Articles | Volume 18, issue 23
https://doi.org/10.5194/acp-18-17371-2018
https://doi.org/10.5194/acp-18-17371-2018
Research article
 | 
07 Dec 2018
Research article |  | 07 Dec 2018

Arctic ice clouds over northern Sweden: microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI

Veronika Wolf, Thomas Kuhn, Mathias Milz, Peter Voelger, Martina Krämer, and Christian Rolf

Related authors

Investigating KDP signatures inside and below the dendritic growth layer with W-band Doppler Radar and in situ snowfall camera
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734,https://doi.org/10.5194/egusphere-2025-734, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Identification of regions with a robust increase of heavy precipitation events
Veronika Ettrichrätz, Christian Beier, Klaus Keuler, and Katja Trachte
EGUsphere, https://doi.org/10.5194/egusphere-2023-552,https://doi.org/10.5194/egusphere-2023-552, 2023
Preprint archived
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characterization of fog microphysics and their relationships with visibility at a mountain site in China
Quan Liu, Xiaojing Shen, Junying Sun, Yangmei Zhang, Bing Qi, Qianli Ma, Lujie Han, Honghui Xu, Xinyao Hu, Jiayuan Lu, Shuo Liu, Aoyuan Yu, Linlin Liang, Qian Gao, Hong Wang, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 25, 3253–3267, https://doi.org/10.5194/acp-25-3253-2025,https://doi.org/10.5194/acp-25-3253-2025, 2025
Short summary
Hunting for gravity waves in non-orographic winter storms using 3+ years of regional surface air pressure network and radar observations
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025,https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Theoretical framework for measuring cloud effective supersaturation fluctuations with an advanced optical system
Ye Kuang, Jiangchuan Tao, Hanbing Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 25, 1163–1174, https://doi.org/10.5194/acp-25-1163-2025,https://doi.org/10.5194/acp-25-1163-2025, 2025
Short summary
Investigating the role of typhoon-induced waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024,https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024,https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary

Cited articles

Bailey, M. and Hallett, J.: Growth Rates and Habits of Ice Crystals between −20 to −70C, J. Atmos. Sci., 61, 514–544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. a, b
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., , 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Blum, U. and Fricke, K. H.: The Bonn University lidar at the Esrange: technical description and capabilities for atmospheric research, Ann. Geophys., 23, 1645–1658, https://doi.org/10.5194/angeo-23-1645-2005, 2005. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Download
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
Share
Altmetrics
Final-revised paper
Preprint