoAmazon2014/5 campaign, downdraft properties of mesoscale-organized and unorganized systems are compared and such statistics are presented. Both vertical velocity retrievals and thermodynamic arguments are consistent in suggesting a spectrum of downdraft mass origin levels throughout the lowest few kilometers.
Citation
Altmetrics
Final-revised paper
Preprint