Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-16139-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-16139-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-methane hydrocarbon variability in Athens during wintertime: the role of traffic and heating
Anastasia Panopoulou
Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry,
University of Crete, 71003 Heraklion, Crete, Greece
National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 P. Penteli, Athens, Greece
IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de
l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
Eleni Liakakou
CORRESPONDING AUTHOR
National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 P. Penteli, Athens, Greece
Valérie Gros
LSCE, Laboratoire des Sciences du Climat et de l'Environnement,
Unité mixte CNRS-CEA-UVSQ, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette
Cedex, France
Stéphane Sauvage
IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de
l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
Nadine Locoge
IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de
l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
Bernard Bonsang
LSCE, Laboratoire des Sciences du Climat et de l'Environnement,
Unité mixte CNRS-CEA-UVSQ, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette
Cedex, France
Basil E. Psiloglou
National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 P. Penteli, Athens, Greece
Evangelos Gerasopoulos
National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 P. Penteli, Athens, Greece
Nikolaos Mihalopoulos
Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry,
University of Crete, 71003 Heraklion, Crete, Greece
National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 P. Penteli, Athens, Greece
Related authors
No articles found.
Alexandra P. Tsimpidi, Susanne M. C. Scholz, Alexandros Milousis, Nikolaos Mihalopoulos, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3590, https://doi.org/10.5194/egusphere-2024-3590, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines global changes in air pollution from 2000 to 2020, focusing on fine aerosols that impact climate and health. Using models and global data, it finds organic aerosols dominate in many regions, especially with wildfires or natural emissions. Pollution from sulfate and nitrate has decreased in Europe and North America due to regulations, while trends in Asia are more complex. The findings improve understanding and support policies for cleaner air and healthier environments.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2175, https://doi.org/10.5194/egusphere-2024-2175, 2024
Short summary
Short summary
Summer 2022 has been considered a proxy for future climate scenarios, given the registered hot and dry conditions. In this paper, we used the measurements from the ACROSS campaign, occurred over the Paris area in June–July 2022, in addition to observations from existing networks, to evaluate the WRF–CHIMERE model simulation over France and the Ile-de-France regions. Results over the Ile–de–France show to be satisfactory, allowing to explain the gas and aerosol variability at the ACROSS sites.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024, https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Short summary
The upgraded systems SENSE2 and NextSENSE2 focus on improving the quality of solar nowcasting and forecasting. SENSE2 provides real-time estimates of solar irradiance across a wide region every 15 min. NextSENSE2 offers short-term forecasts of irradiance up to 3 h ahead. Evaluation with actual data showed that the instantaneous comparison yields the most discrepancies due to the uncertainties of cloud-related information and satellite versus ground-based spatial representativeness limitations.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Pauline Buysse, Benjamin Loubet, Raluca Ciuraru, Florence Lafouge, Brigitte Durand, Olivier Zurfluh, Céline Décuq, Olivier Fanucci, Lais Gonzaga Gomez, Jean-Christophe Gueudet, Sandy Bsaibes, Nora Zannoni, and Valérie Gros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2438, https://doi.org/10.5194/egusphere-2023-2438, 2024
Preprint withdrawn
Short summary
Short summary
This research aimed at quantifying biogenic volatile organic compounds (BVOCs) emissions by a rapeseed crop field. Such compounds are precursors of atmospheric pollutants. Our study revealed that methanol, a BVOC that is not very reactive in the atmosphere, is by far the most emitted BVOC, while monoterpenes, being highly reactive, were emitted in larger quantities than expected. Our study therefore points out the potentially more significant contribution of croplands to atmospheric pollution.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Christina N. Vasilakopoulou, Kalliopi Florou, Christos Kaltsonoudis, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 2837–2850, https://doi.org/10.5194/amt-16-2837-2023, https://doi.org/10.5194/amt-16-2837-2023, 2023
Short summary
Short summary
The offline aerosol mass spectrometry technique is a useful tool for the source apportionment of organic aerosol in areas and periods during which an aerosol mass spectrometer is not available. In this work, an improved offline technique was developed and evaluated in an effort to capture most of the partially soluble and insoluble organic aerosol material, reducing the uncertainty of the corresponding source apportionment significantly.
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022, https://doi.org/10.5194/amt-15-6419-2022, 2022
Short summary
Short summary
Offline aerosol mass spectrometer (AMS) measurements can provide valuable information about ambient organic aerosols when online AMS measurements are not available. In this study, we examine whether and how the low time resolution (usually 24 h) of the offline technique affects source apportionment results. We concluded that use of the daily averages resulted in estimated average contributions that were within 8 % of the total OA compared with the high-resolution analysis.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Stelios Myriokefalitakis, Elisa Bergas-Massó, María Gonçalves-Ageitos, Carlos Pérez García-Pando, Twan van Noije, Philippe Le Sager, Akinori Ito, Eleni Athanasopoulou, Athanasios Nenes, Maria Kanakidou, Maarten C. Krol, and Evangelos Gerasopoulos
Geosci. Model Dev., 15, 3079–3120, https://doi.org/10.5194/gmd-15-3079-2022, https://doi.org/10.5194/gmd-15-3079-2022, 2022
Short summary
Short summary
We here describe the implementation of atmospheric multiphase processes in the EC-Earth Earth system model. We provide global budgets of oxalate, sulfate, and iron-containing aerosols, along with an analysis of the links among atmospheric composition, aqueous-phase processes, and aerosol dissolution, supported by comparison to observations. This work is a first step towards an interactive calculation of the deposition of bioavailable atmospheric iron coupled to the model’s ocean component.
Benjamin Loubet, Pauline Buysse, Lais Gonzaga-Gomez, Florence Lafouge, Raluca Ciuraru, Céline Decuq, Julien Kammer, Sandy Bsaibes, Christophe Boissard, Brigitte Durand, Jean-Christophe Gueudet, Olivier Fanucci, Olivier Zurfluh, Letizia Abis, Nora Zannoni, François Truong, Dominique Baisnée, Roland Sarda-Estève, Michael Staudt, and Valérie Gros
Atmos. Chem. Phys., 22, 2817–2842, https://doi.org/10.5194/acp-22-2817-2022, https://doi.org/10.5194/acp-22-2817-2022, 2022
Short summary
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Alexandre Kukui, Michel Chartier, Jinhe Wang, Hui Chen, Sébastien Dusanter, Stéphane Sauvage, Vincent Michoud, Nadine Locoge, Valérie Gros, Thierry Bourrianne, Karine Sellegri, and Jean-Marc Pichon
Atmos. Chem. Phys., 21, 13333–13351, https://doi.org/10.5194/acp-21-13333-2021, https://doi.org/10.5194/acp-21-13333-2021, 2021
Short summary
Short summary
Sulfuric acid, H2SO4, plays a key role in formation of secondary atmospheric aerosol particles. It is generally accepted that the major atmospheric source of H2SO4 is the reaction of OH radicals with SO2. In this study, importance of an additional H2SO4 source via oxidation of SO2 by stabilized Criegee intermediates was estimated based on measurements at a remote site on Cape Corsica. It was found that the oxidation of SO2 by SCI may be an important source of H2SO4, especially during nighttime.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Sara M. Defratyka, Jean-Daniel Paris, Camille Yver-Kwok, Daniel Loeb, James France, Jon Helmore, Nigel Yarrow, Valérie Gros, and Philippe Bousquet
Atmos. Meas. Tech., 14, 5049–5069, https://doi.org/10.5194/amt-14-5049-2021, https://doi.org/10.5194/amt-14-5049-2021, 2021
Short summary
Short summary
We consider the possibility of using the CRDS Picarro G2201-i instrument, originally designed for isotopic CH4 and CO2, for measurements of ethane : methane in near-source conditions. The work involved laboratory tests, a controlled release experiment and mobile measurements. We show the potential of determining ethane : methane with 50 ppb ethane uncertainty. The instrument can correctly estimate the ratio in CH4 enhancements of 1 ppm and more, as can be found at strongly emitting sites.
Vincent Michoud, Elise Hallemans, Laura Chiappini, Eva Leoz-Garziandia, Aurélie Colomb, Sébastien Dusanter, Isabelle Fronval, François Gheusi, Jean-Luc Jaffrezo, Thierry Léonardis, Nadine Locoge, Nicolas Marchand, Stéphane Sauvage, Jean Sciare, and Jean-François Doussin
Atmos. Chem. Phys., 21, 8067–8088, https://doi.org/10.5194/acp-21-8067-2021, https://doi.org/10.5194/acp-21-8067-2021, 2021
Short summary
Short summary
A multiphasic molecular characterization of oxygenated compounds has been carried out during the ChArMEx field campaign using offline analysis. It leads to the identification of 97 different compounds in the gas and aerosol phases and reveals the important contribution of organic acids to organic aerosol. In addition, comparison between experimental and theoretical partitioning coefficients revealed in most cases a large underestimation by the theory reaching 1 to 7 orders of magnitude.
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys., 21, 5269–5288, https://doi.org/10.5194/acp-21-5269-2021, https://doi.org/10.5194/acp-21-5269-2021, 2021
Short summary
Short summary
The performance of LOTOS-EUROS v2.2.001 regional chemical transport model NO2 simulations is investigated over Greece from June to December 2018. Comparison with in situ NO2 measurements shows a spatial correlation coefficient of 0.86, while the model underestimates the concentrations mostly during daytime (12 to 15:00 local time). Further, the simulated tropospheric NO2 columns are evaluated against ground-based MAX-DOAS NO2 measurements and S5P/TROPOMI observations for July and December 2018.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Ourania Soupiona, Alexandros Papayannis, Panagiotis Kokkalis, Romanos Foskinis, Guadalupe Sánchez Hernández, Pablo Ortiz-Amezcua, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Papagiannopoulos, Stefanos Samaras, Silke Groß, Rodanthi-Elisavet Mamouri, Lucas Alados-Arboledas, Aldo Amodeo, and Basil Psiloglou
Atmos. Chem. Phys., 20, 15147–15166, https://doi.org/10.5194/acp-20-15147-2020, https://doi.org/10.5194/acp-20-15147-2020, 2020
Short summary
Short summary
51 dust events over the Mediterranean from EARLINET were studied regarding the aerosol geometrical, optical and microphysical properties and radiative forcing. We found δp532 values of 0.24–0.28, LR532 values of 49–52 sr and AOT532 of 0.11–0.40. The aerosol mixing state was also examined. Depending on the dust properties, intensity and solar zenith angle, the estimated solar radiative forcing ranged from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the TOA (cooling effect).
Ashish Kumar, Vinayak Sinha, Muhammed Shabin, Haseeb Hakkim, Bernard Bonsang, and Valerie Gros
Atmos. Chem. Phys., 20, 12133–12152, https://doi.org/10.5194/acp-20-12133-2020, https://doi.org/10.5194/acp-20-12133-2020, 2020
Short summary
Short summary
Source apportionment studies require information on the chemical fingerprints of pollution sources to correctly quantify source contributions to ambient composition. These chemical fingerprints vary from region to region, depending on fuel composition and combustion conditions, and are poorly constrained over developing regions such as South Asia. This work characterises the chemical fingerprints of urban and agricultural sources using 49 non-methane hydrocarbons and their environmental impacts.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020, https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Short summary
A modeling tool is developed to assess the vulnerability of coastal wetlands to climatic and water management changes. Applied to the case study of the Gialova lagoon (Greece), this tool highlights the reliance of the lagoon functionality on scarce freshwater sources already under high demand from agriculture. Climatic changes will likely increase lagoon salinity, despite efforts to improve water management.
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
Sandy Bsaibes, Mohamad Al Ajami, Kenneth Mermet, François Truong, Sébastien Batut, Christophe Hecquet, Sébastien Dusanter, Thierry Léornadis, Stéphane Sauvage, Julien Kammer, Pierre-Marie Flaud, Emilie Perraudin, Eric Villenave, Nadine Locoge, Valérie Gros, and Coralie Schoemaecker
Atmos. Chem. Phys., 20, 1277–1300, https://doi.org/10.5194/acp-20-1277-2020, https://doi.org/10.5194/acp-20-1277-2020, 2020
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Baye T. P. Thera, Pamela Dominutti, Fatma Öztürk, Thérèse Salameh, Stéphane Sauvage, Charbel Afif, Banu Çetin, Cécile Gaimoz, Melek Keleş, Stéphanie Evan, and Agnès Borbon
Atmos. Chem. Phys., 19, 15131–15156, https://doi.org/10.5194/acp-19-15131-2019, https://doi.org/10.5194/acp-19-15131-2019, 2019
Short summary
Short summary
A large set of volatile organic compound observations was collected for the first time in Istanbul in September 2014. A source–receptor approach has been carried out to apportion emission sources, estimate anthropogenic emissions, and evaluate emission inventories. Unexpectedly, transport was not the most dominant source in this study. Our work stresses the need to better represent VOC emissions in the eastern Mediterranean region with an effort on non-traffic sources and oxygenated VOCs.
Michael Pikridas, Spiros Bezantakos, Griša Močnik, Christos Keleshis, Fred Brechtel, Iasonas Stavroulas, Gregoris Demetriades, Panayiota Antoniou, Panagiotis Vouterakos, Marios Argyrides, Eleni Liakakou, Luka Drinovec, Eleni Marinou, Vassilis Amiridis, Mihalis Vrekoussis, Nikolaos Mihalopoulos, and Jean Sciare
Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, https://doi.org/10.5194/amt-12-6425-2019, 2019
Short summary
Short summary
This work evaluates the performance of three sensors that monitor black carbon (soot). These sensors exhibit similar behavior to their rack-mounted counterparts and are therefore promising for more extended use. A reconstruction of the black carbon mass vertical distribution above Athens, Greece, is shown using drones, similar to those acquired by remote-sensing techniques. The potential of combining miniature sensors with drones for at least the lower part of the atmosphere is exhibited.
Yunjiang Zhang, Olivier Favez, Jean-Eudes Petit, Francesco Canonaco, Francois Truong, Nicolas Bonnaire, Vincent Crenn, Tanguy Amodeo, Andre S. H. Prévôt, Jean Sciare, Valerie Gros, and Alexandre Albinet
Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, https://doi.org/10.5194/acp-19-14755-2019, 2019
Short summary
Short summary
We present 6-year source apportionment of organic aerosol (OA) achieved with near-continuous online measurements and subsequent receptor model analysis in the Paris region, France. The OA factors presented distinct seasonal patterns, associated with different atmospheric formation processes and roles in air pollution. Limited year-round trends for two primary anthropogenic factors and a biogenic-like secondary factor were observed, while a more oxidized secondary OA showed a decreasing feature.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Kenneth Mermet, Stéphane Sauvage, Sébastien Dusanter, Thérèse Salameh, Thierry Léonardis, Pierre-M. Flaud, Émilie Perraudin, Éric Villenave, and Nadine Locoge
Atmos. Meas. Tech., 12, 6153–6171, https://doi.org/10.5194/amt-12-6153-2019, https://doi.org/10.5194/amt-12-6153-2019, 2019
Short summary
Short summary
An automated system for the online ambient measurement of 20 biogenic volatile organic compounds (BVOCs) was successfully developed and optimized. The analytical performance was satisfying for ambient measurements. The first measurements were carried out during the LANDEX field campaign in summer 2017. The 3-week field measurements displayed the excellent performance of the method with respect to providing speciated BVOC concentration values to further investigate atmospheric BVOCs' reactivity.
Pamela Dominutti, Sekou Keita, Julien Bahino, Aurélie Colomb, Cathy Liousse, Véronique Yoboué, Corinne Galy-Lacaux, Eleanor Morris, Laëtitia Bouvier, Stéphane Sauvage, and Agnès Borbon
Atmos. Chem. Phys., 19, 11721–11741, https://doi.org/10.5194/acp-19-11721-2019, https://doi.org/10.5194/acp-19-11721-2019, 2019
Short summary
Short summary
Several field campaigns were performed in southern West Africa in the framework of the DACCIWA project with the purpose of measuring a broad range of atmospheric constituents. Our study presents the analysis of a comprehensive dataset which integrates up to 56 species of VOCs measured at different ambient sites and emission sources. Our detailed VOC estimation for Cote d'Ivoire is 3 to 6 times higher than the whole of Europe, transportation being the dominant source of VOCs.
Shuvashish Kundu, Benjamin L. Deming, Michelle M. Lew, Brandon P. Bottorff, Pamela Rickly, Philip S. Stevens, Sebastien Dusanter, Sofia Sklaveniti, Thierry Leonardis, Nadine Locoge, and Ezra C. Wood
Atmos. Chem. Phys., 19, 9563–9579, https://doi.org/10.5194/acp-19-9563-2019, https://doi.org/10.5194/acp-19-9563-2019, 2019
Short summary
Short summary
Compounds emitted into the atmosphere are chemically transformed, often leading to new compounds which can affect air pollution and climate. Studying the radicals OH, HO2, and RO2 (organic peroxy radicals) is a crucial activity for assessing how well we understand the rates and products of chemical transformations. In this paper we describe the performance of a new instrument, ECHAMP, for measuring peroxy radicals during its first field deployment.
Jenny P. S. Wong, Maria Tsagkaraki, Irini Tsiodra, Nikolaos Mihalopoulos, Kalliopi Violaki, Maria Kanakidou, Jean Sciare, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 19, 7319–7334, https://doi.org/10.5194/acp-19-7319-2019, https://doi.org/10.5194/acp-19-7319-2019, 2019
Short summary
Short summary
Biomass burning is a major source of light-absorbing organic species in atmospheric aerosols, and it can play an important role in climate and atmospheric chemistry. Through a combination of laboratory experiments and field observations, this work demonstrated that the light absorption properties of aged biomass burning organic aerosols are dominated by high-molecular-weight compounds. In addition, we found that total hydrated sugars may be a robust tracer for aged biomass burning aerosols.
Panayiotis Kalkavouras, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Maria Tombrou, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 6185–6203, https://doi.org/10.5194/acp-19-6185-2019, https://doi.org/10.5194/acp-19-6185-2019, 2019
Short summary
Short summary
We study how new particle formation (NPF) events affect clouds throughout the year at a ground site in the E Mediterranean. Using a new tools and evaluation metrics, NPF is found to affect only evening and nocturnal clouds by modestly increasing droplet number by 7 to 12 %. A conventional analysis based on CCN concentration at prescribed supersaturation levels or aerosol size can considerably bias the perceived influence of NPF events on regional clouds, the hydrological cycle, and climate.
Nikos Kalivitis, Veli-Matti Kerminen, Giorgos Kouvarakis, Iasonas Stavroulas, Evaggelia Tzitzikalaki, Panayiotis Kalkavouras, Nikos Daskalakis, Stelios Myriokefalitakis, Aikaterini Bougiatioti, Hanna E. Manninen, Pontus Roldin, Tuukka Petäjä, Michael Boy, Markku Kulmala, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 2671–2686, https://doi.org/10.5194/acp-19-2671-2019, https://doi.org/10.5194/acp-19-2671-2019, 2019
Short summary
Short summary
New particle formation (NPF) is an important source of atmospheric aerosols. For the Mediterranean atmosphere, only few studies exist. In this study we present one of the longest series of NPF by analyzing 10 years of data from Crete, Greece. NPF took place on 27 % of the available days; it was more frequent in spring and less so in late summer. Model simulations showed that NPF in the subtropical environment may differ greatly from that in the boreal environment.
Iasonas Stavroulas, Aikaterini Bougiatioti, Georgios Grivas, Despina Paraskevopoulou, Maria Tsagkaraki, Pavlos Zarmpas, Eleni Liakakou, Evangelos Gerasopoulos, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 901–919, https://doi.org/10.5194/acp-19-901-2019, https://doi.org/10.5194/acp-19-901-2019, 2019
Short summary
Short summary
Over the last few years, many cities in Greece have suffered from significant air quality deterioration events during wintertime. Driven by such observations, we studied the variability and main sources of submicron particulate matter in Athens, Greece, as a large part of the population in this region is exposed to high levels, which sometimes exceed legislative limit values. It was found that such events are mostly associated with combustion sources used for domestic heating during winter.
Vincent Michoud, Stéphane Sauvage, Thierry Léonardis, Isabelle Fronval, Alexandre Kukui, Nadine Locoge, and Sébastien Dusanter
Atmos. Meas. Tech., 11, 5729–5740, https://doi.org/10.5194/amt-11-5729-2018, https://doi.org/10.5194/amt-11-5729-2018, 2018
Short summary
Short summary
This study presents the first measurements of ambient methylglyoxal, an important atmospheric α-dicarbonyl, using proton transfer reaction time-of-flight mass spectrometry. These measurements mostly agree with concomitant measurements from a reference technique: the DNPH derivatization technique and high-performance liquid chromatography with UV detection. In addition, a careful investigation of the differences between the two techniques is carried out to explain the disagreements observed.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Christina Theodosi, Maria Tsagkaraki, Pavlos Zarmpas, Georgios Grivas, Eleni Liakakou, Despina Paraskevopoulou, Maria Lianou, Evangelos Gerasopoulos, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 18, 14371–14391, https://doi.org/10.5194/acp-18-14371-2018, https://doi.org/10.5194/acp-18-14371-2018, 2018
Short summary
Short summary
A long-term estimation of the chemical composition of PM2.5, a chemical mass closure exercise, and the source identification of particulate matter took place at an urban background site of central Athens, allowing us to further assess the impact of residential heating as a source of air pollution over Athens. PM2.5, EC, POM, NO3-, C2O42-, nssK+, Pb, and Cd were increased by up to a factor of 4 at night compared to during the day, highlighting the importance of heating on air quality in Athens.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Karine Sellegri, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, Thierry Leonardis, Vincent Gaudion, Laurence Depelchin, Isabelle Fronval, Roland Sarda-Esteve, Dominique Baisnée, Bernard Bonsang, Chrysanthos Savvides, Mihalis Vrekoussis, and Nadine Locoge
Atmos. Chem. Phys., 18, 14297–14325, https://doi.org/10.5194/acp-18-14297-2018, https://doi.org/10.5194/acp-18-14297-2018, 2018
Short summary
Short summary
This work focuses on the study of the sources and fates of BVOCs and new particle formation (NPF) events in the eastern Mediterranean. NPF events were found on 14 out of 20 days of the campaign. NPF occurred at various condensational sinks and both under polluted and clean atmospheric conditions. Analysis of specific NPF periods of the mixed influence type highlighted that BVOC interactions with anthropogenic compounds enhanced nucleation formation and growth of new particles.
Athina-Cerise Kalogridis, Stergios Vratolis, Eleni Liakakou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 18, 10219–10236, https://doi.org/10.5194/acp-18-10219-2018, https://doi.org/10.5194/acp-18-10219-2018, 2018
Short summary
Short summary
Contribution of biomass burning versus fossil fuel use on wintertime air pollution is investigated based on continuous surface measurements of black carbon (BC) and carbon monoxide (CO) at a suburban and an urban background monitoring sites in Athens. Fossil fuel combustion is found to be the major contributor to both BC and CO ambient concentrations. However, wood burning used for domestic heating makes a significant contribution of about 30 and 15 % to the observed BC and CO levels.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Fabian Schoenenberger, Stephan Henne, Matthias Hill, Martin K. Vollmer, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Simon O'Doherty, Michela Maione, Lukas Emmenegger, Thomas Peter, and Stefan Reimann
Atmos. Chem. Phys., 18, 4069–4092, https://doi.org/10.5194/acp-18-4069-2018, https://doi.org/10.5194/acp-18-4069-2018, 2018
Short summary
Short summary
Anthropogenic halocarbon emissions contribute to stratospheric ozone depletion and global warming. We measured atmospheric halocarbons for 6 months on Crete to extend the coverage of the existing observation network to the Eastern Mediterranean. The derived emission estimates showed a contribution of 16.8 % (13.6–23.3 %) and 53.2 % (38.1–84.2 %) of this region to the total HFC and HCFC emissions of the analyzed European domain and a reduction of the underlying uncertainties by 40–80 %.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
Sofia Sklaveniti, Nadine Locoge, Philip S. Stevens, Ezra Wood, Shuvashish Kundu, and Sébastien Dusanter
Atmos. Meas. Tech., 11, 741–761, https://doi.org/10.5194/amt-11-741-2018, https://doi.org/10.5194/amt-11-741-2018, 2018
Short summary
Short summary
Ground-level ozone is a pollutant that affects both global climate change and regional air quality. Its complex formation chemistry makes the implementation of reduction strategies challenging and needs to be well understood to develop efficient strategies. This publication reports the development of an instrument capable of monitoring the ozone formation rate in the atmosphere. Its reliability was tested in the laboratory and in the field and important recommendations are given for improvement.
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y. Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R. Cryer, Charlotte A. Brumby, Lisa K. Whalley, Daniel Stone, Paul W. Seakins, Dwayne E. Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B. Thames, William H. Brune, Cheryl Ernest, Hartwig Harder, Jennifer B. A. Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, and Andreas Wahner
Atmos. Meas. Tech., 10, 4023–4053, https://doi.org/10.5194/amt-10-4023-2017, https://doi.org/10.5194/amt-10-4023-2017, 2017
Short summary
Short summary
Hydroxyl radical reactivity (k(OH)) is closely related to processes that lead to the formation of oxidised, secondary pollutants such as ozone and aerosol. In order to compare the performances of instruments measuring k(OH), experiments were conducted in the simulation chamber SAPHIR. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. Overall, the results show that instruments are capable of measuring k(OH).
Nora Zannoni, Valerie Gros, Roland Sarda Esteve, Cerise Kalogridis, Vincent Michoud, Sebastien Dusanter, Stephane Sauvage, Nadine Locoge, Aurelie Colomb, and Bernard Bonsang
Atmos. Chem. Phys., 17, 12645–12658, https://doi.org/10.5194/acp-17-12645-2017, https://doi.org/10.5194/acp-17-12645-2017, 2017
Short summary
Short summary
Our paper presents results of hydroxyl radical (OH) reactivity from a field study conducted during summer 2013 in a western Mediterranean coastal site (Corsica, France). Here, the total OH reactivity, measured with the comparative reactivity method, is compared with the summed OH reactivity from the reactive gases measured with a multitude of different technologies. Our results demonstrate the relatively high observed reactivity and the large impact of biogenic compounds.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, Thérèse Salameh, Thierry Leonardis, Vincent Gaudion, Laurence Depelchin, Isabelle Fronval, Roland Sarda-Esteve, Dominique Baisnée, Bernard Bonsang, Chrysanthos Savvides, Mihalis Vrekoussis, and Nadine Locoge
Atmos. Chem. Phys., 17, 11355–11388, https://doi.org/10.5194/acp-17-11355-2017, https://doi.org/10.5194/acp-17-11355-2017, 2017
Short summary
Short summary
An intensive field campaign was conducted in March 2015 in the Eastern Mediterranean region, at a background site of Cyprus. We performed a detailed analysis of the chemical composition of air masses in gas and aerosol phase, and we applied a source apportionment analysis in order to identify the various origins of VOCs. The results suggest that VOCs are mainly of biogenic and regional background origins.
Eleni Athanasopoulou, Orestis Speyer, Dominik Brunner, Heike Vogel, Bernhard Vogel, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 17, 10597–10618, https://doi.org/10.5194/acp-17-10597-2017, https://doi.org/10.5194/acp-17-10597-2017, 2017
Short summary
Short summary
This work focuses on the impact of residential wood burning on aerosol levels, composition and radiation under the ongoing economic crisis in Greece. The atmospheric model COSMO-ART performed a series of runs during the winter of 2013–2014. Emission inputs were revised according to the detailed aerosol characterization by local measurements. Aerosol levels were found to be elevated and mostly composed of organics, yet the timing of the plume justifies the minor radiative cooling and feedbacks.
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
Vincent Michoud, Jean Sciare, Stéphane Sauvage, Sébastien Dusanter, Thierry Léonardis, Valérie Gros, Cerise Kalogridis, Nora Zannoni, Anaïs Féron, Jean-Eudes Petit, Vincent Crenn, Dominique Baisnée, Roland Sarda-Estève, Nicolas Bonnaire, Nicolas Marchand, H. Langley DeWitt, Jorge Pey, Aurélie Colomb, François Gheusi, Sonke Szidat, Iasonas Stavroulas, Agnès Borbon, and Nadine Locoge
Atmos. Chem. Phys., 17, 8837–8865, https://doi.org/10.5194/acp-17-8837-2017, https://doi.org/10.5194/acp-17-8837-2017, 2017
Short summary
Short summary
The ChArMEx SOP2 field campaign took place from 15 July to 5 August 2013 in the western Mediterranean Basin at Ersa, a remote site in Cape Corse. Exhaustive descriptions of the chemical composition of air masses in gas and aerosol phase were performed. An analysis of these measurements was performed using various source-receptor approaches. This led to the identification of several factors linked to primary sources but also to secondary processes of both biogenic and anthropogenic origin.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
Short summary
We study the impact of dust on solar energy using remote sensing data in conjunction with synergistic modelling and forecasting techniques. Under high aerosol loads, we found great solar energy losses of the order of 80 and 50% for concentrated solar power and photovoltaic installations, respectively. The 1-day forecast presented an overall accuracy within 10% in direct comparison to the real conditions under high energy potential, optimising the efficient energy planning and policies.
Sabina Assan, Alexia Baudic, Ali Guemri, Philippe Ciais, Valerie Gros, and Felix R. Vogel
Atmos. Meas. Tech., 10, 2077–2091, https://doi.org/10.5194/amt-10-2077-2017, https://doi.org/10.5194/amt-10-2077-2017, 2017
Short summary
Short summary
This study is dedicated to improving measurement methods when using a Cavity Ring Down Spectroscopy instrument to measure methane at sites with elevated ethane concentrations such as Oil and Gas sites. The research was undertaken after measurements of natural gas samples suggested biased δ13CH4 results. Two instruments were extensively tested to characterize the cross sensitivities to ethane and δ13CH4 and propose corrections. Results indicate that it is imperative to account for the biases.
Kalliopi Florou, Dimitrios K. Papanastasiou, Michael Pikridas, Christos Kaltsonoudis, Evangelos Louvaris, Georgios I. Gkatzelis, David Patoulias, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, https://doi.org/10.5194/acp-17-3145-2017, 2017
Short summary
Short summary
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns in 2012 and 2013. Residential wood burning has dramatically increased due to the Greek financial crisis, contributing around 50 % of the fine PM on average and more than 80 % during nighttime. Cooking is also an important source during both midday and evening, while transportation dominates only during the morning rush hour.
Alexandra Tsekeri, Vassilis Amiridis, Franco Marenco, Athanasios Nenes, Eleni Marinou, Stavros Solomos, Phil Rosenberg, Jamie Trembath, Graeme J. Nott, James Allan, Michael Le Breton, Asan Bacak, Hugh Coe, Carl Percival, and Nikolaos Mihalopoulos
Atmos. Meas. Tech., 10, 83–107, https://doi.org/10.5194/amt-10-83-2017, https://doi.org/10.5194/amt-10-83-2017, 2017
Short summary
Short summary
The In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) provides vertical profiles of aerosol optical, microphysical and hygroscopic properties from airborne in situ and remote sensing measurements. The algorithm is highly advantageous for aerosol characterization in humid conditions, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. IRRA can find valuable applications in aerosol–cloud interaction schemes and in validation of active space-borne sensors.
Panayiotis Kalkavouras, Elissavet Bossioli, Spiros Bezantakos, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Giorgos Kouvarakis, Anna P. Protonotariou, Aggeliki Dandou, George Biskos, Nikolaos Mihalopoulos, Athanasios Nenes, and Maria Tombrou
Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, https://doi.org/10.5194/acp-17-175-2017, 2017
Short summary
Short summary
Concentrations of chemically and size-resolved submicron aerosol particles along with concentrations of gases and meteorological variables were measured at Santorini and Finokalia (central and southern Aegean Sea) during the Etesians. Particle nucleation bursts were recorded. The NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number by 12 %.
Thérèse Salameh, Agnès Borbon, Charbel Afif, Stéphane Sauvage, Thierry Leonardis, Cécile Gaimoz, and Nadine Locoge
Atmos. Chem. Phys., 17, 193–209, https://doi.org/10.5194/acp-17-193-2017, https://doi.org/10.5194/acp-17-193-2017, 2017
Short summary
Short summary
We used detailed speciated measurements of VOCs (volatile organic compounds) to evaluate the spatial heterogeneity of VOC urban emission composition and the consistency of regional and global emission inventories downscaled to Lebanon (EMEP, ACCMIP, and MACCity). The results suggest that systematic and detailed measurements are needed in the eastern Mediterranean Basin in order to better constrain emission inventories.
Lamia Ammoura, Irène Xueref-Remy, Felix Vogel, Valérie Gros, Alexia Baudic, Bernard Bonsang, Marc Delmotte, Yao Té, and Frédéric Chevallier
Atmos. Chem. Phys., 16, 15653–15664, https://doi.org/10.5194/acp-16-15653-2016, https://doi.org/10.5194/acp-16-15653-2016, 2016
Short summary
Short summary
We propose a new approach to estimate urban emission ratios that takes advantage of the enhanced local urban signal in the atmosphere at low wind speed. We apply it to estimate monthly ratios between CO2, CO and some VOCs from atmospheric measurement datasets acquired in the centre of Paris between 2010 and 2014. We find that this approach is little sensitive to the regional background level definition. With this new method, we may reveal spatial and seasonal variability in the ratios in Paris.
Stelios Myriokefalitakis, Athanasios Nenes, Alex R. Baker, Nikolaos Mihalopoulos, and Maria Kanakidou
Biogeosciences, 13, 6519–6543, https://doi.org/10.5194/bg-13-6519-2016, https://doi.org/10.5194/bg-13-6519-2016, 2016
Short summary
Short summary
The global atmospheric cycle of P is simulated accounting for natural and anthropogenic sources, acid dissolution of dust aerosol and changes in atmospheric acidity. Simulations show that P-containing dust dissolution flux may have increased in the last 150 years but is expected to decrease in the future, and biological particles are important carriers of bioavailable P to the ocean. These insights to the P cycle have important implications for marine ecosystem responses to climate change.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Sauveur Belviso, Ilja Marco Reiter, Benjamin Loubet, Valérie Gros, Juliette Lathière, David Montagne, Marc Delmotte, Michel Ramonet, Cerise Kalogridis, Benjamin Lebegue, Nicolas Bonnaire, Victor Kazan, Thierry Gauquelin, Catherine Fernandez, and Bernard Genty
Atmos. Chem. Phys., 16, 14909–14923, https://doi.org/10.5194/acp-16-14909-2016, https://doi.org/10.5194/acp-16-14909-2016, 2016
Short summary
Short summary
The role that soil, foliage, and atmospheric dynamics have on surface OCS exchange in a Mediterranean forest ecosystem in southern France (O3HP) was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating GPP directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling NEE to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime.
Alexia Baudic, Valérie Gros, Stéphane Sauvage, Nadine Locoge, Olivier Sanchez, Roland Sarda-Estève, Cerise Kalogridis, Jean-Eudes Petit, Nicolas Bonnaire, Dominique Baisnée, Olivier Favez, Alexandre Albinet, Jean Sciare, and Bernard Bonsang
Atmos. Chem. Phys., 16, 11961–11989, https://doi.org/10.5194/acp-16-11961-2016, https://doi.org/10.5194/acp-16-11961-2016, 2016
Short summary
Short summary
This article presents ambient air VOC measurements performed in Paris during the MEGAPOLI and FRANCIPOL campaigns (2010). For the first time, we report (O)VOC concentration levels, their temporal variations and their main emission sources. The originality of this study stands in using near-field observations to help strengthen the identification of apportioned sources derived from PMF. An important finding of this work is the high contribution of the wood burning source (50 %) in winter.
Dimitra Founda, Stelios Kazadzis, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Maria Lianou, and Panagiotis I. Raptis
Atmos. Chem. Phys., 16, 11219–11236, https://doi.org/10.5194/acp-16-11219-2016, https://doi.org/10.5194/acp-16-11219-2016, 2016
Short summary
Short summary
Historical time series are unique sources of information for past climate and atmospheric composition change. The 82-year time series of visibility data collected at the National Observatory of Athens (NOA) was an excellent proxy for the long-term evolution of particulate pollution in the eastern Mediterranean, at times when direct aerosol measurements were missing. Evolution of particulate pollution of both local and regional origin is nicely reflected on visibility records of NOA.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Julie Vincent, Benoit Laurent, Rémi Losno, Elisabeth Bon Nguyen, Pierre Roullet, Stéphane Sauvage, Servanne Chevaillier, Patrice Coddeville, Noura Ouboulmane, Alcide Giorgio di Sarra, Antonio Tovar-Sánchez, Damiano Sferlazzo, Ana Massanet, Sylvain Triquet, Rafael Morales Baquero, Michel Fornier, Cyril Coursier, Karine Desboeufs, François Dulac, and Gilles Bergametti
Atmos. Chem. Phys., 16, 8749–8766, https://doi.org/10.5194/acp-16-8749-2016, https://doi.org/10.5194/acp-16-8749-2016, 2016
Short summary
Short summary
To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA have been deployed in the western Mediterranean basin (Lampedusa, Majorca, Corsica, Frioul and Le Casset) during 1 to 3 years depending on the station. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period.
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Aikaterini Bougiatioti, Panayiota Nikolaou, Iasonas Stavroulas, Giorgos Kouvarakis, Rodney Weber, Athanasios Nenes, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 16, 4579–4591, https://doi.org/10.5194/acp-16-4579-2016, https://doi.org/10.5194/acp-16-4579-2016, 2016
Short summary
Short summary
Atmospheric aerosols and relevant parameters were measured in the eastern Mediterranean during summer and fall 2012. Submicron aerosol water can contribute up to 33 % of total mass, and 27.5 % of this can be associated with organics. Using these data, the pH of the submicron aerosols was calculated to be highly acidic, varying from 0.5 to 2.8 and independently of air masses origin. Such pH values could increase nutrient availability and thus sea water productivity of the Mediterranean Sea.
Sascha Pfeifer, Thomas Müller, Kay Weinhold, Nadezda Zikova, Sebastiao Martins dos Santos, Angela Marinoni, Oliver F. Bischof, Carsten Kykal, Ludwig Ries, Frank Meinhardt, Pasi Aalto, Nikolaos Mihalopoulos, and Alfred Wiedensohler
Atmos. Meas. Tech., 9, 1545–1551, https://doi.org/10.5194/amt-9-1545-2016, https://doi.org/10.5194/amt-9-1545-2016, 2016
Short summary
Short summary
15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates accuracy, particle sizing, and unit-to-unit variability of the particle number size distribution.
Flow rate deviations were relatively small, while the sizing accuracy was found to be within 10 % compared to polystyrene latex reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was between 10 % and 60 %.
Thérèse Salameh, Stéphane Sauvage, Charbel Afif, Agnès Borbon, and Nadine Locoge
Atmos. Chem. Phys., 16, 3595–3607, https://doi.org/10.5194/acp-16-3595-2016, https://doi.org/10.5194/acp-16-3595-2016, 2016
N. Zannoni, V. Gros, M. Lanza, R. Sarda, B. Bonsang, C. Kalogridis, S. Preunkert, M. Legrand, C. Jambert, C. Boissard, and J. Lathiere
Atmos. Chem. Phys., 16, 1619–1636, https://doi.org/10.5194/acp-16-1619-2016, https://doi.org/10.5194/acp-16-1619-2016, 2016
Short summary
Short summary
Our manuscript shows results of OH reactivity and Biogenic Volatile Organic Compounds (BVOCs) concentration during a field experiment conducted in late spring 2014 at the Observatoire de Haute Provence (OHP) site. We found that OH reactivity is among the highest measured in forests globally (69 s−1) and it is mainly due to isoprene. No missing reactivity was present during daytime inside or above the canopy, while 50 % missing reactivity was found by night at both heights.
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
N. Zannoni, S. Dusanter, V. Gros, R. Sarda Esteve, V. Michoud, V. Sinha, N. Locoge, and B. Bonsang
Atmos. Meas. Tech., 8, 3851–3865, https://doi.org/10.5194/amt-8-3851-2015, https://doi.org/10.5194/amt-8-3851-2015, 2015
Short summary
Short summary
Our manuscript shows results of an intercomparison exercise conducted on two home-built comparative reactivity method (CRM) instruments operating under the same settings for measuring total OH reactivity. Despite the corrections of the raw data sets for instrumental artifacts having different weights on the two CRMs, we found very consistent results for the final processed data of ambient OH reactivity. Furthermore, we present in detail how to validate the instruments and process the raw data.
N. Kalivitis, V.-M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, https://doi.org/10.5194/acp-15-9203-2015, 2015
Short summary
Short summary
Cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is presented, and this is the first direct evidence of CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles. Sub-100nm particles were found to be substantially less hygroscopic than larger particles during the active NPF period.
C. M. Pavuluri, K. Kawamura, N. Mihalopoulos, and T. Swaminathan
Atmos. Chem. Phys., 15, 7999–8012, https://doi.org/10.5194/acp-15-7999-2015, https://doi.org/10.5194/acp-15-7999-2015, 2015
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
S. Myriokefalitakis, N. Daskalakis, N. Mihalopoulos, A. R. Baker, A. Nenes, and M. Kanakidou
Biogeosciences, 12, 3973–3992, https://doi.org/10.5194/bg-12-3973-2015, https://doi.org/10.5194/bg-12-3973-2015, 2015
Short summary
Short summary
The global atmospheric cycle of Fe is simulated accounting for natural and combustion sources, proton- and organic ligand-promoted Fe dissolution from dust aerosol and changes in anthropogenic emissions, and thus in atmospheric acidity. Simulations show that Fe dissolution may have increased in the last 150 years and is expected to decrease due to air pollution regulations. Reductions in dissolved-Fe deposition can further limit the primary productivity over high-nutrient-low-chlorophyll water.
V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann
Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, https://doi.org/10.5194/acp-15-7127-2015, 2015
Short summary
Short summary
LIVAS is a 3-D multi-wavelength global aerosol and cloud optical database optimized for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The global database is based on CALIPSO observations at 532nm, while for the conversion at 355nm EARLINET data are utilized.
K. Violaki, J. Sciare, J. Williams, A. R. Baker, M. Martino, and N. Mihalopoulos
Biogeosciences, 12, 3131–3140, https://doi.org/10.5194/bg-12-3131-2015, https://doi.org/10.5194/bg-12-3131-2015, 2015
D. Paraskevopoulou, E. Liakakou, E. Gerasopoulos, C. Theodosi, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 13313–13325, https://doi.org/10.5194/acp-14-13313-2014, https://doi.org/10.5194/acp-14-13313-2014, 2014
L. Ammoura, I. Xueref-Remy, V. Gros, A. Baudic, B. Bonsang, J.-E. Petit, O. Perrussel, N. Bonnaire, J. Sciare, and F. Chevallier
Atmos. Chem. Phys., 14, 12871–12882, https://doi.org/10.5194/acp-14-12871-2014, https://doi.org/10.5194/acp-14-12871-2014, 2014
Short summary
Short summary
We present the first study of CO2, VOCs and NOx measured all together in a road tunnel around the Paris megacity with the aim to quantify the ratios of these species co-emitted within traffic emissions. It allows us to independently assess some of the ratios provided in the latest Paris emission inventory. It also reveals a large variability of the ratios to CO2, implying that traffic does not have a unique imprint in the urban plume, but rather leaves various signatures.
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge
Atmos. Chem. Phys., 14, 10439–10464, https://doi.org/10.5194/acp-14-10439-2014, https://doi.org/10.5194/acp-14-10439-2014, 2014
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, https://doi.org/10.5194/amt-7-2013-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014, https://doi.org/10.5194/amt-7-839-2014, 2014
P. Zanis, P. Hadjinicolaou, A. Pozzer, E. Tyrlis, S. Dafka, N. Mihalopoulos, and J. Lelieveld
Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115-2014, https://doi.org/10.5194/acp-14-115-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
S. Bezantakos, K. Barmpounis, M. Giamarelou, E. Bossioli, M. Tombrou, N. Mihalopoulos, K. Eleftheriadis, J. Kalogiros, J. D. Allan, A. Bacak, C. J. Percival, H. Coe, and G. Biskos
Atmos. Chem. Phys., 13, 11595–11608, https://doi.org/10.5194/acp-13-11595-2013, https://doi.org/10.5194/acp-13-11595-2013, 2013
C. Theodosi, C. Parinos, A. Gogou, A. Kokotos, S. Stavrakakis, V. Lykousis, J. Hatzianestis, and N. Mihalopoulos
Biogeosciences, 10, 4449–4464, https://doi.org/10.5194/bg-10-4449-2013, https://doi.org/10.5194/bg-10-4449-2013, 2013
A. Waked, C. Seigneur, F. Couvidat, Y. Kim, K. Sartelet, C. Afif, A. Borbon, P. Formenti, and S. Sauvage
Atmos. Chem. Phys., 13, 5873–5886, https://doi.org/10.5194/acp-13-5873-2013, https://doi.org/10.5194/acp-13-5873-2013, 2013
C. M. Pavuluri, K. Kawamura, N. Mihalopoulos, and P. Fu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-6589-2013, https://doi.org/10.5194/acpd-13-6589-2013, 2013
Revised manuscript not accepted
M. Collaud Coen, E. Andrews, A. Asmi, U. Baltensperger, N. Bukowiecki, D. Day, M. Fiebig, A. M. Fjaeraa, H. Flentje, A. Hyvärinen, A. Jefferson, S. G. Jennings, G. Kouvarakis, H. Lihavainen, C. Lund Myhre, W. C. Malm, N. Mihapopoulos, J. V. Molenar, C. O'Dowd, J. A. Ogren, B. A. Schichtel, P. Sheridan, A. Virkkula, E. Weingartner, R. Weller, and P. Laj
Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013, https://doi.org/10.5194/acp-13-869-2013, 2013
V. Michoud, A. Kukui, M. Camredon, A. Colomb, A. Borbon, K. Miet, B. Aumont, M. Beekmann, R. Durand-Jolibois, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, N. Locoge, S. Sauvage, C. Afif, V. Gros, M. Furger, G. Ancellet, and J. F. Doussin
Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, https://doi.org/10.5194/acp-12-11951-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
The variations of VOCs based on the policy change of Omicron in polluted winter in traffic-hub city, China
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1676, https://doi.org/10.5194/egusphere-2024-1676, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occurs every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back-trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yi Yuan, Junchen Guo, Yuyang Li, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1325, https://doi.org/10.5194/egusphere-2024-1325, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations of organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various sub-ppt level species and organics with multiple oxygens (≥3) were discovered. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens. While in other seasons, the variations of them could be influenced by primary emissions.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-575, https://doi.org/10.5194/egusphere-2024-575, 2024
Short summary
Short summary
Continuous online VOCs monitoring was carried out at an urban site in a traffic-hub city for two months during the Omicron-infected stage. The characteristics and variations of VOCs in different periods were studied, and their impact on the formation of SOA were evaluated. The work in this manuscript evaluated the influence of the policy variation on VOCs pollution, which will provide some basis for VOCs pollution research and control of pollution sources.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Cited articles
Ait-Helal, W., Beeldens, A., Boonen, E., Borbon, A., Boréave, A.,
Cazaunau, M., Chen, H., Daële, V., Dupart, Y., Gaimoz, C., Gallus, M.,
George, C., Grand, N., Grosselin, B., Herrmann, H., Ifang, S., Kurtenbach,
R., Maille, M., Marjanovic, I., Mellouki, A., Miet, K., Mothes, F., Poulain,
L., Rabe, R., Zapf, P., Kleffmann, J., and Doussin, J.-F.: On-road
measurements of NMVOCs and NOx: Determination of light-duty vehicles
emission factors from tunnel studies in Brussels city center, Atmos.
Environ., 122, 799–807, https://doi.org/10.1016/j.atmosenv.2015.09.066, 2015.
Alexiou, D., Kokkalis, P., Papayannis, A., Rocadenbosch, F., Argyrouli, A.,
Tsaknakis, G., and Tzanis, C. G.: Planetary boundary layer height variability
over Athens, Greece, based on the synergy of Raman and Radiosonde data:
Application of the Kalman filter and other techniques, EPJ Web of
Conferences, 176, 06007, https://doi.org/10.1051/epjconf/201817606007, 2018.
Arsene, C., Bougiatioti, A., Kanakidou, M., Bonsang, B., and Mihalopoulos,
N.: Tropospheric OH and Cl levels deduced from non-methane hydrocarbon
measurements in a marine site, Atmos. Chem. Phys., 7, 4661–4673,
https://doi.org/10.5194/acp-7-4661-2007, 2007.
Athanasopoulou, E., Speyer, O., Brunner, D., Vogel, H., Vogel, B.,
Mihalopoulos, N., and Gerasopoulos, E.: Changes in domestic heating fuel use
in Greece: effects on atmospheric chemistry and radiation, Atmos. Chem.
Phys., 17, 10597–10618, https://doi.org/10.5194/acp-17-10597-2017, 2017.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos.
Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Barrefors, G. and Petersson, G.: Volatile hydrocarbons from domestic wood
burning, Chemosphere, 30, 1551–1556, https://doi.org/10.1016/0045-6535(95)00048-D, 1995.
Barletta, B., Meinardi, S., Sherwood Rowland, F., Chan, C.-Y., Wang, X., Zou,
S., Yin Chan, L., and Blake, D. R.: Volatile organic compounds in 43 Chinese
cities, Atmos. Environ., 39, 5979–5990, https://doi.org/10.1016/j.atmosenv.2005.06.029,
2005.
Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève,
R., Kalogridis, C., Petit, J.-E., Bonnaire, N., Baisnée, D., Favez, O.,
Albinet, A., Sciare, J., and Bonsang, B.: Seasonal variability and source
apportionment of volatile organic compounds (VOCs) in the Paris megacity
(France), Atmos. Chem. Phys., 16, 11961–11989,
https://doi.org/10.5194/acp-16-11961-2016, 2016.
Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C., and
Guillermo, R.: An investigation into the traffic-related fraction of isoprene
at an urban location, Atmos. Environ., 35, 3749–3760,
https://doi.org/10.1016/S1352-2310(01)00170-4, 2001.
Borbon, A., Fontaine, H., Locoge, N., Veillerot, M., and Galloo, J. C.:
Developing receptor-oriented methods for non-methane hydrocarbon
characterisation in urban air – Part I: source identification, Atmos.
Environ., 37, 4051–4064, https://doi.org/10.1016/S1352-2310(03)00525-9, 2003.
Crutzen, P. J.: Ozone in the troposphere, Composition, chemistry, and climate
of the atmosphere, in: Composition, Chemistry, and Climate of the Atmosphere, edited by: Singh, H. B., Van
Nostrand Reinhold Publ., New York, 349–393, 1995.
Cvitas, T., Gusten, H., Heinrich, G., Klasinc, L., Lalas, D., and Petrakis,
M.: Characteristics of summer air pollution during the summer in Athens,
Greece, Staub Reinhalt Luft, 45, 297–301, 1985.
Durana, N., Navazo, M., Gómez, M. C., Alonso, L., García, J. A.,
Ilardia, J. L., Gangoiti, G., and Iza, J.: Long term hourly measurement of 62
non-methane hydrocarbons in an urban area: Main results and contribution of
non-traffic sources, Atmos. Environ., 40, 2860–2872,
https://doi.org/10.1016/j.atmosenv.2006.01.005, 2006.
European Environmental Agency (EEA): Air quality in Europe – 2016 report
(No. 28), available at:
https://www.eea.europa.eu/publications/air-quality-in-europe-2016 (last
access: 2 October 2017), 2016.
Evtyugina, M., Alves, C., Calvo, A., Nunes, T., Tarelho, L., Duarte, M.,
Prozil, S. O., Evtuguin, D. V., and Pio, C.: VOC emissions from residential
combustion of Southern and mid-European woods, Atmos. Environ., 83, 90–98,
https://doi.org/10.1016/j.atmosenv.2013.10.050, 2014.
Fameli, K.-M. and Assimakopoulos, V. D.: The new open Flexible Emission
Inventory for Greece and the Greater Athens Area (FEI-GREGAA): Account of
pollutant sources and their importance from 2006 to 2012, Atmos. Environ.,
137, 17–37, 2016.
Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P.,
Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K., Bougiatioti, A.,
Gerasopoulos, E., Sarda-Estève, R., Bonnaire, N., and Mihalopoulos, N.:
Multi-tracer approach to characterize domestic wood burning in Athens
(Greece) during wintertime, Atmos. Environ., 148, 89–101,
https://doi.org/10.1016/j.atmosenv.2016.10.011, 2017.
Fuentes, J. D., Gu, L., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim,
J., Ciccioli, P., Lamb, B., Geron, C., and Guenther, A.: Biogenic
hydrocarbons in the atmospheric boundary layer: a review, B. Am. Meteorol.
Soc., 81, 1537–1575, 2000.
Gaeggeler, K., Prevot, A. S. H., Dommen, J., Legreid, G., Reimann, S., and
Baltensperger, U.: Residential wood burning in an Alpine valley as a source
for oxygenated volatile organic compounds, hydrocarbons and organic acids,
Atmos. Environ., 42, 8278–8287, https://doi.org/10.1016/j.atmosenv.2008.07.038, 2008.
Giakoumi, A., Maggos, T., Michopoulos, J., Helmis, C., and Vasilakos, C.:
PM2.5 and volatile organic compounds (VOCs) in ambient air: a focus
on the effect of meteorology, Environ. Monit. Assess., 152, 83,
https://doi.org/10.1007/s10661-008-0298-2, 2009.
Gratsea, M., Liakakou, E., Mihalopoulos, N., Adamopoulos, A., Tsilibari, E.,
and Gerasopoulos, E.: The combined effect of reduced fossil fuel consumption
and increasing biomass combustion on Athens' air quality, as inferred from
long term CO measurements, Sci. Total Environ., 592, 115–123,
https://doi.org/10.1016/j.scitotenv.2017.03.045, 2017.
Gros, V., Gaimoz, C., Herrmann, F., Custer, T., Williams, J., Bonsang, B.,
Sauvage, S., Locoge, N., d'Argouges, O., Sarda-Estève, R., and Sciare,
J.: Volatile organic compounds sources in Paris in spring 2007, Part I:
qualitative analysis, Environ. Chem., 8, 74–90, https://doi.org/10.1071/EN10068, 2011.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys.
Res.-Atmos., 100, 8873–8892, https://doi.org/10.1029/94JD02950, 1995.
Gustafson, P., Barregard, L., Strandberg, B., and Sällsten, G.: The
impact of domestic wood burning on personal, indoor and outdoor levels of
1,3-butadiene, benzene, formaldehyde and acetaldehyde, J. Environ. Monit., 9,
23–32, https://doi.org/10.1039/B614142K, 2007.
Hellén, H., Hakola, H., Haaparanta, S., Pietarila, H., and Kauhaniemi,
M.: Influence of residential wood combustion on local air quality, Sci. Total
Environ., 393, 283–290, https://doi.org/10.1016/j.scitotenv.2008.01.019, 2008.
IARC: Chemical Agents and Related Occupations, Monographs on the Evaluation
of Carcinogenic Risks to Humans, 100, 249–285, 309–333, available at:
http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F.pdf (last access: 5 October 2017), 2012.
Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J., Ezcurra, A., and Diaz
de Argandoña, J.: From diagnosis to prognosis for forecasting air
pollution using neural networks: Air pollution monitoring in Bilbao, Environ.
Model. Softw., 23, 622–637, https://doi.org/10.1016/j.envsoft.2007.09.003, 2008.
Jaimes-Palomera, M., Retama, A., Elias-Castro, G., Neria-Hernández, A.,
Rivera-Hernández, O., and Velasco, E.: Non-methane hydrocarbons in the
atmosphere of Mexico City: Results of the 2012 ozone-season campaign, Atmos.
Environ., 132, 258–275, https://doi.org/10.1016/j.atmosenv.2016.02.047, 2016.
Kalabokas, P., Viras, L., and Repapis, C.: Analysis of the 11-year record
(1987–1997) of air pollution measurements in Athens, Greece, Part I: Primary
air pollutants, Glob. Nest Int. J., 1, 157–168, 1999.
Kaltsonoudis, C., Kostenidou, E., Florou, K., Psichoudaki, M., and Pandis, S.
N.: Temporal variability and sources of VOCs in urban areas of the eastern
Mediterranean, Atmos. Chem. Phys., 16, 14825–14842,
https://doi.org/10.5194/acp-16-14825-2016, 2016.
Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M.,
Gerasopoulos, E., Dermitzaki, E., Unal, A., Koçak, M., Markakis, K.,
Melas, D., Kouvarakis, G., Youssef, A. F., Richter, A., Hatzianastassiou, N.,
Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C., Burrows, J. P.,
Ladstaetter-Weissenmayer, A., and Moubasher, H.: Megacities as hot spots of
air pollution in the East Mediterranean, Atmos. Environ., 45, 1223–1235,
https://doi.org/10.1016/j.atmosenv.2010.11.048, 2011.
Kansal, A.: Sources and reactivity of NMHCs and VOCs in the atmosphere: A
review, J. Hazard. Mater., 166, 17–26, https://doi.org/10.1016/j.jhazmat.2008.11.048,
2009.
Kassomenos, P., Kotroni, V., and Kallos, G.: Analysis of climatological 710
and air quality observations from Greater Athens Area, Atmos. Environ., 29,
3671–3688, https://doi.org/10.1016/1352-2310(94)00358-R, 1995.
Klemm, O., Ziomas, I. C., Balis, D., Suppan, P., Slemr, J., Romero, R., and
Vyras, L. G.: A summer air-pollution study in Athens, Greece, Atmos.
Environ., 32, 2071–2087, https://doi.org/10.1016/S1352-2310(97)00424-X, 1998.
Kourtidis, K. A., Ziomas, I. C., Rappenglueck, B., Proyou, A., and Balis, D.:
Evaporative traffic hydrocarbon emissions, traffic CO and speciated HC
traffic emissions from the city of Athens, Atmos. Environ., 33, 3831–3842,
https://doi.org/10.1016/S1352-2310(98)00395-1, 1999.
Lalas, D. P., Veirs, V. R., Karras, G., and Kallos, G.: An analysis of the
SO2 concentration levels in Athens, Greece, Atmos. Environ., 16, 531–544,
https://doi.org/10.1016/0004-6981(82)90162-7, 1982.
Lalas, D. P., Asimakopoulos, D. N., Deligiorgi, D. G., and Helmis, C. G.:
Sea-breeze circulation and photochemical pollution in Athens, Greece, Atmos.
Environ., 17, 1621–1632, https://doi.org/10.1016/0004-6981(83)90171-3, 1983.
Lalas, D. P., Tombrou-Tsella, M., Petrakis, M., Asimakopoulos, D. N., and
Helmis, C.: An experimental study of the horizontal and vertical distribution
of ozone over Athens, Atmos/ Environ., 21, 2681–2693,
https://doi.org/10.1016/0004-6981(87)90200-9, 1987.
Liu, Y., Shao, M., Lu, S., Chang, C.-C., Wang, J.-L., and Chen, G.: Volatile
Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region,
China, Atmos. Chem. Phys., 8, 1531–1545,
https://doi.org/10.5194/acp-8-1531-2008, 2008.
Mantis, H. T., Repapis, C. C., Zerefos, C. S., and Ziomas, J. C.: Assessment
of the Potential for Photochemical Air Pollution in Athens: A Comparison of
Emissions and Air-Pollutant Levels in Athens with Those in Los Angeles, J.
Appl. Meteorol., 31, 1467–1476,
https://doi.org/10.1175/1520-0450(1992)031<1467:AOTPFP>2.0.CO;2, 1992.
Melas, D., Ziomas, I., Klemm, O., and Zerefos, C. S.: Anatomy of the
sea-breeze circulation in Athens area under weak large-scale ambient winds,
Atmos. Environ., 32, 2223–2237, https://doi.org/10.1016/S1352-2310(97)00420-2, 1998.
Moschonas, N. and Glavas, S.: C3-C10 hydrocarbons in the atmosphere of
Athens, Greece, Atmos. Environ., 30, 2769–2772,
https://doi.org/10.1016/1352-2310(95)00488-2, 1996.
Moschonas, N., Glavas, S., and Kouimtzis, T.: C3 to C9 hydrocarbon
measurements in the two largest cities of Greece, Athens and Thessaloniki,
Calculation of hydrocarbon emissions by species, Derivation of hydroxyl
radical concentrations, Sci. Total Environ., 271, 117–133,
https://doi.org/10.1016/S0048-9697(00)00838-X, 2001.
Nester, K.: Influence of sea breeze flows on air pollution over the attica
peninsula, Atmos. Environ., 29, 3655–3670, https://doi.org/10.1016/1352-2310(95)98468-N,
1995.
Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., and Mihalopoulos, N.:
Sources of atmospheric aerosol from long-term measurements (5 years) of
chemical composition in Athens, Greece, Sci. Total Environ., 527 (Supplement
C), 165–178, https://doi.org/10.1016/j.scitotenv.2015.04.022, 2015.
Rappenglück, B., Fabian, P., Kalabokas, P., Viras, L. G., and Ziomas, I.
C.: Quasi-continuous measurements of non-methane hydrocarbons (NMHC) in the
Greater Athens area during medcaphot-trace, Atmos. Environ., 32, 2103–2121,
https://doi.org/10.1016/S1352-2310(97)00430-5, 1998.
Rappenglück, B., Kourtidis, K., Melas, D., and Fabian, P.: Observations
of biogenic and anthropogenic NMHC in the greater Athens area during the PAUR
campaign, Phys. Chem. Earth Pt. B, 24, 717–724,
https://doi.org/10.1016/S1464-1909(99)00071-4, 1999.
Saffari, A., Daher, N., Samara, C., Voutsa, D., Kouras, A., Manoli, E.,
Karagkiozidou, O., Vlachokostas, C., Moussiopoulos, N., Shafer, M. M.,
Schauer, J. J., and Sioutas, C.: Increased Biomass Burning Due to the
Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in
Thessaloniki, Environ. Sci. Technol., 47, 13313–13320,
https://doi.org/10.1021/es403847h, 2013.
Salameh, T., Sauvage, S., Afif, C., Borbon, A., Léonardis, T., Brioude,
J., Waked, A., and Locoge, N.: Exploring the seasonal NMHC distribution in an
urban area of the Middle East during ECOCEM campaigns: very high loadings
dominated by local emissions and dynamics, Environ. Chem., 12, 316–328,
https://doi.org/10.1071/EN14154, 2015.
Sauvage, S., Plaisance, H., Locoge, N., Wroblewski, A., Coddeville, P., and
Galloo, J. C.: Long term measurement and source apportionment of non-methane
hydrocarbons in three French rural areas, Atmos. Environ., 43, 2430–2441,
https://doi.org/10.1016/j.atmosenv.2009.02.001, 2009.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic
Compounds from Fireplace Combustion of Wood, Environ. Sci. Technol., 35,
1716–1728, https://doi.org/10.1021/es001331e, 2001.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, Hoboken, New Jersey, 2016.
Tsigaridis, K. and Kanakidou, M.: Global modelling of secondary organic
aerosol in the troposphere: a sensitivity analysis, Atmos. Chem. Phys., 3,
1849–1869, https://doi.org/10.5194/acp-3-1849-2003, 2003.
Vrekoussis, M., Richter, A., Hilboll, A., Burrows, J. P., Gerasopoulos, E.,
Lelieveld, J., Barrie, L., Zerefos, C., and Mihalopoulos, N.: Economic crisis
detected from space: Air quality observations over Athens/Greece, Geophys.
Res. Lett., 40, 458–463, https://doi.org/10.1002/grl.50118, 2013.
WHO-IARC: Outdoor air pollution a leading environmental cause of cancer
deaths, Press Release no221, 2013.
Zhang, Q., Wu, L., Fang, X., Liu, M., Zhang, J., Shao, M., Lu, S., and Mao,
H.: Emission factors of volatile organic compounds (VOCs) based on the
detailed vehicle classification in a tunnel study, Sci. Total Environ., 624,
878–886, https://doi.org/10.1016/j.scitotenv.2017.12.171, 2018.
Zhang, Y., Yang, W., Simpson, I., Huang, X., Yu, J., Huang, Z., Wang, Z.,
Zhang, Z., Liu, D., Huang, Z., Wang, Y., Pei, C., Shao, M., Blake, D. R.,
Zheng, J., Huang, Z., and Wang, X.: Decadal changes in emissions of volatile
organic compounds (VOCs) from on-road vehicles with intensified automobile
pollution control: Case study in a busy urban tunnel in south China,
Environ. Pollut., 233, 806–819, https://doi.org/10.1016/j.envpol.2017.10.133, 2018.
Ziomas, I. C., Suppan, P., Rappengluck, B., Balis, D., Tzoumaka, P., Melas,
D., Papayiannis, D., Fabian, P., and Zerefos, C. S.: A contribution to the
study of photochemical smog in the greater Athens area, Beitr. Phys. Atmosph., 68,
191–204, 1995.
Short summary
This work presents time-resolved data of non-methane hydrocarbons (NMHC) from automatic chromatographs, measured over a period of 5 months in the greater Athens area. The measured concentrations are higher relative to other recent studies for the majority of NMHCs. A remarkable day-to-day variability is also observed. The contributions from traffic and residential heating to NMHCs are investigated, as they were the major sources impacting the air quality during the study period.
This work presents time-resolved data of non-methane hydrocarbons (NMHC) from automatic...
Altmetrics
Final-revised paper
Preprint